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Abstract: In this study, a neuro-fuzzy coordmation for multiple mobile robots is presented. In coordination of

a group of mobile robots n real environment, the formation and the method for communication of mobile robots
are important tasks. For these problems, a method which implies two level controllers architecture based on a
PID and an adaptive newo-fuzzy is used to coordinate multi robots toward geals. A fuzzy logic system is
designed with two central behaviors, path following and coordination. The fuzzy model has been identified by
subtractive clustering algorithm and trained by adaptive newro-fuzzy interface system. A learning algorithm
based on neural network is developed to tune parameters of membership function, which reduce errors of

coordination and path-following. Our coordination is based on a leader-followers conception which means one
of the robots acts as a leader and related to its position, follower robots go along with it. Simulation and
experimental results demonstrate the effectiveness of the proposed coordination.
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INTRODUCTION

Multi-mobile robots can do a task faster and more
structured together to increase the system effectiveness
(Ishida et al. 1994, Ghabcheloo et al., 2006). The
applications of multi-robot systems may involve
different fields, e.g., industrial, military and service
robotics (Wang, 1992, Barfoot and Clark, 2004; Chen and
Luh, 1994).

Different formation control strategies (Balch and
Arkin, 1998; Gerkey and Mataric, 2004, Cao et al., 1995,
Wang, 1992; Ghommam et al., 2010) proposed on this
topic. However, multi-robot coordination methods can be
divided into three different categories: virtual structure,
behaviour and leader-follower. Each of them has
advantages and drawbacks.

The wvirtual structure approach treats the entire
formation as a single virtual rigid structure (Do and
Pan, 2007, Beard et al, 1999). The main disadvantage
of the wvirtual structure implementation is the
centralization, which leads a single point of failure for the
whole system.

By behaviow based approach, several desired
behaviours are prescribed for each robot and desirable
group behaviour emerges without an explicit model of the
subsystems or the environment. The linitation of
behaviow based approach is that it is difficult to analyze
mathematically, therefore it is hard to guarantee a precise
formation control (Balch and Arkin, 1998).

In the leader-follower approach (Wang, 1992), one of
the robots 1s designated as the leader, with the rest robots
as followers. The follower robots need to position
themselves relative to the leader and to maintain a desired
relative position with respect to the leader. In order, to
prescribe a formation manoeuvre, we need only to specify
the leader motion and the desired relative positions
between the leader and the followers. When the motion of
the leader is known, the deswed positions (desired
distance and orientation) of the followers relative to the
leader can be achieved by local control law on each
follower. This approach 1s characterized by simplicity,
reliability and no need for global knowledge and
computation. However, the disadvantage related to thus
approach is that there is no explicit feedback to the
formation, that is, no explicit feedback from the followers
to the leader in this case.

The problem of leader-follower robot navigation and
coordination is broken down: place detection, localization,
path planning and formation (Cao et al, 1995).
Coordination problem necessitates the knowledge of
localization of leader robot and 1mtial positions of follower
robots. Tn leader-follower approach, leader robot should
interpret the sensed information to obtain knowledge of
its location to be capable of guiding the follower robots.
Neuro-fuzzy based approaches are used to navigate
mobile robots in known and unknown environments
(Zhu and Yang, 2007; Li et al., 2004; Antonelli et al.,
2007). In these studies a real-time fuzzy target tracking
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control scheme for mobile robots by using sensors are
designed. This study focuses its attention to solve the
problem of coordnation of a group of mobile robots with
two level controllers and considering leader-follower
conception. The low level controller 1s designed to adjust
the linear and angular velocities of each robot to allow
path following with the holding constraint kinematics. On
the other hand a high level controller is presented to
coordinate
Leader- followers™ conception is implied to coordinate
among robots which means one of robots act as a leader
and depends on its localization give commands to each
independent follower robots to guide them on the desired

mobile robots in  different formations.

path and formation In this study we suppose robots
move on the smooth paths. The newo-fuzzy controller is
trained with rules as; If robot which 1s leader 1s very far or
far from followers, it will send comimands to the followers
robots to stop or decrease their linear velocities till the
leader catch them mn meanwhile the leader robot moves
faster. If leader is ahead on the path, commands will send
to the followers to go faster or leader robot will stop until
the follower’s robots can catch the leader. To reach this
kind of formation, we used adaptive newo-fuzzy controller
to train and control robots.

The following problems in this study have been
considered:

*  Path planmng and coordination

*  Velocity and position control

*  Wireless communication based on Application
Programming Interface (API) and sensor network
communication

To overcome the above problems for multiple mobile
robots in a real environment, the following approaches
will be presented:

* Develop an optimized neuro-fuzzy controller to
coordinate multi robot systems while achieving
different formations and control missions

¢ Design of a wireless communication with a Zighee
technology which give capability of network
communication

In this study, we present a neuwro-fuzzy control
strategy to coordinate multiple robots by using
localization data based on the robot which acts as leader.
The proposed approach does not require the position of
follower robots in training procedure, only it needs their
initial positions. But positions of follower robots are
measured to overcome uncertainty on their positions in
path following and validate coordination algorithm. Tt
does not require a path to be generated and tracked either
for followers. The controller 1s able to decide about the
motion direction at each time mterval by processing the
information obtained from the leader robot. The simulation
and experimental results demonstrate the effectiveness of
the developed algorithm.

All controller, path planning and coordination in this
study are implemented on multiple mobile robots called
EtsRos. These robots have four wheels which two front
wheels are de-motor powered.

MODELING ANDKINEMATICS OF MOBILE ROBOT

Figure 1 shows the general model of system whuch 1s
used to coordinate multiple mobile robots. As can be seen
in Fig. 1 sensors mounted on DC motors of the leader
robot can localize the leader robot and then its position
can be estimated. Path following and coordination
between leader and follower robots are given by a neuro-
fuzzy algorithm.

Figure 2 shows a kinematics model of the mobile
robot. The generalized coordinates are q = (x,y,0,¢) where,
(x,y) the Cartesian coordinates of the rear-axle midpoint,
6 measures the orientation of body with respect to the
x-axis and ¢ is the steering angle.

For this mobile robot, the general kinematics
model 13 (Alexender and Maddocks, 1987, Campion ef af .,
1996):

Neuro-fuzzy

Path planner control Gulde(ljnce
; . 1 an ::>
(trajectroy) algorithm . Leader robot
= corrdination
| : Follower
robots
— Localization [4

Position B Sensors

estimate measurements

Fig. 1: Infrastructure of multi robot coordination
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Fig. 2: Model of mobile robot
X, = v, cos(8)
v, =v,sin(e,) (1)

0, =0

where, 1, = [x,y,,0,] denote the position and orientation
vector of the ith robot of the group and v ; 1s linear
velocity and w, is angular velocity. The system is subject
to nonholonomic constraints such as:

%sin(0) — ycos(0) =0 (2)

Linear velocity v,(t) and the orientation angle 0 (1)
with respect to t can be calculated as:

SR CEN ETOWERIT) (3)
8,(t) = atan 2, (1), (1) (4)

And angular velocity w,(t) 1s calculated by deriving
of orientation with respect to t as:

1 ¥ (0%,(0) - X0y, (1) (5)

= Gy 0

GENERATION OF TRAINING DATA

Here, the generation of training data which are based
on the position and trajectory of leader robot and initial
positions of follower 1s explammed m detail. In order to plan
a path following and coordination for a group of mobile
robots, the principal idea is to construct a mapping
between the posture of the leader robot and linear and
angular velocities of the leader and followers robots. We
consider sine paths which is smooth and feasible path
such that the robots can follow. The first step 1s the
generation of an appropriate training data set. The
input-output data pairs have been obtained by adopting

F1
— T-':"l""' -

- 1 .

-.l'TT. ::___'_'_Iin.'_-.f e | - T "'::-i__,.-

L eader N 'lll"-- o .....--"""# —
F2 N

Fig. 3: Different formations of mobile robots

a sine wave path and discretizing it to 400 sampling
points. The offline generation of the adopted path 1s
based on knowing path and the imtial position of robots.
The training data set has been generated for the five
different formation corresponding to position of leader
and followers mobile robots. These five formation can be
considered as follow: (1) leader robot 13 very far back
compares to follower robots, in this situation, leader robot
move very fast to reach the follower as follower robots
move i desired speed, (2) leader robot 18 far back, in
this situation, leader robot moves fast to reach the
follower as follower in a desired speed, (3) leader robot
is in the same position (x-reference) as followers
robots, in this situation, leader robot moves i the
same speed of follower on the path, (4) leader robot 1s
far ahead, in this situation, leader robot stops and
follower robots move until they catch leader and (5)
Leader is very far ahead, again in this situation, leader
robot stops and follower robots move until they
catch leader. Figure 3 shows these different formations
which are considered for training. In Fig. 3, F, and F,
show the follower robots. Dashed show the
desired trajectories for leader robots and red line represent
desired trajectory for leader robot. Coordination between
leader and follower robots is considered in training

lines

procedure.

For compatibility with the real Lab environment, a
plane of 7 meters in length and 4 meters in width is
considered for training which can be used in the
simulation and experimental tests. Figure 4 shows the
position of leader robot in x, y and 0 coordination
considering the training with fifth different formations.
Figure 3a and b show the obtained linear and angular
velocities used for the leader and follower robots in
traimng.
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Fig. 5: Linear and Angular velocities of robots. (a) Leader robot and (b) follower robots
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Each formation in training has been sampled to
400 points and five different formations are considered.
Consequently the training data is a matrix with dimension
of 2000=3 as an input and four matrixes which dimension
of each is 20001 as outputs. The four output data are the
linear and angular velocities for the leader and followers
robots. We consider all follower robots as a unit and then
we imply the same linear and angular velocities to them.
With these input and outputs sets the subtractive
clustering with Sugeno-type are made to train input-
outputs.

NEORO-FUZZY CONTROLLER DESIGN

An effective solution to the online coordination and
path following for a multiple mobile robots relies on the
fuzzy logic based approach. The position of leader robot
gives all necessary information to follow a desired path
and coordinate between robots. Fuzzy networks can
produce linear and angular velocities for leader and
follower robots which result proper steering for robots.
We have used the following type of first order Sugeno
rules which is:

R;IFx isA, and y isA, and §,is A,

then
vy =Py + Py X+ Py + Py <
oy = Qu; + Qy x X, + Q3 ¥ + Qy %6 (6)

Ve =Ry +R x X, + Ry xy, + R x9,
0 =Sy + 5 XX+ 8, x ¥, + 55, %9,
fori=1,...M

where, M is number of rules. The mputs to the fuzzy
network controller are x,, y; and 6; which present the
position of leader robot in each point. These positions are
obtained by the incremental encoder sensors mounted on
the right and left motors on wheels of leader robot. vy, w;
and vy, 05 denote outputs of fuzzy networks which are the
linear and angular velocities for leader and follower mobile
robots. These fuzzy controllers provide the path following
and formation to robots. Depends on the position of
leader robot, the linear and angler velocities (v;, w,) are
calculated and sent to leader robot and m the same time
the linear and angler velocities (v ;) are calculated and
sentas a command to follower robots. Four different
3-input 1-output tramning data has been prepared (from the
different formations). Fuzzy rule antecedent membership
functions have been identified by using the subtractive
clustering algorithm with enumerative parametric search.
The consequent parameters of the rules are optimized by
Least Square Estimation (LSE). To find the appropriate
number of rules and mimmum Least Square Error (LSE), an
optimization 15 done with different number of rules and
the related LSE are obtained. Figure 6a and b show the
result obtained for these 4 different fuzzy tramming sets.

Table 1: Fuzzy clustering data

Fuzzy network
Factors 1 2 3 4
Rule No. 8 8 8 8
Trading
data error 7.99710e-003 2.01118e-003 8.28771e-004 2.75756e-003
Radius 0.9 0.9 0.5 0.9
Squash factor 0.5 0.5 0.1 0.5
Acceptratio 0.5 0.5 0.9 0.5
Rejectratio 0.1 0.1 0.7 0.3

Figure 6a and b present the error of fuzzy clustering in
referenice to number of rules for leader and follower
robots.

In view of the Number of Rules and LSE’s,
eight rule numbers are considered for all four fuzzy
training networks. Table 1 shows the fuzzy clustering
Fig. 6: Traimng data errors and rule munbers. (a) Leader
robot and (b) follower robots date for these fuzzy
networks. These data consist of Radius, Squash factor,
LSE, accept and reject ratios.

Figures 7a and b show the training results for
subtractive clustering for leader and follower robots when
inputs are exactly the same as training data.

The structure of the fuzzy inference system with
8 rules 1s depicted in Fig. & In Fig. 8, the inputs x,, y, and
6, are measured by position of leader robot and outputs
are the linear and angular velocities.

Figures 9a and b show the result obtained for
output velocities after training is done. In this test, the
mmtial position of leader robot 13 considered as
ok % (42,8, 8)T = [-1.5.0T and the initial position of
follower robots are [x(t).¥,{t).6, ()T =[0,1.5,01" and
[es (b, Yea (o), B, (4T = [0,-.5,0T .

Here, Adaptive Newo-Fuzzy Inference System
(ANFIS) which constructs a Fuzzy Inference System (FIS)
whose membership function parameters are tuned
{(adjusted) using either a backpropagation algorithm alone
or in combination with a least squares type of method is
explained. The parameters associated with the
membership functions changes through the learning
process. To overcome overfitting the training data set by
meodel and to process of model validation, a set of nput
output which sufficiently distinet from the traiming data
is considered. In principle, the model error for the
checking data set tends to decrease as the training
takes place up to the point that overfitting begins and
then the model error for the checking data suddenly
increases. Figure 10a and b show the set of mnputs and
outputs used to validate ANFIS. A different formation
from training is considered for checking validation. Tn this
situation the initial position of leader robot is considered
as [X,(t,h v (5).8,)] = [-1.5.0]" and the initial position of
follower robots are [x,(t,).v;(t,).0, ()] =[0.1.50]" and
[sz (tm)= YFZ(tI])= O (tu)]T = [0,*-5,0]1- .

The membership functions of the input variables
identified by ANFIS are shown in Fig. 11.
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Table 2: Antecedent parameters (leader robot)

Fuzzy network 1 (linear velocity)

Fuzzy network 2 (angular velocity)

Rule Tnput. 1 {c,) Tnput 2 (c,a) Tnput 3 (c,a) Tnput. 1 {c,d) Trput. 2 {c,) Tnput 3 {c,a)

1 [3.159 5.006] [0.4799 0.2307] [0.3132 -0.01601] [3.201 4.999] [0.3777 0.2068] [0.2781 0.08375]
2 [3.1774.703 ] [0.3243 -0.01734] [0.2728 0.4576] [3.197 4.666] [0.3385 -0.0098%4] [0.2881 0.4361]

3 [3.251 1.979] [0.2905 -0.1226] [0.2502 0.2665] [3.231.992] [0.3569 -0.2098] [0.234 0.1455]

4 [3.195 2.906] [0.335 -0.4667] [0.2654 -0.08668] [3.19 5.451] [0.3604 0.3317] [0.2451 0.3057]
5 [3.172 5.569] [0.3231 0.3682] [0.2276 0.2465] [3.197 3.704] [0.3419 -0.3881] [0.3357 0.2373]
6 [3.194 3.825] [0.2902 -0.3674] [0.298 0.2993] [3.195 2.731] [0.2556 -0.3129] [0.3605 -0.2413]
7 [3.201 1.852] [0.2909 -0.1657] [0.2697 -0.4027] [3.191.913] [0.3058 -0.214 ] [0.342 -0.3712]

8 [3.184 0.5505] [0.3902 0.4227] [0.2462 -0.3412] [3.182 0.3796] [0.3895 0.329¢6] [0.1725 -0.06248]

Table 3: Antecedent parameters (Follower Robots)

Fuzzy network 3 (linear velocity)

Fuzzy network 4(angular velocity)

Rule Inputl {c,0) Input 2 (c,0) Input 3 (c,0) Input 1 {c,0) Input 2 {c,0) Input 3 {c,0)

1 [1.729 5.006] [0.1954 0.1562] [0.1396 0.06158] [3.187 4.996] [0.2632 0.186] [0.4019 0.2934]
2 [1.748 5.385] [0.1837 0.2869] [0.1796 0.3569] [3.203 4.665] [0.3505 0.00267] [0.2626 0.02391]
3 [1.75 5.236] [0.1473 0.2297] [0.1429 0.3935] [3.202 1.999] [0.2913 -0.2202] [0.2786 0.4368]
4 [1.733 5.527] [0.213 0.3657] [0.162 0.2967] [3.200 5.452] [0.3476 0.3457] [0.2398 0.1338]
5 [1.8 5.063] [0.1577 0.1604] [0.1494 0.419] [3.197 3.707] [0.3123 -0.3525] [0.2434 0.3304]
6 [1.762 5.753] [0.2323 0.4297] [0.1573 0.2126] [3.192 2.716] [0.2893 -0.3877] [0.303 0.2727]

7 [1.891 4.786] [0.1576 0.1062] [0.08245 0.3861] [3.21.835] [0.4023 -0.1443] [0.3278 -0.2268]
8 [1.768 4.489] [0.1777 -0.098] [0.1538 0.4303] [3.192 0.5071] [0.4019 0.2934] [0.3149 -0.424]

Table 4: Consequent parameters (leader robot)

Fuzzy network 1 (linear velocity)

Fuzzy network 2 (angular velocity)

Rule Py Py Py Py Qs Qu Qs Qns
1 -0.01651 0.0319 -0.0223 0.0771 -0.2398 -5.147 -6.918 3.265
2 0.4022 -0.02227 -0.7788 -1.318 0.221 0.9656 2.945 -3.645
3 -0.1351 -1.20 1.519 1.13 -0.9262 -6.303 7.207 -1.14
4 -0.1884 0.2303 0.3745 0.53 -0.1634 -3.077 -3.415 4.804
5 -0.833 -0.3675 2264 2.431 0.4762 2.905 0.868 -1.297
(5] -0.0098 -1.203 -0.109 0.7862 0.249 3.408 3.207 4.10
7 1476 -2.942 -1.121 -6.367 -0.2407 0.8054 -3.621 -2.523
8 0.00814 -0.03152 0.05042 0.00193 0.004623 0.01106 -0.189 -0.02402
Table 5: Consequent parameters (follower robots)

Fuzzy network 3 leader robot (linear velocity) Fuzzy network 4 leader robot (linear velocity)
Rule R R Ry Ry 8 Sy S5 S
1 1.504 32.85 34.58 =204 -0.01683 -6.830 -1.102 3.007
2 1.57 -8.551 -2.619 -15.97 0.04864 -0.4284 0.0635 0.3286
3 5219 62.63 -27.95 5.955 -0.5693 -6.271 2.212 -2.352
4 -0.573 3.701 2.056 8.091 -0.329 0.7379 -2.326 2.722
5 0.6148 7.805 15.09 -19.11 -0.7134 -1.494 3.19 -0.6362
V] -2.372 -2.137 4.933 16.81 1.704 3.518 2.952 -0.3323
7 4.199 9.684 8.577 0.4569 -1.407 -2.424 -2.939 0.3328
8 0.3871 =517 2.612 5.771 0.04004 -0.3503 0.2926 0.3574

The premise parameters which are identified by the
cluster center ¢ and the standard deviations o of the
extracted Gaussian membership function parameters are
shown in Table 2 and 3 for all four fuzzy networks.

The consequent parameters as mentioned in Eq. 6 and
have been optimized by L.SE are given in Table 4 and 5.

Figure 12 shows a general model for adaptive newro-

[x1(tu)> yl(tu )>e1 (tu)]T = [_1>-5,0]T

and the 1nitial position of follower robots are

(% (g 2, ¥ (8. 05, (8T = [0,1.5,01°

and

fuzzy used for modeling of our system. The inputs are
position of leader robot and outputs are the velocities of
leader and follower robots.

Figure 13a and b show the result obtained for output
velocities after owr input-output data sets are trained by
ANFIS. In this situation the initial position of leader robot
is considered as:

[sz (tﬂ )’ Yfg (tu)> efz (tu )]T = [0>_-550]T .

Figure 14a and b show the LSE’s obtained by
checking input-output set and ANFIS training with
60 epochs.
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EXPERIMENTAL RESULTS

Figure 15 shows the EtsRo mobile robot used for the
experimental set up. EtsRo 1s a four-wheel mobile robot,
front wheels are equipped with two DC motors 7.5 Volt,
175 rpm which are installed on the right and left front
wheels. The mcremental Encoders are mounted on the
motors counting with resolution 6000 pulses turn™'. The
wheels have radius of r = 4.5 cm, the length, width and
height of EtsRo are 23,20,11 cm, respectively. The
total weight of robot 1s around 2.3 kg. Maximum linear
velocity is 1.12 m sec™ and maximum angular velecity is
574 rad sec”. Figure 16 shows a general view of the
experimental set up.

EtsRo has two-level control architecture as can be
seen in Fig. 17. Low-level control algorithm 1s
written in C language and run with a sampling time of
T,=10m sec.

There are two second-order filters designed to
eliminate sparks on the velocities and two PID controllers
are designed to reach the best accuracy for the right and
left motors. High-level controller which is a newo-fuzzy
controller 13 designed m real-time simulink (Matlab) with
a sampling time of T, = 50 m sec. The PC commurnicates
through a serial port with a modem and with APT
mode with robots. The speed of ZigBee modem is set on
9600 bits sec™". In this project ATmega32 microcentroller
15 used which generates a PWM signal to control the
motor speed. The STKS500 development board is designed
to be programmed from a PC computer and is supported
by many software tools, such as the GCC compiler and
development environment AVRStudio.

ZigBee USB-RF Modem is the communication device
which used to transmit the data. The range of modem 1s
about 100 m which make it a high-quality Modem for
indoor applications. We need to commumicate with the
three independent entities from a single transmitter. In

Fig. 15: The mobile robot (EtsRo)
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Fig. 16: The general view of experimental set up

addition, all communication should be bidirectional. To do
this, a persconal network 1s created to communicate with
nodes (robots).

An address 1s assigned to each node and API mode
is used to address the packets. In APT mode, each node
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/ follower robots
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Fig. 17: Intelligent coordination and path-following architecture for multiple mobile robots
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sending its data preceded by a frame which contains the
destination address. The frame must be completed by a
check sum which allows the receiver to confirm receipt of
mntact data. Leader robot send information of its position
to the PC, PC receives the posture information, processes
and referrals commands to each individual robot.

Tn each time, n data bytes will be send from PC to the
robot, the size of data 1s 28 bits. Each robot sends back
its position to the microcontroller and from there, left and
right speeds are calculated and second-order filters
remove spikes. Using the following equation we can find
the right and left motor velocities:

vl =v+ L o/2), v,(D=v- (L /D) (7

where, vi(t) and v (t) denote the right and left velocities
and T shows the distance between wheels.

And then with using of the following equation, we
obtain the linear and angular velocities:

BIRAUES A IR A e A () )
2 L

And Cartesian coordination of mobile robots with:
x=vcos(8) , y=vsin(e) , ezjwdt )]

In the first experimental test, the leader robot 1s placed
far back of the follower robots with initial position of
[t 7i{to). 8, (8" = [-1,.5,0] . And the mitial position of
follower robots are [Xq(ty).ye(ty).8, ()] =[0,1.5,01" and
[xfE(tI])7Yf2(tD)7ef2(tﬂ)]T:[0=7-5=0]T accordingly. Flgure 18
shows the results obtained in xy coordinate which
presents the position of mobile robot in path. As we can
see 1n Fig. 18, the leader moves fast to catch the follower
robots as it sends commands to followers to move 1n the
slower speed. As soon as leader robots catch the
followers, all robots continue to move on the sme path
with the same speed.

Figure 19a and b show the reference and measured
linear and angular velocities obtained by fuzzy networks
and given to leader and follower robots.

In the second experimental test, the leader robot is p
laced far ahead of the follower robots with imtial position
of [x,(t), vi(ty), 91(t0)]T = [_1,-5,0]T . And the initial pOSitiOIl of
follower robots are[xq (t). Vet ), 8 (t,)]" =[0.1.5.0]  and
(%2 (ta), ¥ra{to), 0, (2] = [0, 5,01 aCCOI'diIlgly. Flgure 20
shows the results obtamned m x,y coordinate. As we can
see in Fig. 20, the leader robot stops and sends
commands to follower robots to move till all robots they
arrive in the same point (x-reference). As soon follower
robots catch the leader, all robots continue to move on
the sine path.
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Fig. 18 Coordination and path-following for multiple
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Figure 21a and b illustrate the reference and measured
linear and angular velocities obtained by fuzzy networks
and given to leader and follower robots.
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CONCLUSION

Path following and coordination for a group of mobile
robots have been proposed in this study. The approach
that has been developed 1s based on a leader-follower
coordination conception and on-line path following. To
reach the best performance and minimize the path
following and coordination errors, a two level controllers
are designed. To control the right and left motors
mounted on the right and left wheels, a low level
controller (PID) is considered and a high level controller
based on a neuro-fuzzy mterface 1s proposed which
enable robots to follow the desired path and coordinate
with minimum errors. Communication was designed with
Zighee technologies which enable to communicate with
multiple mobile robots.
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