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Abstract: Tn this study, the aim of the study is to present a new method to sclve interval quadratic programming

problem with box set constramts by using a projection neural network model. Based on the Saddle point
theorem, the equilibrium point of the proposed neural network is proved to be the optimal solution of the
interval quadratic optimization problem. By using fixed point theorem, the proof of the existence and uniqueness

of equilibrium pomt for the proposed newral network 1s given. By constructing suitable Lyapunov functions,
the asymptotic properties of the newral network are analyzed and a sufficient condition to ensure the global

exponential stability for the umque equilibrivun point, solution feasibility and solution optimality is presented.
The transient behavior of the newral network is simulated and the validity of the result obtained is verified with

an illustrative example.
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INTRODUCTION

Tt is well known that the quadratic optimization:

. 1 ¢ T
min —x"Qx+c'x
* e ()
subject tox = Q
where, Q € R™, ¢ € R”, Q 1s a convex set, arise in a wide

variety of scientific and engineering
including regression analysis,

applications
image and signal
progressing, parameter estimation, filter design and robust
control, etc. (Bazaraa et «l.,1993). When Q is a definite
matrix, the problem (1) 1s said to be the strict convex
quadratic programming . When Q is a semi-definite matrix,
the problem (1) 1s said to be the degenerate convex
quadratic programming. In many cases, the matrix
Q = (gj)w in problem (1) is not precisely known, but can
only be enclosed in mntervals, 1.e.,

g, =y =gy

Such quadratic program with interval data is named
as interval quadratic program usually. In many real-time
applications, the problem (1) has a time-varying nature, it
has to be solved in real time. The mamn advantage of
neural network approach to optimization is that the nature

of the dynamic solution procedure is inherently parallel
and distributed (Bertsekas, 1989). Therefore, the neural
network approach can solve optimization problems in
runming time at the orders of magmtude much faster
than the most popular optimization algorithms executed
on digital computers (Cichocki and Unbehauer, 1993,
Leung etal., 2003; Al-Bastaki, 2006, Abdallah and
Al-Thamier, 2004). Recently, there are some project neural
network approaches for solving quadratic optimization
problem (Xia, 1996, Xia and Wang, 2004; Yang and
Cao, 2006a, Gao and Liao, 2006; Gao et al, 2004,
Ghasabi-Oskoei 2007). Kenmnedy and Chua
presented a primal network for solving the strict convex

et al,

quadratic programming (Kemmedy and Chua, 1998). The
network contains a finite penalty parameter, so it
converges an approximate solution only. To overcome the
penalty parameter, several primal projection neural
network proposed for solving the strict convex quadratic
program and it dual and analyzed the global asymptotic
stability of the proposed neural networks when the
constraint set € 1s a box set (Xia, 1996, Xia and Wang,
2004). Subsequently, Present study presented a recurrent
projection newal network for solving the strict convex
quadratic program and related linear piecewise equation
and gave some conditions of the exponential convergence
of the proposed networks (Xia et al, 2004; Xia and
Feng, 2005). Yang and Cao (2006b) presented a delayed
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projection newal network for solving quadratic
programming problem and analyzed the global asymptotic
stability and exponential stability of the proposed neural
networks when the constraint set { is a unbounded box
set (Yang and Cao, 2006a). In order to solve the
degenerate convex quadratic programming problem
(Tao et al., 1998) and (Xue and Bian, 2007) proposed two
projection neural networks to solve this problem and
proved that the equilibrium point of the proposed newral
networks was equivalent to the KT point of problem (1).
Particularly, the neural network proposed by Xue and
Bian (2009) was shown to have complete convergence
and finite-time convergence and the nonsingular part of
the output trajectory respect to Q has an exponentially
convergent rate. Hu and Wang (2007) designed a general
projection neural network for solving monotone linear
variational inequalities and extended linear-quadratic
programming problems and proved that the proposed
network was exponentially convergent when the
constraint set { 1s a polyhedral set (Hu, 2007, Hu and
Wang, 2007).

In order to solve the mterval quadratic optimization
problem, Ding and Huang presented a new class of
mterval projection neural networks and proved the
equilibrium point of this neural network is equivalent to
the KT point of a class of interval quadratic program
(Ding and Huang, 2008). Furthermore, some sufficient
conditions to enswre the existence and global exponential
stability for the unique equlibrium point of mterval
projection neural networks are given. To the best of the
authors knowledge, this paper (Ding and Huang, 2008) 1s
first to discuss solving the interval quadratic optimization
problem by a projection neural network. However, the
mterval quadratic program discussed by Ding and Huang
is only a quadratic program without constraints, thus
have great limitations in practice applications. It 15 well
known that the quadratic program with constraints is more
popular.

A PROJECT NEURAL NETWORK MODEL

Consider the following interval  quadratic
programming problem:
min %XTQX-%—CTX,
(2)

subject to d<Dx <h,
Q=Q=Q

where,

Q=(q,}, Q=g Q=(g)eR™; c.dhcR" D=diag(d,.d,.-.d,)
1s a definite diagonal matrix.

Q=Q 56 means g, <qy SEJJ, L,j=1---,n
The Lagrangian function of the problem (2) is:

L(x,u,m= %XTQX +c'x—u"(Dx-n)

where, u € R*is referred to as the Lagrange multiplier
and

'r]EX:{ueRn

d<u=<h}

According to the well-known Saddle pomt theorem
(Bazaraa et al., 1993), we see that x* is an optimal solution
of (2) if and only if there exist u* and 1* such that

Lx*u, ) < Lix*u*n*) < Lx,u*.n)

that 1s:

%(x*)T Qx *+c"x *u"(Dx*—n™
< 15()(’*‘)T Qx *+cTx *— () (Dx *—*) (3

< IEXTQX +clx— W (Dx -

From the first inequality in system 3, we obtain (u-u*)"
(Dx*-n*)=0, Yu € R". Hence, Dx* = n*. From the second
inequality in system 3, we can get:

et —f(x) <@*) (M- 1*) Yx e R, ne X, f{x) :%XTQX +¢Tx— (u*) Dx

If there exists xeR" such that fx*-f(x)>0, then
0<% (n-1*,vne X which is contradictive when 1 = n*.
Thus, for any x € R"we have f(x*)-f(x)<0 and (u®)" (1-n*)
20 % 1 eX. From the project formulation (Kinderlehrer and
Stampechia, 1980), it is obviously seen that the above
inequality can be equivalently represented as n* = Py(n™*-
u*), where Py(u) = [PX(u,), Px(u,), ..., Px(u,)]" is a project
function and forI=1,2,..n.

d, u,<d,
P, (u)=4u, d <u, <h,
h;, u, >h,
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On the other hand, f(x*)<f(x), ¥xeR® this implies that:
VE)=Qx*+c-Du*=10

Thus, x* 1s an optimal solution of system 2 if and
only if there exist u* and n* such that

Dx=n,
(x*, u*, ) satisfies  Qx+c—Du =0, (4)
n=Pe(n-u)

Substituting 1 = Dx into the equation 1 = Py (n-u), we
have Dx =P, (Dx-u). Then x* is an optimal solution
of system 2 if and only if there exists u* such that
(x™-u*)

Qx+¢c-Du=0

satisfies
Dx =P, (Dx —u)

Now let us buld a project equation: substituting
u =D (Qxtc) into the equation Dx = Py (Dx-u), we
have Dx =P, (Dx-D' Qx-D'o)

1 1 1 1
— 0 0 = = L
d d Qy d, G d Qi
1 1 1 1
0 - 0 Zgy — -
where D™ = d, D'Q=| d, I d, 9z d, Oz
1 1 1
0 0 - - S
a d A a Q0 a L™

By the above discussion, we can obtain.
Proposition 1: Let x* be a solution of the project
equation

Dx=P,(Dx-D'Qx - D'¢) (5)

then x* 13 an optimal solution of system 2.

In the following, we propose a neural network, which
is said to be the interval projection neural network, for
solving Eq. 2 and 5, whose dynamical equation 1s defined
as follows:

O b Dx- DD 'e)-Dx, > 1,
x(t,)=x,.
Q=<Q=Q

The neural networks Eq. 6 can be written as:

Fig. 1. Architecture of the proposed neural network in

system 6
dx, (1) 12 c
g Pxldx fd—jjzz:,q‘,X, fd—j)— dx,. t=t,,
X;(tu) = Xin» (7)
9, = qia;,-, i=L---n, j=1---,n
Figure 1 shows the architecture of the neural

network Eq. 6, where, M = (), = D-D7'Q, C=D7"¢,
D =(d)e

Definition 1: The point x* is said to be an equilibrium
point of interval projection neural networks (6), if x*
satisfies

0 =Py (Dx*D'Qx*-D'¢)-Dx*
By Proposition 1 and Definition 2, we have

Theorem 1: The point x* is an equilibrium peint of the
interval projection neural networks (6) if and only if it is an
optimal solution of the interval quadratic programming
problem (2).

Definition 2: The equilibrium point x* of the newal
network (6) is said to be globally exponentially stable, if
the trajectory x(t) of the system (6) with the mutial value x,
satisfies

|x(t) —x ¥ < c exp(—pit—t,)), Wizt

where, 3>0 is a constant independent of the initial value
%, and ¢;>0 18 a constant dependent on the mitial value
%, * ||| denotes the 1-norm of RY, 1e.,

x=3

i=1

X

i
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Lemma 1: Baiocchi and Capelo (1984) Let Q=R" is a
closed convex set, then

(VP (V)T (P(v)-u)20, VueQ veR"

[Potw) - P <fu—v|. vu,veR"

where Py(u) is a project function on Q, given by P 1) =
a.rgm]l'l yEQHu_YH'

EXISTENCE AND UNIQUENESS OF THE
EQUILIBRIUM POINT

Here, we will prove the existence and uniqueness of
the equilibrium point for the interval projection newral

network (6).

Theorem 2: Assume that (H1 ):

L <di, dg——<q Z q; <d}, i=12,-.n
i=1, =i
1s satisfied, where
d*= L oq- a
= m“1<15nE 9; ax Y5 |7 9; }

Then there exists a unique equilibrium point for the neural
network (6).

Proof: Let T(x)=D7R(Dx-D7'Qx-D7'c), xeR* By
Defimtion 1, it is obvious that the neural network (6) has
a umque equilibrium point if and only if T has a umque
fixed point in R" In the following, by using fixed point
theorem, we prove that T has a umque fixed pomnt m R
Forany x, y € R", by Lemma 1 and the assumption H1, we
can obtain

|Téx) - T(y)|
= HD’IPX (Dx-D'Qx-D7'¢)-D P (Dy-D'Qy— D’IC)H
<[Ip7 |- [Px(Dx - DPQx - D6} - B (Dy- D Qy-De)|  (8)
< ||D" H . H(Dx -D'Qx-D7e) - (Dy-D'Qy— D'lc)H
o o> s

<Jp°{p-pal -

1 1 1
=max—-max(d, ——q, +—
1£ign d 1gign = d1 " d‘

ax(d, ——q +— > a -

1111*1

qp|) [x -]
1<|<n
where

£, =d*(d, ——q +

E q;)

HECINCS

By the assumption HI,

0<d*{d, ——g‘ +— 12 g <l i=12--n
1] J#1

This implies

O<maxf <1

1£itn

system 8 shows that T 1s a contractive mapping, hence T
has a umque fixed pomnt. This completes the proof.

Proposition 2: If the assumptions HI holds, then for any
%, € R", there exists a solution with the initial value x(0) for
the neural network (6).

Proof: Let F = D(T-I), where I be an identity mapping, then
F(X) = Py(Dx-D7'Qx-D~'c)-Dx. By (7), we have:

[EG) - E ()] = HD(T -D(x)-D(T- I)(Y)H ©)

¥x,yeR"®

15isn

Equation 9 means that the mapping F is globally Lipschitz.
Hence for any x, € R", there exists a solution with the
imtial value x(0) = x, for the neural network Eq. 6. This
completes the proof.

Proposition 2 shows the existence of the solution for
the neural network Eq. 6.

GLOBAL EXPONENTTAL STABILITY OF THE
EQUILIBRIUM POINT

Here, we establish a sufficient condition ensuring
global exponential stability of the equilibrium point for the
neural networks Eq. 6 under the assumption H1.

Theorem 3: If the assumption H1 is satisfied, then the
equilibrium point of the neural network (6) 1s globally
exponentially stable.

1618



Inform. Technol J., 9 (8): 1615-1621, 2010

Proof: By Theorem 2, the newal network (6) has a unique
equilibriumt point, this equilibrivun point is denoted
by x*.

Consider Lyapunov function

Vi) =

Calculate the denivative of V(t) along the solution x(t) of
the neural network (6). When t>t,, we have

dV(t) _ o x(h) - x] dix(t)-x;)

dt Tt -x] dt
S e 3 o)
_12 i E:; i [ x(dixi—diiqux]—:—‘1)—dlxl*+dlxl*—dlle
:_Zd X () -x +i|" 8 X [x(dlxl ;éql]x]—%l)—d,.x;‘}
<-mind ‘17 x(t)—x] Px(d,x quj ; —‘l § :‘
=—{I<1é1;d X—-X ”+”PX(D:(—D’1Q:(—D c)-Dx”

Noting Dx* = Px(Dx*-D™'(x*-D~'¢c), by Lemma 1

[P

= HPX {DX-D'Qx -D7'c) - P(Dx" - D7Qx" - D"c)”
<|Ox-D'Qx-D'e)- Ox" -D'Qx" - D¢

<[p-pq]-fx-x]

Hence,

d\;t(t) [ mind, + max(d, - |q“| +i_ Z quJ Jeox
Sogrmm ey S g a0
=maxt [x x|

where
£=d- dijg“ + di”gﬂq; —%
By the assumption H1,
£,<0
Hence,

maxé’ <0

12ign

Let

I3

£* = min
1gign

then £*=0. Equation 10 can be rewritten as

VO e —x|
dt

It follows easily

€ty —x#| < |x, — x H|exp(—£* Lt )), vt >t

This shows that the equilibrium pomnt x* of the neural
network Eq. 6 is globally exponentially stable. This
completes the proof.

ANILLUSTRATE EXAMPLE

Consider the interval quadratic programming problem
{2y defined by D =diag (1,2,2),d=¢1,2,3), h=(2,3,4)",
=(L11)

0.8 02 03
Q=02 3 01
~ lo3 o1 35
09 03 04 09 03 04
Q=|03 31 02|and Q"=(q;)={03 31 02
04 02 3.6 04 02 36

The optimal solution of this quadratic program is (1,1,1.5)
under

Q=QarQ-0Q
Tt is easy to check
08<q, <09, gq,<d =1,
3.0<q, <31 q,<di=4
35<q, <36 q,<di=4
and
2 dl 2
d1_T—0<q (%1""]31) (03+04)<d =1
di—%:l <q, (q12+q32) 0-(03+02)<d; =
d—d—f:O <q, (q13+q23) 5-(04+02)<d}=4
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Fig. 2. Convergence of the state trajectory of the
neural network (11) with random imtial value
(-0.5,06,-08), Q=Q
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Fig. 3. Convergence of the state trajectory of the neural
network (11) with random initial value Q=Q

The assumption H1 holds. By Theorem 3, the neural
network (6) has a unique equilibrium peint which is
globally exponentially stable and the unique equilibrium

point 1s the optimal solution of this quadratic
programming problem.
When
Q=Qor Q=Q
the proposed neural network is
&, =1-x
dt
LS (1)
dt
5ok,
dt

for solving this interval quadratic programming problem.

In the case of Q=Q, Fig. 2 reveals that the
projection neural network Eq. 11 with random initial
value (-0.5, 0.6, -0.8) has a umque equilibrium point
(1,1,1.5) which is globally exponentially stable. In the case
of Q=0, Fig. 3 reveals that the projection neural network
Eq. 11 with random initial value (0.8, -0.6, 0.3) has a umque
equilibrium point (1,1,1.5) which 1s globally exponentially
stable. These are in accordance with the conclusion of
Theorem 2 and 3.

CONCLUSION

In this study, we have developed a new projection
neural network for solving interval quadratic programming
problem, the equilibrium pomt of the proposed neural
network is equivalent to the solution of interval quadratic
programming problem. We have investigated the
existence, uniqueness and global exponential stability of
the equilibrium pomt for the neural network. A condition
is derived which enswre the existence, uniqueness and
global exponential stability of the equlibrivm point. The
results obtained in this study are valuable in solving
interval quadratic programming problem in engineering.

ACKNOWLEDGMENTS

The authors are very grateful to Editor and Reviewers
for their comments and constructive suggestions
which help to emrich the content and improve the
presentation of this study. The study was partially
supported by the Hebei Province Education Foundation
of China (No. 2009157).

REFERENCES

Abdallah, . and A. Al-Thamier. 2004. The economic-
environmental neural network model for electrical
power dispatching. T. Applied Sci., 4: 340-343.

Al-Bastaki, Y.A L., 2006. GIS image compression and
restoration: A neural network approach. Inform.
Technol. ., 5: 88-93.

Baiocchi, C. and A. Capelo, 1984. Variational and Quasi-
Variational Tnequalities, Applications to Free
Boundary Problems. Wiley and Sons, New York.

Bazaraa, M.5., H.D. Sherali and C.M. Shetty, 1993.
Nonlinear Programming Theory and Algorithms. 2nd
Edn., Wiley, New York.

Bertsekas, D.P., 1989. Parallel and Distributed, Numerical
Methods. Parentice Hall, Englewood Cliffs, NT.

Cichocki, A. and R. Unbehauer, 1993. Neural networks for
optimization with bounded constraints. TEEE Trans.
Neural Network, 4: 203-304.

1620



Inform. Technol J., 9 (8): 1615-1621, 2010

Ding, K. and N.J. Huang, 2008. A new class of
interval projection neural networks for solving
interval quadratic program. Chaos Solitons Fractals,
35: 718-725.

Gao, X.B., L.Z. Liao and WM. Xue, 2004. A neural
network for a class of convex quadratic minimax
problems with constraints. IEEE Trans. Neural
Network, 15: 622-628.

Gao, X. and L. Liao, 2006. A novel neural network for a
class of convex quadratic minimax problems. Neural
Comput., 18: 1818-1846.

Ghasabi-Oskoeet, H., A. Malek and A. Ahmadi, 2007. Novel
artificial neural network with simulation aspects for
solving linear and quadratic programming problems.
Comput. Math. Appl., 53: 1439-1454.

Hu, X, 2007. Applications of the general projection neural
network in  solving extended linear-quadratic
programming problems with linear constraints.
Neurocomputing, 70: 2449-2459.

Hu, X. and I. Wang, 2007. Design of general projection
neural networks for solving monotone linear
variational inequalities and linear and quadratic
optimization problems. IEEE Trans. Syst. Man
Cybermnet. Part B, 37: 1414-1421.

Kennedy, M.P. and I..O. Chua, 1998. Newal networks for
nonlinear programming. TEEE Trans. Circuits Syst.,
35 554-562.

Kinderlehrer, D. and G. Stampcchia, 1980. An Introduction
to Variational Tnecualities and their Applications.
Academic Press, New York.

Leung, Y., K.Z. Chen and X.B. Gao, 2003. A high-
performance feedback neural network for solving
convex nonlinear programming problems. TEEE Trans.
Neural Networks, 14: 1469-1477.

Tao, Q., I. Cao and D. Sun, 1998. A simple and high
performance newal networks for solving quadratic
programming problems. Applied Math Comput.,
9: 1042-1055.

Xia, Y., 1996. A new newral network for solving linear and
quadratic programming problems. TEEE Trans. Neural
Network, 7: 1544-1548.

Xia, Y., G. Feng and J. Wang, 2004. A recurrent neural
network with exponential convergence for solving
convex quadratic program and related
plecewise equation. Neural Networks, 17: 1003-1015.

Xia, Y. and J. Wang, 2004, A general projection neural
network for solving monotone variational inequalities
and related optimization problems. TEEE Trans Neural
Networks, 124: 251-260.

Xia, Y. and G. Feng, 2005 An improved network for
convex quadratic optimization with application to
real-time beam forming. Neurocomputing, 64: 359-374.

Xue, X. and W. Bian, 2007. A project neural network for
solving degenerate convex quadratic program.
Neurocomputing, 70 2449-2459,

Xue, X. and W. Bian, 2009. A project neural network for
solving degenerate quadratic minimax problem with
linear constramts. Neurocomputing, 72: 1826-1838.

Yang, Y. and I. Cao, 2006a. A delayed network method for
solving convex optimization problems. Int. I. Neural
Syst., 16: 295-303,

Yang, Y. and 1. Cao, 2006b. Solving quadratic
programming problems by delayed projection neural
network. IEEE Trans. Neural Network, 17: 1630-1634.

linear

1621



	ITJ.pdf
	Page 1


