http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 9 (1) 192-200, 2010
ISSN 1812-5638
© 2010 Asian Network for Scientific Information

A Review of Transactional Memory im Multicore Processors

X Wang, Z. Ii, C. Fu and M. Hu
Harbin Institute of Technology, P.O. Box 1209, No. 13 Fa Yuan Street, 150001 China

Abstract: To develop composable parallel programs easily and get high performance, many transactional
memory systems have been proposed to solve the synchronization problem of multicore processors.
Transactional memory can be implemented in hardware, software, or a hybrid of the two. There are many hot
topics in current transactional memory systems. In this study, we give a review of the current transactional
memory systems for multicore processors according to the following aspects: version management, conflict
detection and contention management. Then we separately present exclusive research area for hardware and
software transactional memory. Finally, we separately discuss research challenges for software and hardware

transactional memory.

Key words: Multicore processor, transactional memory, parallel programming, synchromzation

INTRODUCTION

Multicore processors are now prevailing in server,
desktop and even embedded systems. However, it 1s very
difficult to develop parallel programs for processors with
increasing number of cores. Because application
developers have to face with burdens such as
synchronization tradeoffs, deadlock avoidance and races.
In this environment, Transactional Memory (TM) has
been proposed as a new parallel programming model
that is easy and efficient for writing parallel programs
(Herlihy and Moss, 1993).

Transactional memory 1s used to replace critical
sections protected by locks in multi-threaded parallel
programs by transactions (atomic blocks). Compared to
critical sections, transactions have several advantages.
First, programmers are liberated from reasoning about the
correctness and performance of their locking scheme.
Second, shared data structures are guaranteed to be kept
in consistency even in the event of a failure. Third,
transactions can be composed naturally, that make it
much easier for developing composable parallel software.

The concept of transaction 1s firstly used in the
database research area. Like database transaction, TM
Consistency and Isolation (ACI)
properties: Atomicity to ensure all of the transaction’s
successfully or abort,
Consistency to ensure all transactions view a single

has Atomicity,

instructions either commit
completion order across the whole system and Tsolation
to ensure that each transaction’s operations are not
visible to other transactions, no matter how many

transactions are concwrently executing.

If there are no conflicts, TM systems can execute
multiple transactions in parallel. If two transactions access
the same memory item and at least one of them writes,
they are conflicted. In this case, one of them 15 aborted
and restarts. As a transaction starts, it checkpoimnts
registers to save old values, which can be restored i case
of abort. A transaction cannot write to shared memory
directly; instead its results are stored in an undo-log
or a write-buffer mamtained by system. In order to detect
read-write or write-write conflicts, memory references are
tracked. If a transaction completes without conflicts, its
results are committed to shared memory. If a conflict 1s
detected between two transactions, one of them rolls back
by restoring the register checkpoint.

Transactional memory can be implemented in
hardware (Wang et al., 2009), software (Fu et al., 2009), or
a hybrid of the two. Software Transactional Memory
(STM) systems (Harris and Fraser, 2003; Herlihy et af.,
2003a; Larus and Rajwar, 2006; Saha et al., 2006; Shavit
and Touitou, 1995) 1s the easiest to implement, requiring
no changes to existing hardware. But for most STMs,
poor performance and weak atomicity are two serious
disadvantages. According to two research results
(Harris et al., 2006; Tabatabai et al., 2006) , even though
the code can be optimized by compilers, STM can still
slow down each thread by 40% or more. More severely,
most high-performance STM systems support only weak
atomicity (Blundell et al, 2005), which guarantees
transactional semantics only among transactions. Weak
atomicity may produce incorrect or unpredictable
results even for simple parallel programs that would
work comrectly with lock-based synchronization
(Dice and Shavit, 2007, Larus and Rajwar, 2006,
Shpeisman et al., 2007). As a result, supporting only weak

Corresponding Author: Xiaoqun Wang, Harbin Institute of Technology, P.O. Box 1209, No. 13 Fa Yuan Street, 150001 China

Tel: +86-451-86413354

Inform. Technol. J., 9(1): 192-200, 2010

[
[]
[1
Computing core
TM Registers User registers E}:ecg kpoint
] 4 Lstadr “': Last addr
Conflict
) 4 Data cache
Conflict State " Tag || R'W Data S
i H Il
detection 18 | <:> magagement
I I
3 4 —
Coherence request Data request/response |
h 4 J

T Lo b

(On-chip interconnect)

: 'TM hardware resources

Fig. 1. A framework of hardware transactional memory system

atomicity will likely make writing and debugging more
challenging, undermining the primary benefit of
transactional memory.

Compared to STM, Hardware Transactional Memory
(HTM) naturally has the advantages of high performance
and strong atomicity. Typically, HTM systems use
hardware caches to track the data read or written by each
transaction and leverage the cache coherence protocol to
detect conflicts between concurrent transactions
(Hammond et al., 2004, Moore et al., 2006). By using
hardware, HTM systems eliminate the overhead of
acquiring and releasing fine-grained locks, so they have
higher performance not only than STMs, but also than
lock-based synchronization for most applications. In
addition, by leveraging the cache coherence mechanism,
they naturally check any memory access of any active
transactions. Thus, they provide strong atomicity with
little or no additional overhead. While there are several
HTM schemes, most HTMs are quite similar in their
structure. Figure 1 shows a framework of HTM system.
Register values are stored in extra register files in the
beginning of transactions in case of abort. To track
transactional memory accesses, a pair of read and write
bits per cache line are added. Cache is used as buffer for
transactional data and performs version management.
Cache coherence protocol mechanism is integrated with
conflict detection. Memory requests from the other cores
are snooped and checked against the read/write bits for
conflict detection. Version management is invoked for
transaction commit, abort and conflict.

193

VERSION MANAGEMENT

Version Management is the mechanism to deal with
the different versions of a logical data: the new updated
versions from different transactions and the old version
for rollback to the original data in case a transaction
aborts. Generally, there are two kinds of version
management: Lazy Version Management (L. VM) and Eager
Version Management (EVM).

In STM systems with LVM, such as TL,
OSTM, WSTM, DSTM, ASTM, RSTM, Haskell STM
(Dice and Shavit, 2006; Fraser, 2004; Harris and Fraser,
2003; Harris et al, 2005, Herlihy et al, 2003b;
Marathe et al., 2006; Perfumo et al., 2008), old version is
remained in its original place and new versions are stored
in a per-transaction buffer. When a transaction commits,
a new version replaces the old version and the new
version’s address in store buffer is released. When a
transaction aborts, the new version in store buffer is
discarded directly. Therefore, LVM is more efficient for
transactions aborting. In addition, multiple transactions
can concurrently access a shared object, with each of
them keeping a private version of the object in store
buffer and no one committing at the time. Hence, L.VM
allows concurrent transactional read and write for the
same logical data.

In STM systems with EVM, such as Bartok
STM, Autolocker, McRT-STM (Harris ef al., 2006,
McCloskey et al., 2006, Saha et al., 2006), new version
replace old version directly, while backup the old version

Inform. Technol. J., 9(1): 192-200, 2010

in a checkpoint (Li and Yang, 2000). Compared with LVM,
EVM reduces the copy cost in LVM, because the new
version data 1s stored in the old version’s address, thus
only a new version can be stored. However, it prevents
other transactions to read a modified uncommitted object,
thus limits the possible concurrency. With EVM, a
transaction’s committing 1s simple: just discarding the old
version m its checkpoint. While a transaction aborts, the
old version in its checkpoint is restored to its original
place and the new version is discarded. Therefore, EVM
15 more efficient for transactions committing, especially
when transactions commit more frequently.

HTM systems also have LVM and EVM. Compared
to STM systems, Version management in HTM
systems often depend on augmenting processor caches
(Wang et al, 2005 2006a, b). Lazy version
management puts old values in memory for making
fast aborts (Anaman et al, 2005; Ceze et al, 2006,
Hammond et al., 2004; Rajwar et af., 2005). Conversely,
eager version management stores newly values in
target address for making fast commits and slow
aborts (Moore et al, 2006, Moravan et al, 2006,
Yen etal., 2007).

CONFLICT DETECTION

A conflict happens when two transactions access
one logical data and at least one modifies the data. When
a conflict is detected, the STM system or the related
transactions will take some method to resolve it, normally
by aborting or deferring one related transaction.

Generally, there are three type of conflict detection
in STM systems: Eager Conflict Detection (ECD),
Lazy Contlict Detection (LCD) and Hybrid Conflict
Detection (HCD).

ECD which 1s used mn HICKS, AUTOLOCKER and
Shavit STM (Hicks et al., 2006; McCloskey et al., 2006,
Shavit and Touitow, 1995) detects conflicts when a
transaction wants to access memory while LCD detects
contlicts when a transaction 1s about to commit updates.
ECD always works with EVM, since it is necessary to
make sure that only one transaction can write a new
version to a logical data. Thus, the system must detect
conflicts first. Sunilarly, LCD which 1s used in TL, OSTM,
S3M, WSTM, DSTM, ASTM, RSTM and Haskell STM
(Dice and Shavit, 2006; Fraser, 2004; Guerraoui et al.,
2005a,b; Harris and Fraser, 2003; Herhhy et af., 2003a, b;
Marathe et al, 2005, Marathe et af, 2006,
Perfumo et al., 2008) in commonly works with VM, since
all updates are private and invisible to others, which do
not need conflict detection before committing. Some HTM
systems provide the combination of LVM and ECD, which

154

is rarely used in STM systems. On the other hand, EVM
cannot woark with LCD together, because only one new
version can be stored for a logical data, therefore conflict
detection must process as soon as possible to ensure
only one transaction can write the new version to the
location of the logical data.

Some STMs use HCD, which combmes ECD and
LCD. For example, McRT-STM (Saha et al, 2006) and
Bartok STM (Harmris et al, 2006) which manage
transactional version in EVM mechanism use ECD before
a transaction modify an logical data, but allow multiple
transactions to read a shared data concurrently and to
delay detecting read-write conflicts until committing.

Compared STMs, HTMs depend on cache
coherence protocols to detect conflict (Moore et al., 2006,
Yen et al, 2007). In general, cache coherence protocols
have no flexibility ike STM mmplementation. And they are
difficult to verify (Plakal et al., 1998; Sorin et al., 2002).
But they have higher performance than STM
implementation. Another difference between HTM and
STM conflict detection 1s granularity for detection.
HTM systems use cache lines as granularity
(Hammond et al, 2004). STM systems have three
granularity choices in reality implementation: word
{(Shavit and Touitou, 1995) (or block), object and hybrid.
STM object granularity have more flexibility for different
languages, especially for object-based languages
(Guerraoui et al., 2005b). Hybrid granularity in STM can
change according to practice requirements.

CONTENTION MANAGEMENT

In TM, Contention Management (CM) refers to the
mechanism to determine which transaction involved in a
conflict should abort or stall and when the aborted or
stalled transaction should be restarted. When a conflict
happens, the involved transactions are divided into two
sides: the attacker and the defender. The attacker 15 the
transaction requesting access to a shared memory while
the defender 1s the transaction receiving the attacker’s
request. In eager conflict detection systems, the attacker
is the transaction requesting a load for a shared memory.
In lazy conflict detection systems, the attacker is the
completing transaction attempting to validate that no
other transactions conflict with it.

When conflicts happen, the decision of which one of
the attacker and the defender to win is generally coupled
with the conflict detection and version management
policies. For examples, the attacker always wins in LI
systems while either attacker or defender wins in EE
systems. After the winner has been selected, there are two
methods to handle the other transactions: stalling or
aborting.

Inform. Technol. J., 9(1): 192-200, 2010

As for stalling, it does not abort the non-winner
transactions but stalls them until the wimmer has finished
its transaction. Therefore, it not only saves the work
done by non-winner transactions but also saves the
expensive cost for unrolling the undo log in eager version
management system. Although, stalling can save more
time than aborting, it easily leads to deadlock: A reads X,
B reads Y, A tries to write Y, stalls on B, while B tries to
write X and stalls on A. Deadlock can be solved by these
traditional deadlock avoidance methods such as Greedy
and LogTM (Guerraoui et al, 2005a, b, Moore et al.,
2006). In addition, the stalling method requires global
knowledge of commit and abort events. It is very difficult
to implement such a system with that global knowledge
because it requires significant modifications to existing
cache coherence protocols and/or virtual memory
systems. For this reason, some practical systems just stall
non-winner transactions by waiting for a fixed time.

Compared with stalling, the aborting method is more
easily to implement and 1s free from deadlock, thus it 1s
widely used especially in EE systems. In these systems,
two questions mneed to answer when aborting a
transaction. The first is what kind of a transaction will be
aborted. The second 1s when restart a transaction after
aborting.

For choosing a transaction to abort, there are a
mumber of measwes, such as ages of the transactions,
size of read-and write-sets, the number of previous aborts,
etc. The age of a transaction is a simple method
that aborts the newer transaction i a conflict
(Rajwar and Goodman, 2002). BulkTM uses this scheme
(Ceze et al, 2006). In MetaTM the number of read-
written words i3 used as the priority. The oldest
transaction is voted in all aborted transactions after a
fixed number of aborts. Karma (Schere III and Scott,
2004) 13 similar, using the size of the write-set as priority.
Of course, a policy named Randomized (Scherer 11T and
Scott, 2005) does not need to consider that which measure
is the best indicator for choosing the aborting transaction
i so many measures. The only thing i1s choose to
randomly abort the attacker or defender.

Restarting a conflicting transaction could bring
another conflict immediately. Tt indicates that interconnect
bandwidth 1s refilled by cache misses. To avoid this
phenomenon, linear, exponential and randomized backoff
policies are used in the practice systems. The linear policy
is commonly used, but can lead to livelock. The
randomized backoff combmed with randomized
aborting in some practice systems. The Polite
(Herlihy et al, 2003a, b) policy employs exponential
backoff before restarting conflicts. For preventing
starvation, it guarantees transaction success after some n
retries.

195

EXCLUSIVE TOPIC FOR HTM

Virtualization: Many sizes such as transaction size,
transaction read-sets and write-sets size in present TM
workloads are becoming larger and larger. Tt makes
hardware resouwrces on chip limited. To allow TM to be
integrated with other transactional programming models,
such as databases, file systems, or message queues, the
future workloads are expected to support I/0 and blocking
system calls within atomic blocks of code. It i1s very
important to deal with some applications with transactions
that beyond the hmits of hardware
Transactions must not be limited to the physical
resources of any specific hardware implementation.

Early HTM systems, such as HMTM
{(Herlihy and Moss, 1993), TCC, UTM, Log TM and Bulk,
maintain TM state in structures tightly coupled to the
processor caches. These systems execute programs with
small transactions even more efficiently than that with
lock-based synchronization. But they fail for or lower
performance for larger transactions exceeding cache size.
In these systems, HMTM can only support transactional
memory limited m cache or buffer size. TCC enters a
nonspeculative mode if an overflow occurs. UTM and
LTM are the first unbounded HTM system proposed, use
a local uncached memory region as extra storage for cache
overflows. This mechamsm requires non-trivial hardware
extensions, including a virtual address pointer added to
each block in memory (also requiring address translation
logically at memory). Bulk uses signatures to encode
read-sets and write-sets, making transactions in it can
access any number of cache blocks without serializing
transactions. LogTM modifies the coherence protocol to
allow transactional state to escape the cache.

More recently, HTM systems focused on addressing
the problem of virtualizing transactional states across
time. To solve the problem, VTM uses a new data
structure (the XADT) placed in virtual memory. When
space or time virtualization happens, the XADT 1s used to
hold the cache blocks accessed by transactions. For
further optimization, VTM adds dedicated hardware to
accelerate processing of the XADT. XTM (Chung et al.,
2006) and PTM (Chuang et af., 2006) utilize pages from the
virtual memory systems to handle transaction overflows,
requiring significant modifications to already-complex
virtual memory systems. Small hardware signatures
{e.g., 2 Kbit) can be moved around on context switch
and peging events, thus are easy to be virtualized.
However, signatires may lead to false conflicts (Zilles and
Rajwar, 2007), which degrade performance by
unnecessarilly serializing non-conflicting large
transactions increase the probability of false conflicts,
leading to a further worsening of performance.

TesOUrces.

Inform. Technol. J., 9(1): 192-200, 2010

Two other HTMs have improved hardware
support for transactions of unbounded size. OneTM
(Blundell et al., 2007) supports unbounded transaction
sizes with simple hardware, but restricts the TM system
to execute only one overflowed transaction at a time.
Per-block metadata are used to track the read-sets and
write-sets for transactions overstepping hardware caches.
A special TM-state victim cache 1s used on transactional
data eviction to minimize serialization for overflow
transactions. But it may be a bottleneck as transactions
scale up. Unlike OneTM, TokenTM (Bobba et al., 2008)
supports executing multiple overflowed transactions at
the same time. To accomplish this, TokenTM associates
tokens with each memory block to precisely tracking
conflicts on an unbounded number of memory blocks with
relatively simple hardware. In both CneTM and
TokenTM, non-overflowed transactions are not affected
by overflowed transactions.

Nesting: To facilitate software composition, HTMs must
allow transactional nesting: starting and ending one
transaction from inside another (Larus and Rajwar, 2006).
The simplest way to support transactional nesting 1s the
flattening model, which includes all nested transactions in
the outmost transaction such as TCC, UTM, LogTM
and OneTM. That is all involved transactions share one
read-set and one write-set. Unfortunately with flat
nesting, a conflict with an inner transaction forces a
complete abort of all its ancestors as well. To solve this
problem, researchers have developed two optimizations
over flat nesting: closed nesting with partial aborts and
open nesting.

Closed nesting seeks to improve performance over
flattening by aborting and re-executing only the conflicted
transaction such as Bulk, Nested LogTM and
LogTM-SE. Moss (Moss and Hosking, 2006) and Y ossi
(Lev and Maessen, 2008) also use this method. Tt allows
each nested transaction to have its own read-sets and
wrilte-sets, so that when an inner transaction commits, its
read-sets and write-sets merge with the read-sets and
write-sets of the next level out. In case of abort, the
innermost conflicting transaction rolls back to its original
states but not to the top level

Open nesting can unleash more concurrency than
closed nesting such as LogTM-SE and other research by
Chung et al (2006), Lev and Maessen (2008),
McDonald et al. (2006) and Moss and Hosking (2006).
Open nesting relaxes the atomicity and isolation
guarantees of closed transactions. When an open nested
transaction comimits, its write set becomes visible to all
other transactions, so other transactions can see its
updates before the outer transaction has committed and

196

work with them sooner. This may explore more
concurrency when shared resources are simultaneously
accessed by several large transactions.

Before committing, open nesting acts like closed
nesting. When the inner transaction commits, the inner
transaction of closed nesting merges its read-sets and
write-sets with the outer transaction, while the inner
transaction of open nesting clears its read-sets and

write-sets and exposes its updates to all threads.
EXCLUSIVE TOPIC FOR STM

Synchronization: Synchronization is the mechanism to
guarantee that a transaction attempting to access a logical
data will finally finish its work. In general, there are two
types of concurrent control: Blocking Synchromzation
(BS) and Nonblocking Synchronization (N'S).

BS is a conventional form of synchronization,
constructed with locks, monitors or semaphores. In order
to keep consistency, BS forces multiple threads to access
critical sections exclusively. Once a critical section is
protected by a lock, only the lock owner can access it.
Other threads that attempt to acquire the same lock must
shift mto wait-state until the lock 1s released by its owner.
This wait-state easily leads to severe problems such as
deadlock, priority inversion and convoying. In contrast,
NS which 15 used in OSTM, SXM, WSTM, DSTM,
ASTM, RSTM and Ananian STM (Ananian and Rinard,
2005; Fraser, 2004; Guerraowi et al., 2005a, b;
Harris and Fraser, 2003; Herlihy et al, 2003a, b;
Marathe et al., 2005, 2006) can prevent concurrent threads
from this wait-state. With NS, a concurrent thread may
either abort its transaction, or abort the transaction of
conflicting thread.

NS has been classified into three main categories
based on their assurances for forward progress: Wait-
freedom, Lock-freedom and Obstruction-freedom.

Wait-freedom (Herlihy, 1991) is the strongest
assurance to guarantee that all threads contending for
concurrent logical data make progress in a bounded
number of their own time steps. This featiwre avoids the
occurrence of deadlocks and starvation.

Lock-freedom (Fraser, 2004) 1s a weaker assurance to
guarantee that at least one of the threads contending for
concurrent logical data makes progress in a bounded time
steps of any of the concwrent threads. This feature
avolds the occurrence of deadlocks but not starvation.
Obstruction-freedom (Herlihy et al., 2003a) 1s the weakest
assurance to guarantees that a thread makes progress in
a bounded number of its own steps in the absence of
contentionn. This feature avoids the occurrence of
deadlocks but not livelocks (Cheng et al., 2007). The

Inform. Technol. J., 9(1): 192-200, 2010

problem of livelock can be effectively minimized with
simple methods like exponential backoff, or other
contention management (Herlihy et al., 2003a). In practice,
most STMs with NS belong to Obstruction-freedom, as
they get freedom from wait-state of concwrent threads
while have relative lower costs for implementation than
Lock-freedom and wait-freedom.

Early researchers for STM systems focus on
nonblocking data structures with NS to guarantee forward
progress. Many researchers in recent STM systems such
as TL, Ennals STM, Bartok STM, AUTOLOCKER,
Haskell STM and McRT-STM (Dice and Shavit, 2006,
Ennals, 2006; Harris et al., 2006; McCloskey et al., 2006,
Perfumo et al., 2008; Saha et al., 2006) suggest that NS is
more complex and lower performing than BS, if NS is
combined with LVM and BS is combined with EVM.
Furthermore, NS may cause more memory traffic than BS.
Therefore, they suggest that in order to get higher
performance as well as to have forward progress
assurances, a STM can use BS with timeouts to find and
resolve deadlocked transactions in the implementation
aspect. While in the logic aspect, it provides users with
transactions (a nonblocking abstraction).

CHALLENGES FOR HTM

Although HTM provides an efficient solution to ease
parallel programming, it poses several challenges to
designers. Two most serious challenges are I/O and TSA.

Input/output: The relationship between Input/Output (I/0)
operations and transactions 1s a sigmficant research
challenge. One serious problem is that a transaction that
executed an /O operation may need to roll back at a
conflict. In some cases, I/O consists of interactions with
the world outside of the HTM system. If a transaction
aborts, its /O operations should roll back too, which may
be difficult or umpossible in general. Some rollbacks my
accomplished by buffering the read and write set of a
transaction, but it may not work even m simple situations,
such as a transaction that is waiting for user input. A
more general approach 1s to mdicate a single privileged
transaction and confirm its completion, by ensuring it
succeeds over all conflicting transactions. A more general
approach is to designate a single privileged transaction
that runs to completion, by ensuring it triumphs over all
conflicting transactions. Only the privileged transaction
can perform /O and the privilege can be passed between
transactions. Unfortunately, it limits the amount of /O a
program can perform.

Instruction set architecture support: Because no
practical HTM systems have been used yet, no standard

197

TM supported Instruction Set Architecture (ISA) exist.
The TSA extension suggestions have been proposed
range from no ISA support in Implicit Transactions to
recent detailed support mechanism m UTM. In HMTM,
ISA support is ftrivial. Even the start transaction
instruction is unnecessary in their system. But many
complex models can be supported or emulated by their
system. In contrast, McDomnald et al. (2006) provide
explicit TSA support for two-phase transaction commit,
closed and open nested transactions and support
handlers for transaction commit, conflict and abort.
Although, many researches on TM supported ISA have
been carried out and have made some progress, to
provide the right level of ISA support which can be
widely adopted n practice for TM 15 still a challenge.

CHALLENGE FOR STM

Although STM provides an efficient solution to ease
parallel programming, it brings several challenges to
designers. The most serious challenge is isolation in
transactions. The isolation of TM is defined as: how
nontransaction code and transaction code share data.
Currently, there 13 strong 1solation and weak 1solation for
TM. TIf the systems use strong isolation, the
nontransaction code cannot read or write uncommitted
TM data. They guarantee the semantics correctniess, but
degrade the performance of STM systems. If the systems
use weak isolation, isolation is only used between
transactions and the nontransaction code can read or
write uncommitted TM data. They have high performance
but may get non-determined results. Up to now, most
STM systems use weak isolation model. The future
research will focus on how to trade off between
performance and semantics correctness.

CONCLUSION

Transactional memory provides a flexible and easy
mechanism for parallel programming mn multicore
processors. This paper firstly presented three key
research areas for all implementation schemes according
the following aspects: version management, conflict
detection and contention management. Then we descript
their exclusive research hot topic from different
implementation schemes. From the analysis above, we get
a research trend that the futwe transactional memory
systems will be more likely combined with flexibility of
software implementation and high performance of
hardware implementation, the hybrid will become the next
hot research field. Supporting different ISA, strong
atomicity and I/O 1s still the subject of active research.

Inform. Technol. J., 9(1): 192-200, 2010

REFERENCES

Ananian, C.5. and M. Rinard, 2005. Efficient object-based
software transactions. Proceedings of Workshop on
Synchronization and Concurrency in Object-Oriented
Languages, Oct. 16, San Diego, Califorma, USA.,
pp: 1-10.

Ananian, C3., K. Asanovic, B.C.
CE. Lewserson and S. Lie, 2005. Unbounded
transactional memory. Proceedings of the 11th
International Symposium on High-Performance
Computer Architecture, Feb. 12-16, San Francisco,
California, pp: 316-327.

Blundell, C., EC. Lewis and MMEK. Martin 2005.
Deconstructing transactional — semantics: The
subtleties of atomicity. Proceedings of the Workshop
on Duplicating, Deconstructing and Debunking, June
2005, Madison, Wisconsin USA., pp: 12-18.

Blundell, C., J. Devietti, E.C. Lewis and MM K. Martin,
2007. Making the fast case common and the
uncommon case simple in unbounded transactional
memory. ACM SIGARCH Comput. Archit. News,
35: 24-34,

Bobba, J., N. Goyal, M.D. Hill, MM. Swift and
D.A. Wood, 2008. TokenTM: Efficient execution of
large transactions with hardware transactional
memory. Proceedings of the International Symposium
on Computer Architecture, Jun. 21-25, Beyjing, China,

pp: 127-138.
Ceze, L., I. Tuck, I. Torrellas and C. Cascaval, 2006. Bulk
disambiguation of speculative threads in

multiprocessors. ACM SIGARCH Comput. Archit.
News, 34: 227-238.

Cheng, X. and H. Liu et al, 2007. A fault tolerance
deadlock detection/resolution algorithm for the
and-or model. I. Comput. Res. Dev., 44: 798-805.

Chuang, W., 5. Narayanasamy, G. Venkatesh, J. Sampson
and M. Van Biesbrouck et ai., 2006. Unbounded
page-based transactional memory. Proceedings of the
12th International Conference on Architectural
Support for Programming Languages and Operating
Systems, Oct. 21-25, San Jose, Califorma, USA |
pp: 347-358.

Chung, J., C.C. Minh, A. McDonald, T. Skare and H. Chafl

2006. Tradeoffs in transactional memory
virtualization Proceedings of the 12th International
Conference on Architectural Support for

Programming Languages and Operating Systems.
Oct. 21-25, San Jose, California, USA., pp: 371-381.

Dice, D. and N. Shavit, 2006. What Really Makes
Transactions Faster?. Proceedings of the 1st ACM
SIGPLAN Workshop on Transactional Computing,
Tun. 1, ACM Press, Ottawa, Canada, pp: 1-11.

Kuszmaul,

158

Dice, D. and N. Shavit, 2007. Understanding tradeoffs in
software transactional memory. Proceedings of the
International Symposium on Code Generation and
Optimization, Mar. 11-14, San Jose, CA., pp: 21-33.

Ennals, R., 2006. Software transactional memory should
not be obstruction-free. Intel Research Cambridge
Tech Report. Report No. IRC-TR-06-052.
http://www.cs.wisc.edu/trans-memory/misc-
papers/052 Rob Ennals.pdf.

Fraser, K., 2004. Practical lock-freedom. University of
Cambridge, Report No. UCAM-CL-TR-579.
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
579.pdf.

Fu, C., Z. Wu, X. Wang and X. Yang, 2009. A review of
software transactional memory in multicore
processors. Inform. Technol. T, 8 1269-1274.

Guerraoui, R., H. Maurice and P. Bastian, 2005a.
Polymorphic contention management. Proceedings of
the 19th International Symposium on Distributed
Computing, Sept. 26-29, Springer, Cracow, Poland,
pp: 26-29.

Guerraoul, R., M. Herlihy and B. Pochor, 2005b. Toward
a theory of transactional contention managers.
Proceedings of the 24th Annual ACM Symposium on
Principles of Distributed Computing. Las Vegas, NV,
USA., Jul 17-20, ACM Press, New York, pp: 258-264.

Hammond, L., V. Wong, C. Mike, D.C. Brian and
D.D. John et al, 2004 Transactional memory
coherence and consistency. Proceedings of the 31st
Anmual International Symposium on Computer
Architecture, Jun. 19-23, IEEE Press, Mumch,
Germany, pp: 102-113.

Harris, T. and K. Fraser, 2003. Language support for
lightweight transactions. Proceedings of the
18th Amnual ACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages
and Applications, Oct. 26-30, Anaheim, California,
USA., pp: 388-402.

Harris, T., M. Plesko, A. Shinnar and D. Tarditi, 2006.
Optimizing memory transactions. Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation, Jun. 11-14,
Ottawa, Ontario, Canada, pp: 14-25.

Harris, T., S. Marlow, H. Maurice and S. Peyton-Jones,
2005. Composable memory transactions. Proceedings
of the 10th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, Tun. 15-17,
ACM Press, Chicago, IL, USA., pp: 48-60.

Herlihy, M. and I.E.B. Moss, 1993. Transactional memory:
Architectural support for lock-free data structures.
Proceedings of the 20th Annual International
Symposium on Computer Architecture, May 16-19,
San Diego, CA, USA., pp: 289-300.

Inform. Technol. J., 9(1): 192-200, 2010

Herlihy, M., 1991. Wait-free synchronization. ACM Moore, K.E., I. Bobba, M.J. Moravan, M.D. Hill and

Transact. Programming Languages Syst., 13: 124-149.

Herlihy, M., V. Luchangco and M. Moir, 2003a.
Obstruction-free synchromzation: Double-ended
queues as an example. Proceedings of the 23rd
International Conference on Distributed Computing
Systems, May 19-22, TEEE Press, Providence, Rhode
Island, USA., pp: 522-529.

Herlihy, M., V. Luchangco, M. Moir and W.N. Scherer,
2003b. Software transactional memory for dynamic-
sized data structures. Proceedings of the 22th Annual
Symposiumn on Principles of Distributed Computing,
Tul. 13-16, Boston, Massachusetts, USA., pp: 92-101.

Hicks, M., I.5. Foster and P. Polyvios, 2005. Lock
inference for atomic sections. Proceedings of the 1st
ACM SIGPLAN Workshop on Languages, Compilers
and Hardware Support for Transactional Computing,
Jun. 11, Ottawa, Canada, pp: 1-8.

Larus, JR. and R. Rajwar, 2006. Transactional Memory.
Morgan and Claypool Publishers, Baltimore City,
ISBN: 1598291246,

Lev, Y. and I W. Maessen, 2008. Split hardware
transactions: True nesting of transactions using
best-effort hardware transactional memory.
Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
Feb. 20-23, Salt Lake City, UT, USA., pp: 197-206.

L1, K. and X. Yang, 2000. Improving the performance of
checkpointing scheme with task duplication. Chinese
I. Electr., 28: 33-35.

Marathe, V.J., W.N. Schere-IIT and S.H. Michael, 2005.
Adaptive software transactional = memory.
Proceedings of the 13th International Symposium on
Distributed Computing, Sept. 26-29, Cracow, Poland,
pp: 354-368.

Marathe, V.J., MF. Spear, H. Christopher, A. Athul,
E. David, N.S. William IIT and L.S. Michael, 2006.
Lowering the overhead of nonblocking software
transactional memory. Proceedings of the 1st ACM
SIGPLAN Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing,
Jun. 11, Ottawa, Canada, pp: 249-282.

McCloskey B., F. Zhou, G. David and B. Eric, 2006.
Autolocker: Synchronmization inference for atomic
sections. Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, JTan. 11-13, Charleston, South Carolina,
USA, ACM Press, pp: 346-358.

McDonald, A., . Chung, B.D. Carlstrom, C.C. Minh,
H. Chafi, C. Kozyrakis and K. Olukotun, 2006.
Architectural semantics for practical transactional
memory. ACM SIGARCH Comput. Archit. News,
34: 53-65.

199

D.A Wood, 2006. LogTM: Log-based transactional
memory. Proceedings of the 12th International

Symposium on High-Performance Computer
Architecture, Feb. 11-15, Austin, Texas, USA.,
pPp: 254-265.

Moravan, M.J., J. Bobba, KE. Moore L. Yen and
M.D. Hill et al., 2006. Supporting nested transactional
memory in logTM. Proceedings of the 12th
International Conference on Architectwral Support
for Programming Languages and Operating Systems,
Oct. 21-25, San Jose, Califormia, USA., pp: 359-370.

Moss, J.E.B. and A L. Hosking, 2006. Nested transactional
memory: Model and architecture sketches. Sci.
Comput. Program., 63: 186-201.

Perfumo C., N. Sonmez, S. Srdjan, U. Osmar, C. Adrian,
V. Mateo and H. Tim, 2008. The Limits of Software
Transactional Memory (STM): Dissecting haskell
STM applications on a many-core enviromnment.
Proceedings of the 5th Conference on Computing
Frontiers, May 5-7, ACM Press, Ischia, Ttaly,
pp: 67-78.

Plakal, M., D.T. Sorin, A.E. Conden and M.D. Hill, 1998.
Lamport clocks: Verifying a directory cache-
coherence protocol. Proceedings of the 10th Annual
ACM Symposium on Parallel Algorithms and
Architectures. Puerto Vallarta, Mexico, Jun. 28-Jul. 02,
ACM Press, New York pp: 67-76.

Rejwar, R. and JR. Goodman, 2002. Transactional

of

Proceedings of the 10th International Conference on

lock-free execution lock-based programs.
Architectural Support for Programming Languages
and Operating Systems, Oct. 5-9, ACM New York,
USA, pp: 5-17.

Rajwar, R., M. Herlihy and K. Lai, 2005, Virtualizing
transactional memory. Proceedings of the 2nd
Anmual International Symposium on Computer
Architecture, Jun. 04-08, Madison, Wisconsin USA .,
pp: 494-505.

Saha, B., AR. Adl-Tabatabay, R.L. Hudseon, C.C. Minh and
B. Hertzberg, 2006, McRT-STM: A high
performance software transactional memory system
for a multi-core runtime. Proceedings of the 11th
ACM SIGPLAN Symposiumn on Principles and
Practice of Parallel Programming, Mar. 29-31,
New York, USA., pp: 187-197.

Schere TI, WN. and M. Scott, 2004. Contention
management mn dynamic software transactional
memory. Proceedings of the PODC Workshop on
Concurrency and Synchronization in Java Programs,
Tul. 25-26, St John's, Newfoundland, Canada, pp: 1-10.

Inform. Technol. J., 9(1): 192-200, 2010

Scherer III, WN. and M.L. Scott, 2005, Advanced
contention management for dynamic
transactional memory. Proceedings of the 24th
Anmual ACM Symposium on Principles of
Distributed Computing, Las Vegas, NV, USA., Jul.
17-20, ACM New York, USA., pp: 240-248.

Shavit, N. and D. Touitou, 1995. Software transactional
memory. Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Computing,
Aug. 20-23, Ottowa, Ontario, Canada, pp: 204-213.

Shpeisman, T., V. Menon, AR. Adl-Tabatabai,
3. Balensiefer and D. Grossman et af., 2007. Enforcing
isolation and ordering in STM. Proceedings of the
2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation, Jun. 10-13,
San Diego, Califorma, USA., pp: 78-88.

Sorin, D.J., M. Plakal, AE. Hill, MMEK. Martin,
D.A. Wood, 2002, Specifying and verifying a
broadcast and a multicast snooping cache coherence
protocol. IEEE Trans. Parallel Distrib. Syst,
13: 556-578.

Tabatabai, A.A., B.T. Lewis, V. Menon, B.R. Murphy,
B. Saha and T. Shpeisman, 2006. Compiler and
runtime support for efficient software transactional
memory. Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, Jun. 11-14, Ottawa, Ontario, Canada,
pp: 26-37.

software

200

Wang, K.F., Z.Z. Ti and M.7. Hu, 2005. Path-based next N
trace prefetch in trace processors. Microprocess.
Microsyst., 29: 273-288.

Wang, K.F., Z.7. Ji and M.Z. Hu, 2006a. Boosting SMT
trace processors performance with data cache
misssensitive thread scheduling mechanism.
Microprocessors Microsyst., 30: 225-233.

Wang, KF., Z.7Z. J1 and M.Z. Hu, 2006b. Sunultaneous
multi threading trace processors: Improving trace
processors performance. Microprocessors
Microeyst., 30: 102-116.

Wang, X, Z. Ji, C. Fu and M. Hu, 2009. A review of
hardware transactional memory in multicore
processors. Inform. Technol. J., 8 965-970.

Yen, L., J. Bobba, MR Marty, KE. Moore and
H. Volos et al, 2007. LogTM-SE: Decoupling

hardware transactional memory from caches.
Proceedings of the TEEE 13th International
Symposium on High Performance Computer

Architecture, Feb. 10-14, Scottsdale, AZ, USA.,
pp: 261-272.

Zilles, C. and R. Rajwar, 2007. Brief announcement:
Transactional memory and the birthday paradox.
Proceedings of the 19th Annual ACM Symposium on
Parallel Algorithms and Architectures, San Diego,
California, USA., JTun. 09-11, ACM Press, New York,
pp: 303-304.

	ITJ.pdf
	Page 1

