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Abstract: In this study, we propose a computer optimization algorithm for estimating effective diffusion
coefficients of drug delivery from a cylinder to an external cylindrical fimte volume. We first write the diffusion
equation in the polar-coordinate form and then a finite difference scheme for the diffusion equation is
developed for solving the ecuation. The diffusion coefficient extraction is formulated as a least squares

problem. To solve the lest-squares problem defining the unknown diffusivity, a computer

algorithm of

Gauss-Newton type 1s proposed. Numerical results are presented to validate the numerical methods proposed.

Key words: Effective diffusion coefficient, Gauss-Newton scheme, algorithm for optimization

INTRODUCTION

Diffusion and convection-diffusion processes appear
in many areas such as geo-physics, engineering,
biomedical science (Mwellott et af., 2001, Fu et al., 1976,
Grassi and Grassi, 2005; Siepmann et al, 1998,
Crawford et al, 2002; Hicks et al., 2003). In many cases,
diffusion coefficients, or diffusivity, are unknown and
need to be identified using experimentally or exploratory
observed data. While a diffusion process can be
governed by a function of space, time and concentration
of substance, in practice, we normally find a constant
diffusion coefficient to approximate the process. The
design of controlled drug delivery devices has attracted
much of attention for that which the effective diffusivity
of a device is critical to its functionality and performance
(Lou et al., 2005; Price Ir. et al., 1997; Asaoka and Hirano,
2003; Hukka, 1999; Kohne et af., 2002). Although the
diffusivity of a drug delivery system is determined mainly
by the porosity and some other properties of the materials
(Lou et al., 2005; Price Ir. et al., 1997; Asaoka and Hirano,
2003), when these properties are known, how to extract
the effective diffusivity of the system becomes a major
concern. There are various existing techniques for the
wdentification of effective diffusivity. These techniques
are based on either empirical or semi-empirical models
from dirug delivery mechanism or on analytical solutions
of the diffusion equation in 2D or in the special cases

(Price Ir. et al, 1997, Asacka and Hirano, 2003,
Kohlne et al., 2002). In practical application, devices are
always three-dimensional. Tt is difficult to extract the
diffusion parameters if only depending on the empirical or
semi-empirical models. However, for the analytical
solution, the cases only are limited m 2D or special
devices (Wang and TLou, 2007, Lou et al, 2004).
Therefore, in order to better analyze 3D cases, it is
necessary to establish new numerical methods to extract
the diffusion coefficients from the diffusion and
convection-diffusion processes. In this study, we shall
propose a numerical method based on a fimte difference
scheme to estimate the diffusion coefficient from the 3D
drug delivery system. Finally, numerical results are shown
to illustrate the convergence and usefulness of the
optimization method.

THE PROBLEM

Consider a device of cylinder with radius r, and
height h, loaded an amount M’ of drug. This device is
placed in a cylindrical container of radius r, and height
h, filled with liquid. The configuration is shown in Fig. 1.
We let the regions of the device and the container be
denoted respectively by £, and Q. The diffusion
process of this problem with a constant coefficient is
govemned by the following equation in Cartesian
coordinates:
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aC(r,0,z,t
%7Dac(x,y,z,t):0, t>0,(x,v.2)en
M:O, t=0,(x,y,2) €90
an
C(x,y.z,0)=H(x,v,z), (x,v.2)€02
(1)

where, D 15 a constant and C(x, v, z, t) 13 the unknown
concentration.

For the initial condition H(x, v, z), we assume that at
t = 0, the concentration s uniform in the device and zero
in liquid, 1.e.:

MU

= t>0(xyv.2)eR
Hx,y.z)=1V, (oy.z) e, (2)

0 (xy.z)eft

Therefore, the process to determine the diffusion
coefficient D is equivalent to solving the following
optimization problem.

Problem 1: Find D to satisfy:

hm{(Ml—ME)2+(M2—M§)2+---+(ME—M2)2} (3)

D0

where, M", M’ ..., M," are given experimental data and
M, M, .., M, are computed using the following
eXpression:

M= fff cleyzt)ixdydzi=120 (@)

with C(x, v, z, t) being the solution to Eq. 1:

To compute C, we shall compute Problem 1 in the
polar Therefore, Problem 1
transformed nto the following Problem 2.

coordinates. can be

Problem 2: Find D to satisfy:

11m{(M1 MY (M, M) e (M, —ME)Z} (5)

Ds0

where, M,, M, .., M .are computed as the following
equations:

Mlsz‘f;m Clr,6,z,t)drdodz, i=12,-e (6

and C(r, 0, z t) 18 governed by the following polar
coordinate diffusion equation:

8C[r,0,z,t) dc  dc1, &Fci | Fc|
— D{§+g; o F-&-E}—D t>0,(r8z)e0
Sc(réf,z,t) -0 t>0.(r,8,z) €80
C(r,0,2,0)=H(r,6,2) (rB.z)e0
(7
with the mitial condition:
MD
-— O<r<r,0<z<h
H(r8.z)=1 V, : : (8)
0 (r.e,z)eQ\
DISCRETIZATION

To determine the diffusion coefficients D, it is
necessary to solve the partial differential Eq. 7. Here, we
propose a finite difference scheme for the discretization of
Eq 7.

Let the mtervals (0, 2m), (0, r,) and (0, h) be divided
uniformly into P, Q and R sub-intervals, respectively with
the respective interval lengths Ar, 0 and Az, where, P, Q
and R are given positive integers. This defines a mesh for
the contamner region with meshnodes (0, 1, z) for1=1 ..,
P,j=1,...Qandk=1, .., R Fora given time step length
At and a given positive integer T, we let1=1,2, .., T for
t, = (I-1)At. Using this partiton in space and time, we
define the following approximations for the derivatives
appearing in Eq. 7:

oc_c-c (9)
ot At
€ G~ Cijne (10)
or AT
82(: . C1,J+1,k +Ci,]—1,k B Qci,jk (1 1)
art Ar?
&'cC ~ Cooie TC ke — 26, (12)
a0’ AW
82(: . C1,J,k+1 <~>(ji,J,k—1 7 QC‘Jk (13)
az’ Az’

Using Eq. 9-13 and 7 can be discretized into the
following difference equation system:
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*D1C'1 chli,J-Lk - D3C},J,k—1 + D4C1 - Dscl

i-1ik ik it+lik
d—1
_Dﬁci,ﬁl,k - D7C1,]k+1 = Cgtk
Clomx —Cige =0 (14)
Clig —Cijpy=0
C:_J:D — Ci}.l =0
Ci = H(r.0,2)

for all admissible C',,,, where, D, D, ..., D, are defined by:

D
D, =—"
FAe
D
el
D
DT AT
2 1 2 2 1
D,=D| g+ttt 13
4 Ar? Ar-rJ Aez-rj2 Azz] At
D
TAG
D D
==+ )
| A Arer,
D
DT:AZ2

This defines a linear system for the unknowns C',
for all admissible 1, j, k, £

We comments though a uniform partition 1s used n
the above discussion for brevity of notation, it is obvious
that the discretization scheme 1s also true for non-uniform
partitions.

NUMERICAL METHODS FOR SOLVING THE
LEAST-SQUARES PROBLEM

In this section, we will present some algorithms for
Problem 2. Let:

B(D)= (M, —M?) + (M, — M) +-- 6

(M, - MY =(M-M) A(M-M)

where, M = (M, (D), M, (D), ..., M, (D))" and M* = (M,
M, ., MO

We now consider the numerical solution of
Problem 2. Starting from an initial guess D°, Problem 2 can
be solved iteratively. At each step an increment 8D 1s
calculated such that:

E(D-+8D)
is minimized with respect to 8D, I} and 8T are the ith
approximation and ith increment of D, respectively. The

iterative procedure continues until the relative error:

[ M — M*|,
|| M*[l

is smaller than a given small positive constant.

The gauss-newton method: To calculate the increment 6D
at each step, in this study, based on the idea given by
Lee et al (1999), one Gauss-Newton method is
established.

Taylor's formula for vector valued functions gives:
M=M + I8’ +%{(6Di)2G} 17
where,

(18)

and G denotes the second derivative vector of M
evaluated at D+pdD* with O<p<, in this study, we set
p = 1. Omitting the second order terms in Eq. 17, we have:
M = M+T3D
When 8D is small, E{D+8D) can be approximated by:
B(D' + D)= (M + 78D — M) A(M 175D M)
=(M —M') A(M — M)+ (M~ M) ALD
+ (1O )A(M M) + (16D ) A(1.6D°)

(19)

This 1s a quadratic form in 8D' and the minimum point
dD'™* of this quadratic function satisfies:

AE(D+SD) =0
which leads to:

(1) A(1)eD*= —IFA(M — M) (20)

The solution to Eq. 20 defines the ith search direction
called the Gauss-Newton direction. Solving Eq. 20 gives:
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oD *=—((1,)" A(Ji)) ITA(M — M%) (21)

The new approximation to the diffusion coefficients
D is then defined as:

D = DidD* (22)

Evaluation of partial derivatives in .J;: Tn order to obtain
the ith search direction 8D'*, from Eq. 21, it is necessary
to compute all the partial derivatives in I, for . In what
follow, we shall present an algorithm to compute T..

From Eq. 6, we get the following equation:

A

In order to obtain the derivative &M, (8,5.z.t.D)
aD’
using Eq. 23, we firstly compute the denvatives
BC(B,r, z,t,Di) For any computed diffusion coefficient D',
aD
we let:

= 0C ethD)derdz =12, D

DD = Di{(1+9)

where, § is a small constant. Based on the diffusion Eq. 1
and the ith step diffusion coefficients D' and DT, we can
compute the concentration C; of D and the concentration
C, of DD'. Using the following difference formula:

8C(8,r,z,t,D1) e (24)
aD D' %8

ERb e

8D
Therefore, from Hq. 23, the derivative BC(B r.z.t Dl) can

ERERE]

aD

the derivative BC(erztD‘) can be approximated.

be obtained as follows:

B [T e S ez, i1 (29)

We comment that the above partial dernivatives

BC(B,r,z,t,Di) are computed by the finite difference
&b

method shown as above. If the discrete value of the

partial derivatives BC(erz t D‘) are obtained, the

aD
M, (9 r,z,t,D)
an

discrete value of the partial derivatives

can be approximated by the Eq. 23.

THE LEAST-SQUARES COMPUTER ALGORITHM

The following algorithm 1s based on the numerical
methods presented in the previous sections.
Let M;, 1=1, 2, 3, .., e be a set of the mass points by the
numerical equation and M* be a set of the experimentally
measured mass at t, for each1=1, 2, 3, .., e. The diffusion
coefficient D can be determined by the following least
squares (1.SQ) algorithm.

ALGORITHM LSQ

Step 1: Choose a positive integer N, let B, = cons tant,
set1=1 and j = 1 and give the mtial value of D,
then go to step 2

If j<e, solve the diffusion equation by the
formula Eg. 14 to obtain the concentration in the
time interval [t ,, t]. go to step 3, otherwise, go
tostep 5

Compute the derivatives of the concentration in
the time interval [t ,, t], go to step 4

Compute the mass M using the diffusion
coefficient D by the formula (6), setj = j+1, go to
step 2

Based on Eq. 23, compute the derivatives of the

Step 2:

Step 3:

Step 4:

Step 5:
diffusion mass for the diffusion coefficient, go to
step 6

Compute the E(D) by Eq. 16, if E(D}>E_,, go to
step 9, otherwise, go to step 7

Compute the (OM./ED),
formulate the derivative vector I, and get the 1th
search direction 8D'* by the formula (21), go to
step 8

SetD =D+8D*, 1=1+1 andj=1, gotostep 2
Output the optimal diffusion parameter D and
stop

Step 6:

Step 7: derivative vector

Step 8:
Step 9:

NUMERICAL EXAMPLES

To verify the usefulness of the numerical methods,
numerical experiments were performed. Tn the numerical
experiments, non-uniform partitions are used.

Only testing the validity of the computer algorithm,
for the brief, we only introduce the mathematical and
computer model, not considering the material. The test
problem done by the school of mathematics and statistics
i UWA 1n 2007 18 a cylindrical device placed in a
cylindrical container shown in Fig. 1 with their sizes given
in Table 1. Table 2 lists The experimental release data
(M*/ML) at the different time pomts 1n the lab. In order to
reduce the computing time, we first solve this optimization
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problem using the initial starting point D, = 1x107" using
the mesh parameters At = 100s, Ar = 0.002, Ar = 0.002 cm,
Az = 004 cm and AB = 0.8 cm. Table 3 gives the
computed data (MyM.) from the first 6 iterations and the
last 4 iterations by the computer algorithm. We then
reduce the mesh sizes to At = 50s, Ar = 0.001 cm, Az=0.02

Fig. 1: The device of the tube contamer with small

cm and AB = 0.8 cm and use the results from the 6th
iteration, Ty = 2.25276x107° and the initial guess to
continue our computation for 4 more iterations. Table 4
shows iterated step distances and the errors for the diug
releasing delivery system by the optimal algorithm. In the
numerical experiments, we set the error in each step as:

12
Total Error(i)= Z(Compute Data (j) — Experiment(j)f

j=1

Table 4 shows the step distances of the computer
searching algorithms. Table 5 gives the total error
between the lab data and the computed data by the
computer algorithm. Figure 2 plots the computed diffusion
coefficients. Figure 3 plots the release profile. From
Table 4, 5, Fig. 2 and 3, the optumal algorithm based on FD
is convergence. From the last lines in Table 5, the least-
squares error is small. Figure 4 plots the fitted curves
which also indicated that the computed results (M/M.)
are very close to the experiment data (M,*/M_). Therefore,

cylindrical tube from the analysis of the computed data, the optimization
algorithm based on FD is valid.
35K 10
' Table 1: Sizes of dnig releasing delivery system
3.01 Class Radius (cm) Height (cm)
2.5+ Large cylindrical container 2.8399 1.019
2.0+ Small cylindrical container 0.4800 1.019
1.5 . . . L.
Table 2: Experimental releasing data (M,*/M.) for the different time in the
1.07 drug releasing delivery system
0.5 Time (sec) (M,*/M.) Time (sec) (M,*/M) Time (sec) (M,*/M))
0.0 . . . . . . 1800 0.197470 10800 0.393530 117720 0.779305
1] 2 4 6 8 10 12 3600 0.242988 16200 0.444060 183420 0.882863
Fig. 2: Diffusion coefficient extracting from a drug in the 3400 0.342157 24720 0.506988 200820 0.909405
. . . 7200 0.370042 89520 0.751265 262080 1.000000
cylinder by the optimal algorithm based on FD
Table 3: Computed releasing data (My/M.) for the different time in the drug releasing delivery system from No.1-12 by the computer algorithm
Time points
No. 1 2 3 4 5 [V} 7 8 9 10 11 12
1 0.0175 0.0282 0.0372 0.0452 0.0589 0.0761 0.0983 0.2044 0.2370 0.2991 0.3133 0.3584
2 0.05406 0.0847 0.1081 0.1278 0.1610 0.2015 0.2529 0.4801 0.5420 0.0458 0.0669 0.7267
3 0.0947 0.1421 0.1785 0.2090 0.2597 0.3200 0.3957 0.6830 0.7434 0.8297 0.8453 0.8865
4 0.1253 0.1856 0.2315 0.2697 0.3325 0.40066 0.4953 0.7852 0.8357 0.9031 0.9147 0.9448
5 0.1376 0.2029 0.2525 0.2936 0.3608 0.43%4 0.5320 0.8158 0.8623 0.9232 0.9336 0.9603
(5] 0.1300 0.1915 0.2381 0.2768 0.3399 0.4137 0.5005 0.7633 0.8060 0.8619 0.8714 0.8960
9 0.1488 0.2179 0.2699 0.3128 0.3823 0.4620 0.5525 0.8010 0.8381 0.8857 0.8937 0.9141
10 0.1515 0.2217 0.2744 0.3179 0.3882 0.4687 0.5595 0.8057 0.8421 0.8886 0.8964 0.9163
11 0.1515 0.2217 0.2744 0.3179 0.3882 0.4687 0.5595 0.8057 0.8421 0.8886 0.8964 0.9163
12 0.1516 0.2218 0.2745 0.3180 0.3883 0.4688 0.5597 0.8058 0.8422 0.8887 0.8965 0.9163
Table 4: Iterated step distances and the errors for the drug releasing delivery svstem by the optimal algorithm
Iterated No.
Results 1 2 3 4 5 6
&0 4.388x1077 7.591x1077 7.972x1077 3.707x1077 6.41x107% -2.4293 %1077
D 0.539x107¢ 1.298x107¢ 2.095x107¢ 2.466x107¢ 2.530x107¢ 2.5276x107°
Errors 2.3928 0.6562 0.1450 0.0440 0.0357 0.0356
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Fig. 3: Step distances in each iterated process by the
optimal algorithm based on FD

gx107 .

0 -=--- Experiment data
. — Computed data
0 50 100 150 200 250 300
Fig. 4 The comparison between the experiment data

(MM ) and the computed data (M/M ), in,
iterated No.10 by the optimal algorithm based on
FD

Table 5: Iterated step distances and the errors for the drug releasing delivery
systermn by the optimal algorithm with smaller sizes

Iterated No.
Results 7 8 g 10
8D 6.8504x1077  1.048x1077  1.7678x107% 1.3266x1071°
D 3.2120<107°%  3.317x107¢  3.3188x107° 3.3190x107°
Errors 0.0442 0.0277 0.0274 0.0273
CONCLUSION

In this study, we developed some mathematical
optimal numerical methods based on the fimite
difference  method for estimating effective
diffusiveness of a drug from a delivery device of
tube geometry in three dimensions to an external finite
volume. Numerical experiments were performed and the
numerical results show the usefulness of the methods
developed.
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