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Abstract: In order to overcome the difficulty of a mobile robot to perform localization only with its onboard
sensors, this study presents a probabilistic algorithm Monte Carlo Localization (MCL) to solve the problem of
mobile robot localization in a hybrid robot and camera network in real time. On one hand, the robot does perform
localization depending on its laser sensor using Monte Carlo method. On the other hand, environment cameras
can detect the robot in their field of view during robot localization. According to a built environment camera
model, MCL method extended to update robot’s belief whichever mformation (positive or negative) attained
from environmental camera sensors. Meanwhile, all the parameters of each environmental camera are unknown
in advance and need be calibrated independently by robot. Once calibrated, the positive and negative detection
models can be built up according to the parameters of environmental cameras. A firther experiment, obtained
with the real robot in an indoor office environment, illustrates it has drastic improvement in global localization
speed and accuracy using our algorithm.

Key words: Environmental camera, monte carlo, negative nformation, positive mformation, global localization,

kidnapped robot

INTRODUCTION

Mobile robot localization 1s the problem of estimating
a robot’s pose (location, orientation) relative to its
environment. The localization problem is a key problem in
mobile robotics. There are two classes of localization
problem, position tracking and global localization. In
position tracking, a robot knows its 1mutal position
(Roy et al., 1999, Yuan et al, 2009; Hassanzadeh and
Mehdi, 2008) and only needs to reduce uncertainty in the
odometer reading. If the initial position is not known or
the robot 1s kidnapped to somewhere, the problem 1s one
of global localization, i.e., the mobile robot has to estimate
its global position through a sequence of sensing actions
(Liang et al., 2008a). In recent years, a great lot of
publications on localization have revealed the importance
of the problem. Moreover, it has been referred to as the
most fundamental problem to providing a mobile robot
with autonomous capabilities.

Many existing work addresses localization problem
only using sensors onboard mobile robots. However,
during the process of navigation, the robot cannot always
determine its umque situation only by local sensing
mnformation since the sensors are prone to errors and a
slight change of the robot’s situation deteriorates the
sensing results. Along with the rapid development of
computer networks and multimedia techmology, research

on how to make an intelligent environment for the robot
to fulfill the same functions makes sense, especially in
home environment (L1 and Zhang, 2007). In this case,
various sensors are embedded mto the environment
(environmental sensors) and communication between
the robot and environmental sensors is utilized. Both
Lee et al. (2004) and Liang et al. (2008b) proposed a
distributed vision system for navigating mobile robots in
a real world setting. To obtain robustness and flexibility,
the system consisted of redundant wvision agents
connected to a computer network; these agents provided
information for robots by orgamzing the commurncation
between vision agents. Morioka et al. (2002) defined the
space in which many vision sensors and intelligent
devices are distributed as an intelligent space. Mobile
robots exist in this space as physical agents that provide
humans with services. Matsumoto et al. (2002) also
proposed a concept called a distributed modular robot
system. In that robot system, a modular robot was
defined as a mono-functional robot (either a sensor or an
actuator) with a radio communication unit and a
processing unit. Such robots were usually small and could
be easily attached to operational objects or dispersed
nto the environment. A modular robot system for
object transportation was  developed by using
several distributed-placed camera modules and wheel

modules.
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All studies mentioned above mostly focus on the
structure of system, while don’t put forward an effective
method to incorporate the information of environmental
sensors. On the other hand, they only apply the positive
information (it represents that a sensor detects the robot)
to localize the robot, while don’t take into account how to
make use of the negative information which represents
that a sensor doesn’t detect the robot. The original work
of Hoffmann et al. (2005) considered negative information
in Markov localization for the Robocup Sony Aibo ERS-7
4-Legged robot. Expernimental results show that
integrating negative evidence can unprove overall robot
localization performance.

Inspired by the work of Hoffmann, the aim of this
paper 1s to show how positive and negative nformation
of sensors can be applied for robot localization in
distributed sensor networks. Therefore, an efficient
probabilistic approach based on Markov localization
(Kaelbling et al., 1996; Burgard et al., 1996, Fox et al,,
1999) 1s proposed. In contrast to previous research, which
relied on grid-based or coarse-grained topological
representations of the robot state space, owr approach
adopts a sampling-based representation (Thrn et al,
2001). Monte Carlo Localization (MCL), which 1s capable
of approximating a wide range of belief functions in
real-time. Using the positive and negative detection model
of environmental sensors, the MCL algorithm can unprove
localization aceuracy and shorten the localization time. In
terms of practical applications, while our approach is
applicable to any sensor capable of detecting robot, we
present an implementation that uses color environmental
cameras for robot localization. The location and
parameters of all environmental cameras are unknown and
need to be calibrated by the robot. Once getting the
cameras’ parameters, the positive and negative detection
models can be attamned. Experimental results, carried out
with three environmental cameras fixed in an indoor

environment, illustrate the appropriateness of the
approach m solving the robot global localization
problem.

MONTE CARLO LOCALIZATION

Here, we will introduce ow sampling-based
localization approach only depending on the robot
itself. Tt is based on Markov localization, which provides
a general framework for estimating the position of a
mobile robot. Markov localization mamtains a belief
Bel (L") over the complete three-dimensicnal state space
of the robot. Here, L% denotes a random variable and
Bel(L¥ = ) denotes the robot’s belief of being at location
I, representing its x-y coordinates (in some Cartesian

coordinate system) and its heading direction 8. The belief
over the state space is updated whenever the robot
moves and senses.

Monte Carlo localization relies on sample-based
representations  for  the  robot’s  belief and
sampling/importance resampling algorithm for belief
propagation (Thrun et al., 2005, Smith and Gelfand, 1992).
The sampling/importance resampling algorithm has
been introduced for Bayesian filtering of nonlinear,
non-Gaussian ~ dynamic  models. Tt is  known
alternatively as the bootstrap filter (Gordon et al., 1993),
the Monte-Carlo filter (Thrun et af., 2001), the
Condensation algorithm (Isard and Blake, 1998), or the
survival of the fittest algorithm (Kanazawa et al., 1995).
All these methods are generically known as particle filters
and a discussion of their properties can be found in
Doucet (1998).

More specifically, MCL represents the posterior
beliefs Bel(1.) over the robot’s state space by a set of N
weighted random samples denoted 8 = {s,]i = 1..N}. A
sample set constitutes a discrete distribution. However,
under appropriate assumptions (which happen to be
fulfilled in MCL), such distributions smoothly approximate
the correct on at a rate of I/¥N as N goes to infinity.
Samples in MCL are of the type {/, p}, where, { denotes a
robot position in x-y-0 space and pz0 18 a numerical
weighting factor, analogous to a discrete probability. For
consistency, we assume;

PINTEY

In analogy with the general Markov localization
approach, MCL propagates the belief as follows:

+  Robot motion, when a robot moves, MCL generates
N new samples that approximate the robot’s position
after a motion measwement a. Each sample 1s
generated by randomly drawing a sample from the
previously computed sample set, with likelithood
determined by their p-value. Let, / denote the {x, y, 0}
position of this sample. The new sample’s [ 1s then
determined by generating a single, random sample
from the distribution P(I|7, a), using the observed
motion a. The p-value of the new sample is N~'. Here,
P(I|], a), is called the motion model of the robot. Tt
models the uncertainty in robot motion

¢+  Environment measurements are incorporated by
re-welghting the sample set, which 1s analogous to
the application of Bayes rule to the belief state using
importance sampling. More specifically, let {Z, p) be a
sample. Then:
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paP{o|l)p (1)

where, 0 18 a sensor measurement and ¢ 1s normalization
constant that enforces:

Zop=t

P(o| D), also called the environment perceiving o given that
the robot 18 at position /. The mecorporation of sensor
readings is typically performed in two phases, one in
which p is multiplied by P(o|f}) and one in which the
various p-value are normalized.

For proximity sensors such as laser range-finders
which is adopted in my approach, the probability P(o|l),
can be approximated by P(o|o,), which is the probability
of observing o conditioned on the expected measurement
o, at location /. The expected measurement, a distance in
this case, is easily computed from the map of the
environment using ray tracing. The function is mixture of
a Gaussian (centered on the correct distance o), a
Geometric distribution (medeling overly short readings)
and a Dirac distribution (modeling max-range readings)
(Thrun et al., 2005). It integrates the accuracy of the
sensor with the likelihood of receiving a random
measurement (e.g., due to obstacles not modeled 1in the
map (Fox et al., 1999).

COOPERATIVE DISTRIBUTED
SENSOR LOCALIZATION

Here, we will first describe the basic statistical
mechamsm for cooperative distributed sensor localization
and then its implementation using MCL. The key idea of
cooperative distributed sensor localization is to integrate
measwrements taken at different platforms, so that robot
can benefit from mformation gathered by environmental
sensors, which are embedded n the environment, other
than itself. The information coming from environmental
sensors includes positive detections, i.e., cases where an
environmental sensor does detect the robot and negative
detection events, l.e., cases where an environmental
sensor does not see the robot.

Positive detections: When one environmental sensor

detects the robot, sample set i3 updated using the
detection model, according to the update equation:

Bel" (i) « pBel” ()P (rfm)

L= 1) (2)

where, B is normalization constant. The crucial component
1s the probabilistic detection moede:

P (rf“‘)

L -1

which describes the conditional probability that robot is
at location [, given that sensor m perceives robot with
positive measurement % The detection model:

of each environmental camera is constructed directly
according to its parameters. Thus, before integrating
positive information of each environmental camera into
the robot belief, parameters of each camera need to be

calibrated by the robot.

Camera self-calibration: In owr method, all parameters of
every environmental camera are unknown m advance and
their Fields of View (FOV) are not overlaid each other. So,
in order to apply them to localize the robot, every
camera’s parameters need to be calibrated at first.
Assuming that the system 1s always ready for using in
different environments, calibration instruments (such as
patterns and measuring devices) may more or less hinder
portability. Our objective is to introduce a self-calibration
concept (Chen et al., 2007) mto the system and take the
mobile robot as a calibration instrument. Because the
FOVs of all cameras are not overlaid each other, each
camera calibration process is independent.

During the calibration, the robot location 1s known.
When the robot moves depending on its laser and
odometry m FOV of any environmental camera, the camera
does detect the robot and gathers the relative data
between the robot global location and detected image
pixels. The sample space of relative data 1s designed to
satisfy a condition that the distance between two
neighbor global locations of relative data is more than
0.1m. Once the number of relative data sums up to a
threshold which is set as 200 in this paper, the camera
calibration program can be conducted. Because the mobile
robot always moves in a plane, the coplanar camera
calibration method of Tsai and Roger (1986) is adopted
here.

In addition, unlike ordmary calibration devices, the
mobile robot is much less accurate when moving. As the
most distinet point of the robot’s error, it 13 cumulative
and increase over time or repeated measurements.
Moreover, the random motion input of the robot, which
may take too much time, is not suitable for our method.
For all these reasons, robot’s motion during calibration
process should be designed to avoid serious calibration
error and to meet the accuracy demands of calibration. In
our method, the robot in the FOV of every camera moves
as a zigzag, which 1s shown in Fig. 1.
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(b)
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Fig. 1. Image sequences of successful detecting the robot which zigzagged through the visual field of a camera to

calibrate the camera

Detection: To determine the location of the robot, our
approach combines visual information obtained from
envirommental cameras. Camera images are used to detect
the mobile robot and determine the position of the
detected robot. The two rows in Fig. 1 shows examples of
camera 1mages recorded in a room. Each image shows a
robot, marked by a umque, colored marker to facilitate its
recognition. Even though the robot is shown with a
flexible orientation in this Fig. 1, the marker can be
detected regardless of the robot’s orientation.

To find the robot in a camera 1mage, our approach
first filters the image by employing local color histograms
and decision trees tuned to the colors of the marker.
Threshold is then employed to search for the marker’s
characteristic color transition. If found, this implies that
the robot is present in the image. The small black points,
superimposed on each marker in the images in Fig. 1,
shows the center of the marker as identified by thus
distributed envirommental camera. Table 1 shows the
ratios of false-positives and false-negatives estimated
from a training set 120 images, in half of which the robot
1s within a camera FOV. As can be seer, our current visual
routines have a 2.5% chance of not detecting a robot in
the camera FOV and a 6.7% chance of detecting a robot
which is not in the camera.

Once a robot has been detected, the current
environmental camera 1s analyzed for the location of the
robot in image coordinates. Then transform the detection
pixels in image coordinates to positions in world
coordinates according to the calibrated parameters of the
camera. Here, tight synchromzation of photometric data 1s

very important, especially because the mobile robot might
shift and rotate simultaneously when it is sensed In owr
framework, sensor synchronization 1s fully controllable
because all data 1s tagged with timestamps.

Detection model: Here, we have to devise a detection
model of the type:

(19— )

To recap, r."™ denotes a positive detection event by
the m-th environmental camera, which comprises planar
location of the detected robot in world coordinates. The
variable L% describes the estimated locations of the
detected robot. As described above, we will restrict our
considerations to positive detections, 1.e., cases where an
environmental camera did detect a robot.

The detection model is trained using data. More
specifically, during training we assume that the exact
location of robot is known. Whenever an environmental
camera takes an image which 1s analyzed as to whether the
robot 15 n its FOV, 1t 18 to exploit the fact that the
locations of robot are known during traming. Then, the
image is analyzed and for detected robot global location
is computed according to the calibrated parameters of the
environmental camera above. This data is sufficient to
train the detection model:

P( |19 = 1= (2n) 3]z

i

T exp {—%(A]— i )’ E;}, (A.l - rﬁm))}

(3)
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Fig. 2: Camera detection Gaussian model

where,

Aloo}:cio
o1 of ™o o)

0%, and 0%, represent mean square error in x direction and
y direction respectively. Let, .*” as coordinate origin and
the Gaussian model showed m Fig. 2 models the error in
the estimation of robot’s locatton. Here, the x-axis
represents  the error of x direction in the world
coordinates and the y-axis the y direction error. The
parameters of this Gaussian model has been obtained
through maximum likelihood estimation (Howard and
Mataric, 2002) based on the training data. As is easy to
be seen, the Gaussian model is zero-centered along
both dimensions and it assigns low likelihood to
large errors. Assuming independence between the two
errors, we found both errors of the estimation to be about
10 cm.

To obtain the tramning data, the true location was not
determined manually, instead, MCL was applied for
position estimation (with a known starting position and
very large sample sets). Empirical results by Koller and
Fratkina (1998) suggest that MCL 1s sufficiently accurate
for tracking a robot with only a few centimeters error. The
robot’s positions, while moving at speeds like 30 cm sec™
through our environment, were synchronized and then
further analyzed geometrically to determine whether (and
where) the robot 1s in the FOVs of environmental cameras.
As aresult, data collection is extremely easy as it does not
require any manual labeling; however, the error in MCIL,
leads to a slightly less confined detection model than one
would obtain with manually labeled data (assuming that
the accuracy of manual position estimation exceeds that
of MCL).

Table 1: Rates of talsepositives and false-negatives for our detection rotine

Robot detected (%)  No robot detected (%0)
Robot in camera FOV 97.5 2.5
No robot in camera FOV 6.7 93.3

Negative detections: Most of the techniques of state
estimation use a sensor model that update the state
belief when the sensor reports a measwement. However,
it is possible to get useful information of the state from
the absence of environmental sensor measurements.
There are three main reasons for environmental camera
not to measure the robot marker. The first one is that the
robot marker 1s not m the FOV of the envirormmental
camera, the second one 18 that the environmental camera
fails to detect the robot mark even if it falls within the
camera FOV and the last one is that the environmental
camera 1s unable to detect the robot mark, due to
occlusions.

This situation of no detecting a robot mark can be
modeled by considering the environmental camera FOV
and by using an obstacle detection to identify occlusions
as shown:

Bel(L(') = l) — yBel(L(') =1,')P(r_(’“) \ = l,v(’“),obs(’“)) {4)

where, v is normalization constant, the negative detection
model 15 defined as:

P(rfm) | :J,V(m),obs(m)) =

1

BT 1 o "
1-(27) 7|2 exp{—E(Aifr_( o (al—d ))}7P(e, 1)
fev™ and I ¢ obs®™
1 fev™ or [ =obs™
0 fg v
(3)
where, let:
T =T
r represents the negative information of m-th

environmental sensor, v describes the visibility area of
the sensor and obs®™ represents the occlusion area. P(e;|])
represents the probability that the environmental camera
fails to detect the robot mark which falls within the camera
FOV. According to Table 1, P(g]|]) is always equal to
0.025. Let, 1™ as coordinate crigin, the Gaussian model
showed in Fig. 3 models the error in the location
estimation of no detecting the robot. Here, the x-axis
represents the error of x direction in the world coordinates
and the y-axis the y direction error.
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The negative information has been applied to target
tracking using the event of not detecting a target as
evidence to update the probability density function
(Koch, 2005). In that work negative information means
that the target is not located in the visual area of the
sensor and since the target is known to exist it is certainly
outside the area.

In the cooperative distributed sensor localization
problem for mobile robot, negative information can also
mean the absence of detections (in the case that an
environmental sensor does not detect the robot), which
configures a lack of group information. In this case, the
negative detection measurement can provide the useful
information that the robot is not located in the visibility

Fig. 3: Negative detection model

" Mapative Infa, |
il acclusiens ) |

Cameral_Niew hlam

area of an environmental sensor. In some cases, it can be
essential information as it could improve the pose belief
of the robot in short time.

Our contribution mn this paper is the proposal of a
negative detection model and its incorporation into MCT,
approach based on distributed sensors. Consider an
envirommental camera, within a known environmental and
its FOV as shown m Fig. 4. If the environmental camera
does not detect the robot, negative information is
reported, which states that the robot is not in the visibility
area of the camera, as depicted at the bottom right image
of Fig. 4.

The information gathered from Fig. 4 is true if we
consider that there are no occlusions. In order to account
for occlusions it 1s necessary to sense the environment to
identify free areas or occupied areas. If it 1s 1dentified as
an occupied area it means that the robot could be
occluded by an obstacle. In this case, it is possible to use
geometric inference to determine which part of the visual
area can be used as negative detection information. For
environmental cameras, we apply background subtraction
approach (Liang et al, 2008c) to detect the occupied
areas. So, a rectangle area n camera umage can be attained
corresponding to the occupied area, as shown m the
upper left image of Fig. 4. Then the real field cbs® of the
occupied area in the world coordinates is computed based
on camera calibrated parameters. The mtersection area of
the obs™ and the camera FOV v™ is shown in the top
right image of Fig. 4.

i amora.."_'n.!’mn

Fig. 4: Positive and negative detections
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Cooperative distributed sensor localization: According to
the above positive and negative mformation, the
cooperative distributed sensor localization algorithm for
robot 1s shown as follow:

MCL algorithm to cooperate distributed sensors
Step 1: Initialize the sample set 8 = {s;|i=1..N} from P~ =1)
si = {J, p;y where, L= {x,y,,8,} denotes a robot position and p;
is a weighting factor.
Step 2: Apply the motion model
il the robot receives new odometry readings a do
fori=1toNdo

L« PL]ar)

end lor
end il
Step 3: Apply the perception model
il the robot receives new laser sensor inputs O do
fori=1 te Ndeo
P« “P(D lx)pi
end lor
end il
Step 4: Apply positive and negative detection model of camera
for m = 1 to M /M denotes the total number of all
enviroumental sensors
il the robot is detected by the m-th enviroumental sensor do
fori=1toNdo

p, « pp(r

end lor
end il
il the robot receives negative information from the m-th
envirownental sensor do
fori=1toNdo

p, « yP(r_(’“) [L® :l,v(’“),obs(’“))p‘

L =1lp,

end lor
end il
end for
Step 5: Sampling importance resampling (STR) process (the details shown
as [4]
fori=1to Ndo
draw s; with probability =op;
add s; to S
end for

RESULTS

The experimental system (Fig. 5) is composed of one
ActivMedia Pioneer3 DX with cne SICK LMS200 laser
range sensor as the mobile robot and a camera network
mcluding three Panasonic CCD cameras. The position of
each camera mounted on the ceiling is shown in Fig. 6.
Moreover, each camera 1s linked to P4 2.0 Ghz+512 M
RAM PC running Fedora Core 10 by a BT848 card. The
camera nodes commumcate with the robot based on
wireless local network over a commumcation protocol
called IPC, developed by Simmons (2008) at Carnegie
Mellon University. Figure 7 shows the system software
framework. It can be seen from Fig. 7 that each camera
node manages the robot detection and camera calibration,
while the robot runs the collabeorative localization
algorithm.

L] ] @
| | |
J - | =
“Cameranode 1 Cameranode 2 Cameranode 3
WLAN WLAN
WLAN

P3DX robot

Fig. 5: The system hardware structure

In whole experiments, the number N of samples in
cooperative distributed sensors localization algorithm is
fixed to 400. Figure 7 1s the system software interface
including the occupancy grid map used for position
estimation and the FOV of three cameras applied to detect
and localize the robot. Figure 8 also shows the path from
A to C taken by Pioneer3 DX with a laser sensor, which
was in the process of global localization.

In order to evaluate the benefits of collaborative
distributed sensor localization algorithm for the mobile
robot, three different types of experiment are performed
using the above deployment. The first one is that the
robot performs global localization by using the positive
information of environmental cameras and the FOV of
each camera 1s not occupied. The second one 15 to use
positive and negative information of environmental
cameras FOVs of which are not occupied for robot
localization. Compared with the second one, the only
difference of the last one 1s that FOV of each camera 1s
partly occupied.

No occlusions and only using positive information:
Figure 9a shows the uncertain belief of the robot on point
A from scratch. Before robot passes point B (shown in
Fig. 9b, the robot 1s still highly uncertain about its exact
location only depending on its onboard laser sensor. The
key event, illustrating the utility of cooperation in
localization, is a detection event. More specifically, the
envirommental camera 2 detects the robot as it moves
through its FOV at the 14th sec (Fig. 9¢). Using the
detection model described as earlier the robot integrates
the positive information into its current belief. The effect
of this integration on robot’s belief 15 shown in Fig. 9c. As
Figure 9¢ shows this single incident almost completely
resolves the uncertainty i robot’s belief and shortens the
time of robot global localization effectively. When the
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Fig. 6: 3D model of experimental environment
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Fig. 7. The system software framework

robot arrived at point C, all samples have complete
converge to the true pose of the robot, shown in Fig. 9d.

No occlusions and using all information: It can be seen
from Fig. 10a that the particles existing in the visibility
area of three cameras are disappeared due to using the
negative mformation. After 9 sec, the effect of thus
integration on the robot’s belief is shown in Fig.10b.
Compared with the first experiment, localization results
obtained with negative detecton information into the

robot global localization are more accurate and provide
the ability to localize the robot more quickly.

Occlusions and using all information: In this experiment,
we take into account three cameras occupied by another
robots. The cameras applied background
subtraction approach described by Liang et al. (2008¢) to
detect the obstacles. The detection result is shown in
Fig. 11a. Due to the occlusion, the particles existing in
the occupied areas are still reserved (Fig. 11b). After

three
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Fig. 8: The software interface including the experimental map and FOV of three cameras

(.e,},),, Estimated position Samplesamemt i (.b).

Fig. 9: The localization process using positive information of three cameras. (a) The sample cloud represents the
robot’s belief on point A from seratch, (b) Sample set before passing point B, {¢) Achieved localization by
integrating the positive information of camera 2 and (d) Sample set when the robot arrived at point C
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Fig.10: The localization process using all information of three cameras. (a) The particles represent the robot’s belief by
integrating the negative information of three cameras and (b) Archived localization after 8 sec

Fig. 11: The localization process using all information of three cameras the FOV of which were occupied by other three
robots. (a) The sample cloud represents the robot’s belief on point A from scratch, (b) Particles set after
integrating positive and negative information of three cameras and (¢) Archived localization after 10 sec
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Fig. 12: Comparison of localization error using three localization algorithms

10 sec, the effect of robot’s belief is described in Fig. 11c.
From this experiment, it can be seen that though the
cameras are partly occupied, the accuracy of the
localization is still greatly improved using the negative
detection information compared with the first experiment.

Localization error analysis: In the case of no occlusions,
we conducted ten times for the first two experiments and
another experiment that the robot performed global
localization only using its laser sensor and compared the
performance to conventional MCL for robot which
ignores environmental cameras’ detections. To measwre
the localization performance we determined the true
locations of the robot by performing position tracking and
measuring the position of each second. For each second,
we then computed the estimation error at the reference
positions. The estimation error is measured by the
average distance of all samples from the reference
position. The results are summarized in Fig. 12. The graph
plots the estimation error (y-axis) as a function of time
(x-axis), averaged over the ten experiments, along with
their 95% confidence intervals (bars). Firstly, as can be
seen in the Fig. 12, the quality of position estimation
increases faster when using environmental camera
detection (positive information) than one without
environmental cameras. Please note that the detection
event typically took place 14-16 sec after the start of each

experiment and the robot resolves its global localization
completely about at 18th sec. Secondly, as can be also
seen in the Fig. 12, the quality of position estimation
increases much faster (about 9 sec) when using all
information of environmental cameras. Obviously, this
experiment 18 specifically well-suited to demonstrate the
advantage of positive and negative mformation of
environmental cameras in robot global localization. Of
course, the performance of our approach i more complex
situations, especially highly symmetrical and dynamic
enviromments, 1s more attractable to solve robot’s global
localization.

CONCLUSIONS
In this study, we presented an approach to
collaborate  distributed sensors for mobile robot

localization that uses a sample-based representation of
the robot state space, resulting in an extremely efficient
and robust technique for global position estimation. Here
we use environmental cameras whose parameters is
unknown in advance to determine robot’s position. In
order to apply environmental cameras to localize the
robot, all parameters of each environmental camera are
calibrated independently by robot. During calibration, the
robot localization 13 known and can navigate by its
onboard laser sensor. Once calibrated, the positive and
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negative detections of the environmental cameras can be
applied to localize robot. Experimental results
demonstrate that, to combine all information of
envirommental cameras, the robot’s belief can reduce its
uncertainty significantly.
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