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Abstract: Population imitialization 1s very important to the performance of differential evolution. A good
mitialization method can help mn finding better solutions and improving convergence rate. According to our
earlier study, uniform design generation can enhance the quality of initial population. Tn this study, a
Uniform-Quasi-Opposition Differential Evolution (UQODE) algorithm is proposed. Tt uses a two-population
mechanism and incorporates uniform design and quasi-opposition initialization method into differential
evolution to accelerate its convergence speed and mnprove the stability. At the same time, an adaptive
parameter control technology is adopted to avoid tuning the parameters of DE. The UQODE is compared with
other three algorithms of standard Differential Evolution (DE), Opposition-based Differential Evolution (ODE)
and Quasi-Oppositional Differential Evolution (QODE). Experiments have been conducted on 14 benchmark
problems of diverse complexities. The results indicate that our approach has the stronger ability to find better
solutions than other three algorithms especially for higher dimensional problems, in terms of the quality and
stability of the final solutions.
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INTRODUCTION

Differential Evolution 1s a branch of evolutionary
algorithms developed by Storn and Price (1997) for
global continuous optimization problem. Tt has won the
third place at the 1st International Comntest on
Evolutionary Computation. The algorithm uses a special
mutation operator based on the linear combination of
three individuals and a umform crossover operator. It
has several attractive features. Besides being an
exceptionally simple evolutionary strategy, it 1s
significantly faster and robust for solving numerical
optimization problem and is more likely to find the
functions true global optimum.

Despite having several striking features and
successful applications to different fields, DE has
sometimes been shown slow convergence and low
accuracy of solutions when the solution space 1s hard to
explore. Many efforts have been made to improve the
performance of DE and many variants of DE have been
proposed.

The first direction for improvement 1s hybridization.
Fan and Lampien (2003) proposed a new version of DE
which a new local search operation, called trigonometric
mutation. Sun et al. (2005) developed DE/EDA which
combines DE with EDA for the global continuous
optimization problem. It combines global mnformation

extracted by EDA with differential information obtained
by DE to create promising solutions. The presented
experimental results demonstrated that DE/EDA
outperforms DE and EDA in terms of solution quality
within a given nuniber of objective function evaluations.
Noman and Iba (2006) proposed a DE variant which
incorporated a Local Search (LS) techmque to solve
optimization problem by adaptively adjusting the length
of the search, using a hill-cimbing hewistic.
Experimenting with a wide range of benchmark functions,
the results show that the proposed new version of DE
performs better, or at least comparably, to classic DE
algorithm. Gong et al. (2008) incorporated the orthogonal
design method into DE to accelerate its convergence rate
and the self-adaptive parameter control is employed to
avoid tuning the parameters of DE. The experiment
results indicate that ODE is able to find the optimal or
close-to-optimal solutions in all cases. Changsheng
Zhang et al. (2009) proposed a hybrid of DE with PSO,
called DE-PSO which incorporates concepts from
DE and PSO, updating particles not only by DE operators
but alse by mechamsms of PSO. The presented
experimental results demonstrate its effectiveness and
efficiency.

The second direction for improvement is dynamic
adaptation of the control parameters. DE is sensitive to
the two crucial parameters, to a certain extent the
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parameter values determine whether DE is capable of
finding a near-optimum solution or not. So, recently, some
studies focus on adaptive control parameters. Zaharie
(2002) proposed to transform F into a Gaussian random
variable. Liu and Lampinen (2005) proposed a Fuzzy
Adaptive Differential Evolution (FADE) which uses fuzzy
logic controllers to adapt the mutation and crossover
control parameters. Das et al (2005) proposed two
schemes which are named DERSF and DETVSF to adapt
the scaling factor F. Brest et al. (2006) presented a novel
approach to self-adapt parameters F and Cr. In their
method, these two control parameters are encoded at the
individual level. Nobakhti and Wang (2008) proposed a
Randomised Adaptive Differential Evolution (RADE)
method, which a simple randomised self-adaptive scheme
1s proposed for the DE mutation weighting factor F.
Qin and Suganthan (2005) proposed self-adaptive DE
(SaDE) which the trial vector generation strategies and
two control parameters are dynamically adjusted based on
their performance. Zhang and Sanderson (2009) proposed
anew Differential Evolution (DE) algorithm (JADE) which
the optional archive operation utilizes historical data to
provide information of progress direction. The most
recent successful parameters are used to guide the setting
of new ones.

The third direction for improvement is population
mutialization. Before solving an optimization problem, we
usually have no mformation about the location of the
global minimum. It is desirable that an algorithm starts to
explore those points that are scattered evenly in the
decision space. Population imitialization 1s a crucial task in
evolutionary algorithms because it can affect the
convergence speed and also the quality of the final
solution. Recently, some researchers are working some
methods to improve the EAs population initialization.
Leung and Wang (2001) designed a GA called the
orthogonal GA with quantization (OGA/Q) for global
munmerical optimization with continuous variables.
Gong et al. (2008) used orthogonal design method to
mnprove the 1mtial populaton of DE (ODE).
Rahnamayan et al (2007a) proposed two novel
initialization approaches which employ opposition-based
learning and quasi-opposition to generate imitial
population. Xu et al. (2008) used chaos untialization to get
rapid convergence of DE as the region of global minimum.
Pant et al. (2009) proposed a novel initialization scheme
called quadratic mnterpolation to DE with suitable
mechamsms to improve its generation of mitial
population. Peng et al. (2010) used uniform design to
generate initial population of DE.

In this study, an improvement version of DE,
namely Umform-Quasi-Opposition Differential Evolution

(UQODE) is solve unconstrained
optimization problem. UQODE uses a two-population
mechamsm. According to our previous study
(Peng et al, 2010), uniform design generation can

enhance the quality of initial population. So,in the first

presented to

step, umform design m Peng ef al (2010) 15 used to
generate one population UPop. And then, we use the
UPop to obtain ancther population QOPop by utilizing
quasi-oppositional learning. Last, Select the Np fittest
individuals from {UPopuQOPopt as the imtial population.
We prove that the two-population mechanism and
two-step generation of UQODE can increase the
percentage of success and the speed of convergence. The
experimental results show that UQODE outperforms
DE,ODE and QODE.

DIFFERENTIAL EVOLUTION

Unlike GA that uses binary coding for representation,
DE uses floating point encoding and combines simple
arithmetic operators with the classical events of mutation,
crossover and selection to evolve from a randomly
generated mnitial population to a satisfactory one.

Algorithm 1: DE with rand/1/bin
Step 1: Construct a random initial population pop, define %(t) as the i-th
individual of the t-th generation:

xi(t) = (xn (t),){iz (t),--, Xin(t)), M
=12, Mt=12--t,

ax

where, n is the number of decision varable, M is the population size, b
is the maxirmum generation.

Step 2: Evaluate the fitness fix;(t)) for the each individual
Step 3: Mutation: Randomly select three different individuals x, % and
Xz from population where i=pl+p2#p3.

hy (T4 D) =% O+ Fx (X5, (0 - X 5, (1) @)

where, X,5(t)-%,5(t) is the differential vector, F is the scaling factor.

Step 4: Crossover: Tt is used to increase the diversity , which is defined as
Eq. 3:

hy(t+1),rand, <CR or j = jr
x,(0).

3

otherwise

V‘J(t-%—l) ={

where, rand; is a random number in the interval [0,1], CR is crossover
factor, jre{1,2,....,n} is a random parameter’s index.

Step 5: Selection: Compare vi(t+1) with x(t), select the vector which have
a better fitness as the individual in the new generation:

v (t+ D vt + D) < T(x, (1)
x (), v+ =zfx ()

x‘(t+1)={ D
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OUR PROPOSED APPROACH

Quasi-oppositional optimization: Opposition-Based
Learning (OBL) was first proposed by Tizhoosh (2005)
and was successfully applied to several problems
(Rahnamayan et al., 2007b). The basic concept of OBL is
the consideration of an estimate and its corresponding
opposite estimate simultaneously to approximate the
current candidate solution. Rahnamayan et al. (2007b)
proposed quasi-oppositional method based on opposition
point. Quasi-opposite numbers are defined as follows:
The quasi-opposite number x'; is defined as:

Pix, —x| < [¥x -x[)>1/2

P, is a given the probability function, x' is the opposite
number, x is the solution for an optimization problem. The
x', definition can be extended to higher dimensions.

UNIFORM DESIGN METHOD

Expenimental design method 1s a sophisticated branch
of statistics. The umform design , proposed by Wang and
Fang (1981) 1s one of space filling designs and has been
widely used in computer and industrial experiments. The
main objective of uniform design 1s to sample a small set
of points from a given set of points, such that the sampled
points are umformly scattered.

We define the uniform array as U,q", where, n is
factors and q 1s levels. When n and g are giver, the
population can be constructed by selecting M
combinations from ¢'. The steps of imtialization
population are as Algorithm 2.

Algorithm 2: Uniform design initialization

Step 1: Find all the primer numbers h = (hy,h,,.....h)) which are less than
M, where, M is the size of population.

Step 2: The j-th colunn of the wniform array is constnicted according to
Eq. 5:

U, =ih,[mod M] (5)

where,1=1,2-1.M; j=1,2,...,8

Step 3: Suppose n{n<s) is the number of the variables, randomly choose
hy,....hy, from the vector h = ¢hy,hy,...h). A uniform matrix of Ul is
constructed.

Step 4: Generation of initial population
After constmicting the wniform armay, we can generate the uniform
population which scatter imiformly over the feasible solution space according

to Eq. 6:

pop(i, = Uix (u— 5}/ M+ ©®
i=12,--M; j=12,---,n

where, u, and /; are the maximum and minimum values of the variable j.

UNIFORM-QUASI-OPPOSITION
DIFFERENTIAL EVOLUTION

In the quasi-oppositional differential evolution, there
are two population. The population initialization steps are
as follows:

»  Generate the first population randomly

»  Calculate the second quasi-opposite population

¢+ Choose the M better
combination of two population as 1nitial population

individuals from the

In our earlier study, the umform design population
initialization is a very effective method to obtain fitter
mmitial candidate individual and increase the speed of
convergence of algorithm. So, the basic 1dea of
Uniform-Quasi-Opposition ~ Differential ~ Evolution
(UQODE) is that the first population Py, are constructed by
uniform design And then, the second quasi-opposite
population are calculated based on P,

The performance of DE is sensitive to the choice of
control parameters. Storn suggested the better choice of
the parameters are F = 0.5 and CR = 0.9. In order to avoid
tuning the parameter F and CR, a self-adaptive para- meter
control technology is adopted according to the following
scheme:

F = N(0.5,0.05), CR = N(0.9,0.05) (7)

N(t, ) 15 a normal distribution that can generate
values mn the range of (1-3xg, t+3xg). UQODE 1s
introduced in Algorithm 3.

Algorithim 3. Main procedure of UQODE
Step 1: Construct initial population Py using algorithm 2. Uniform design
initialization
for i=1 to NP
forji=1to D
OPULJ = aj+bJ'PUlj=
M, rb)2
if OPy; is better than M;; then
QOP, ; =M, + (0P, —M, ;) x rand(0,1)

else
QOP, ;= 0P, ; + (Mi,j - OPu;,j) x rand(0,1)

Step 2: Select N, fittest individuals from the set {PwQOP} as initial
population pop

Step 3: while, |f(X
for i=1 to NP
Randomly select three individuals i=p1+p2+p3 according to rand/1/bin
strategy
Set CR and F using Eq. 7
Generate offspring using mutation, crossover and repair operators.
Evaluate offspring using the benchmark function.
If offspring is better than pop then:
pop = offspring

) £ (X aa) | > 5 and NFC < MAX

best.
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Table 1: Comparison of DE, ODE, QODE and UQODE

Problems DE ODE QODE UQODE
F D NFC SR Sp NFC SR NFC SR SP NFC SR SP
F1 30 86072 1 86072 50844 1 50844 42896 1 42896 23316 1 23316
60 154864 1 154864 101832 1 101832 M016 1 94016 68245 1 68245
F2 30 95080 1 95080 56944 1 56944 47072 1 47072 26116 1 26116
60 176344 1 176344 117756 1 117756 105992 1 105992 77133 1 77133
F3 20 174580 1 174580 177300 1 177300 116192 1 116192 33370 1 33370
40 816092 1 816092 8340668 1 834668 539608 1 539608 170508 1 170508
F4 10 323770 0.96 337260 75278 0.92 81823 181100 1 181100 72362 1 72362
20 811370 0.08 10142125 421300 0.16 2633125 615280 0.16 3815500 154897 1 154897
Fs 30 111440 0.96 116083 74717 0.92 81214 100540 0.80 125675 105176 1 105176
60 193960 1 193960 128340 0.68 188735 115280 0.68 169529 204985 1 204985
Feé 30 18760 1 18760 10152 1 10152 924352 1 9452 11050 1 11050
60 33128 1 33128 11452 1 11452 14667 0.84 17461 18666 1 18666
F7 30 168372 1 168372 100280 1 100280 82448 1 52448 151290 1 151290
60 294500 1 294500 202010 0.96 210427 221850 0.72 308125 127272 1 127272
F8 30 101460 1 101460 70408 1 70408 50576 1 30576 81088 1 81988
60 180260 0.84 215000 121750 0.60 202900 98300 0.40 245800 172639 1 172639
Fo 10 191340 0.76 252000 213330 0.56 380900 247640 0.48 515900 63568 1 63368
20 288300 0.35 824000 253910 0.55 461700 193330 0.68 284300 276348 0.96 287863
F10 30 385192 1 385192 369104 1 369104 239832 1 239832 120278 1 120278
60 - 0 - - 0 - - 0 - - 0 -
F11 30 183408 1 183408 167580 1 167580 108852 1 108852 47208 1 47208
60 318112 1 318112 274716 1 274716 183132 1 183132 126302 1 126302
F12 30 40240 1 40240 26400 1 26400 21076 1 21076 13682 1 13682
60 73616 1 73616 4780 1 64780 64205 1 64205 75440 1 75440
F13 30 386920 1 386920 361884 1 361884 291448 1 291448 52492 1 52492
60 432516 1 432516 425700 0.96 443438 295084 1 295084 157248 1 157248
F14 10 19324 1 19324 16112 1 16112 13972 1 13972 4420 1 4420
20 45788 1 45788 31720 1 31720 23776 1 23776 10689 1 10689
Srave 0.89 0.87 0.85 0.96

D: Dimension, NFC: No. of function calls (average over 50 trials), SR: Success rate, SP: Success performance. The last row of the table presents the average
success rates. The best NFC and the success performance for each case are highlighted in boldface. DE, ODE, QODE and UQODE are unable to solve £10

(D =60)
EXPERIMENTS

In order to assess the performance of our proposed
algorithm UQODE. We choose a set of 14 benchmark
problems(14  test problems having two different
dimensions) from f,-f,, (Rahnamayan et al, 2008). The
UQODE has been compared with three algorithms:
DE,ODE and QODE. The performance metrics has four
categories using by Rahnamayan et af. (2008): Number of
Function Calls (NFC), Success Rate (SR), average Success
Rate (SR,,.) and Success Perfor-mance (SP). A smaller NFC
means higher convergence speed. A larger SR, SR, and
SP mean higher stability. In order to minimize the effect of
the stochastic nature of the algorithms on metric ,we
perform 50 independent runs for each algorithm on the
benchmark problems.

The parameters of all algorithms are as follows:

¢ Population size: NP=100

¢ Maximum number of function calls: MAX ;. = 1x10°

*  The scaling factor F and probability of crossover
CR using self-adaptive parameter control scheme as
Eq. 7

¢ Halting precision: € = 1x107

The mean results of 50 independent runs are
summarized in Table 1. Results for DE, ODE and QODE are
taken from (Rahnamayan et al., 2007a, b). From Table 1, it
can be seen that UQODE outperforms DE,ODE and QODE
on 19 functions. The UQODE can provide better results
with smaller NFC than DE,ODE and QODE for 18
functions. The SR of UQODE is larger than other three
algorithms for f4,,,, 5.4 7 .of8 ., 13 YQODE
performs margmally better than DE,ODE and QODE in
terms of average Success Rate (SR,,,) (0.96, 0.89,0.87 and
0.85, respectively). The UQODE has the stronger ability to
find better solutions  than other three algorithms
especially for higher dimensional problems. These
results indicate the combination of uniform design
initialization and quasi-opposition initialization can
effectively accelerate convergence and improve the
performance of differential evolution.

CONCLUSION

In this study, we have presented a new variant of
basic DE algorithm (UQODE) mn which the mitial
population is selected using the uniform-quasi-opposition
initialization method. The UQODE has compared with
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other three algorithms of DE,ODE and QODE. According
to the experiment results, we can conclude that the
combination of uniform design imtialization and quasi-
opposition imtialization method can enhance the
capability of our algorithm and UQODE is better and more
stable than other three algorithms on most benchmark
problems.

Future work consists on extending the present
version for solving some real life optimization problems
such as the Earth-Moon low energy transfer problem and
researching  umform-quasi-opposition  1mtialization
method to multiobjective optimization algorithm.
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