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Abstract: This study addresses the two-machine flow-shop scheduling problems in which both machines are
versatile and thus alternative operations are possible. The performance measures are the mean flow time and
makespan of jobs, respectively. The problem is formulated as two integer programming models and two

heuristics are developed. Computational results are provided to demonstrate the efficiency of the models and

the effectiveness of the heuristics. The integer programming techmque 1s inefficient even for small problems.

For the set of problems with known optimal solutions, the average percentage errors of heuristics H, and H,
are within 10%, respectively. For the set of problems with unknown optimal solutions, the average percentage

errors of heuristic H; for solving the mean flow time is 20.09%, while the average percentage errors of heuristic

H, for solving the makespan 15 20.84%.

Key words: Scheduling, two-versatile-machine flow-shop, alternative operations, integer programming, heuristic

INTRODUCTION

Automated Manufacturing Systems (AMS) may
require a large capital investment, however, the key to
success in implementation of AMS is the effective
utilization of manufacturing resources (e.g., machines,
tools, fixtures, pallets and feeders) through the application
of efficient scheduling algorithms. In contrast to the
conventional assumption that only one of each type of
machine 1s available, some of the machines can perform
alternative operations as well as their primary operations.
Therefore, the assignment of factory resources to
production tasks can exploit the versatility of AMS.
Restated, rather than the traditional approach of
separating process planmng and production scheduling,
an AMS can integrate these two functions by including
alternative operations in operation routing during the
schedulmg  stage. Such a  system amms to
simultaneously optimize operation allocation among
machines and operation loading sequence to machines.
Wilhelm and Shin (1985) concluded that the
umplementation of alternative operations could reduce
flow time and the in-process inventory in a Flexible
Manufacturing System (FMS). Srihari and Greene (1988)
considered alternate routings strategies that could

prevent bottlenecks, reduce in-process inventory, balance
machine utilization and mimmize flowtime.

Liao et al. (1995) presented two integer programming
models for a permutation flow-shop where one or more
processors had the flexibility to perform other operations
besides their own and developed a heuristic to solve the
problem with predetermined job sequence. Lee and
Mirchandani (1988) studied a two-versatile-machine
flow-shop problem and showed that the problem could be
reduced to three versions of zero-setup, one-setup and
two-setup problems. Cheng and Wang (1999) considered
the NP-complete one-setup version of the problem
studied by Lee and Mirchandam (1988) and derived a
tight worst-case error bound for the heuristic presented
by Lee and Mirchandam (1988) and proposed another
heuristic with a tight worst-case error bound of 3/2.
Pan and Chen (1997) showed that scheduling the
two-machine flow-shop where either one or both
machines are versatile to perform altemative operations
was NP-complete and developed a branch-and-bound
algorithm to solve the problem optimally. Cheng and
Wang (1998) presented a general pseudo-polynomial
dynamic programming scheme for the problem studied by
Pan and Chen (1997) and showed that the solution
scheme could be modified to solve the problems
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investigated by Lee and Mirchandam (1988). Chen and
Pan (2005) also studied the two-versatile-machine
flow-shop scheduling problem but they used the mean
tardiness as the performance measure. Additionally,
Low et al. (2008) addressed a two-stage hybrid flowshop
scheduling problem with unrelated alternative machines.

Since, in practice, many machines have the potential
to conduct more than one operation, production
scheduling should take the machine versatility into
consideration. The situation in which the processing
a particular operation differs among
machines 13 considered 1n this study. In semiconductor
manufacturing, a certain operation can be processed on
multiple machines with different processing times.
This study investigates the scheduling problem m a
two-machine flow-shop where both machines are versatile
and alternative operations are allowed. The performance
measures are the mean flow time and makespan of jobs,
respectively. Mean flow time 1s important for mimmizing
work in process and lead time without impacting
production capacity. A minimum makespan usually
implies a high utilization of the machine(s). The problem
1s formulated as two integer programs and two heuristics
are developed. Computational experiments are used to test
the efficiency of the integer programming formulations
and the effectiveness of the heuristics in generating near
optimal solutions for mimimizing the mean flow time and
determimng the schedule makespan.

time for

PROBLEM DESCRIPTION

The two-versatile-machine flow-shop scheduling
problem (2VFSP) under investigation is described as
follows: There are n independent jobs. Each job has two
operations V and W and the processing of operation V
followed by operaton W. The shop contains two
machines, M1 and M2. Each machine can perform both
operations of V and W. Primarily, M1 performs operation
V and M2 performs operation W. An alternative operation
refers to the situation where operation V of a job 1s not
processed on M1, or operation W is not processed on
M2. The processing times of an operation on different
machines are different. Pan and Chen (1997) assumed that
the processing time of an operation on its primary
machine was always shorter than that on the alternative
machine. According to this assumption, Pan and Chen
(1997) developed several fathoming rules to solve the
problem. In practice, the processing tume of an operation
on its primary machine is usually not shorter than that on
the altemative machine. This study did not emphasize this
assumption and mstead considers the general case.
The branch and bound algorithm provided by Pan and
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Chen (1997), but this algorithm could not to solve the
general case. This general case is more complex and the
extension to Pan and Chen (1997) 1s sigmficant. The
assumption that the processing time of an operation on its
primary machine was always shorter than that on the
alternative machine is the special case considered in this
study. The performance measures are the mean flow time
and makespan of jobs, respectively.

Theorem 1: Problem 2VFSP with mean flow time or
makespan 1s NP-complete.

Proof: Clearly, the problem 2VFSP with mean flow time is
NP-complete since the problem that minimizes the mean
flow time for two-machine flow-shop without alternative
operations 18 NP-complete (Pinedo, 2008). Additionally,
Pan and Chen (1997) had shown that the problem 2VFSP
with makespan was NP-complete.

As defined earlier, the versatile-machine flow-shop 1s
actually a job-shop because the machines can be visited
in any order. In traditional flow-shop problems,
investigating two-machine is useful as it helps understand
permutation schedules and gain other insights that apply
to general multiple-machine problems. But this does not
apply to a versatile-machine flow-shop. This study could
similarly try to glean useful insight from two-machine
problems that could become building blocks for solving

larger problems.
The assumptions made for 2VFSP are summarized
here. Machines are continuously available. The

processing times of the operations of each job are known
and fixed. The operations are not preemptable. All jobs are
immediately ready for processing once production
begins. Each machine can perform only one operation at
a time. The setup time required for a machine to shift
between operations is negligible and the transfer or
transport time of a job between machines is also
negligible.

INTEGER PROGRAMMING MODELS

Mathematical programming formulation is a
natiral way to solve machine-scheduling problems
(Rinnooy-Kan, 1976). Most integer programming problems
of scheduling involve mixed binary integer programming,
that is, some variables are binary and the others are
contimuous. This section presents two integer
programming models, including the 2VFSP_F model for
the 2VFSP with minimal flow time as the criterion and the
2VFSP_C,.. model for the ZVFSP with makespan as the
criterion. The notations used in the mixed binary integer

programming model are as follows:
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M = A verylarge positive number

n = Number of jobs for processing at time zero

I. = Jobnumberi

M, = Machinenumberk k=1, 2

O, = Operationnumber jof ], j=1,2

s; = The starting time of 0,7 =1, 2

Py — The processing time of O, on M,

X, = 1,if O, requires M,, where j, k=, 2andk # j; 0,
otherwise

F, = The flow time of J; that is, the time that T, spends
in the workshop;

Chw = Makespan, that is, the maximum completion time
of jobs

ZF = 1,1iT O, precedes Oy (not necessarily immediately)

onM,; 0, otherwise

The 2VFSP_F model: The 2VFSP_F model is first
presented to solve a 2VESP with mean flow time as the
criterion. In 2VFSP, if O, precedes O, (not necessarily
immediately) on M, (1 <i<i’<n), then Z\,;;, = 1, while if O
and Oy, are not alternative operations (that is, X, =
0), then s; -8, >p;;, must hold. That is:

i'1

1
Sy 8y 2 Py -MX +X)-MQA-Zy, )

(1)

It Oy, precedes Oy, (not necessarily immediately) on
M, (1<i<i’<n), then 2%, = 1, while if O, is an alternative

operation but O, 18 not (that 1s, X, = O and X, = 1), then
8;,-8, 2P, must hold. That 1s:
12 11 2 pxll M(Xxl + 1 X|2) M(l lex 2) (2)

If O, precedes O, (not necessarily immediately) on
M, (1<i<i’'<n), then Z',,, = 1, while if O,, is an alternative

operation but O, 1s not (that 13, X%, = 1 and X, = 0), then
8;1-8iz2 Py must hold. That is:
S8 2 Py MK, + X -M(1L-Z) (3)

If O, precedes O, (not necessarily immediately) on
M, (1<i<i’<n), then Z',,, = 1, while if both O,, and O, are

alternative operations (that is, X, = X, = 1), then
8;7-8i; 2Py must hold. That is:
Si3 S 2p121'N[(2'X u)'M(l'Z}zﬂz) (4)

Similarly, if O; precedes O, (not necessarily
immediately) on M,, for 1<i<i’<n; j, j* = 1, 2; the four
following constraints must hold.

pag'M(Xa + Xa) M(l -Z;

(3)

i2i'2
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11 12 2 p122 M(X12 +1 X )M(l ZQ}I (6)
Sip-8, 2 Py MIL-X,, + X -M(L-Z], {7
S8y 2 Py M (2K X )-M (1 me (8)

If O, precedes O; (not necessarily immediately) on
M, for 1 <1<1’<n; J, 7' = 1, 2; the four following constraints
must hold.

8y-8 2 Py -M X, + X )MZL, (o
S5-Sy 2 Py -M (X, +1-X,-M 70, (10
8,5y 2 Py M (1-X,, + X, )-MZ! an
So-8p 2 P -M (2-X,,-X,)-MZL (12)

If O, precedes O; (not necessarily immediately) on
M, for 1 <i<ii"<ny j, )" = 1, 2; the four following constraints

must hold.
Sy-Sy 2P M (X, + X )MZ2 . (13)
8,8 2 Pn-M (X, + 1 X )MZ2, (14)
8,8y 2 Py M (1K, + X )-MZ2, (15
8,5y 2 Py -M (2-X,,-X, )-MZE (16)

The formulation for minimizing mean flow time with
alternative operations in the two-machine flow-shop is as
follows:

Minimize lE“:F1 a7
i=1
Subject to:

i T Py (1'X11)+ Pz X;l =8 i=1,2,...n (18)
S+ Pgg (1-Xy) + py X =Ti i=1,2 .1 (1 9)

8-8 2 Py M (X, + X -M (1-2E)
lzi<i'=n j,j" k=1 2andj=j' =k (20

Sy -85 2 PypM (X + 1-X)-M (1-Z5)
l<i<i'<mj,j,k=1,2andj= j¢ andj=k (21)

S8 2 PyeM (1-X + 3)-M (1250
l<i<i'<n;j,j k=1,2andj= jandj= k (22)

88 2 Py M (2-X

£ ]

Ky M -Z5)

1]
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1<i<i'<mj,j, k=1,2andj=jandj=k (23)
8,78y 2 Py M (X, + X)-MEZE,
l<i<i'<mj,j,k=12andj=j=k (24)
858 2 Py M (X + 1-X)-M Z5,
lzi<i'snj,jk=1,2andj=jandj=k (25)
8,8y 2 Pp-M (1-X, + X 3-M 25
lzi=<i'=mj,j k=1 2andj=j andj=k (26)
S-Sy 2 Page M (2%, X )M Z0
l<i<i'z=mj,j, k=1 2mdj=jandj=k (27)
F =0,s =0,1=1,2,..,m;j=1,2;
XyandZi, =0orl 1<i<iznj,j k=1,2 (28)

Objective function (17) describes the mimmization of
the mean flow time, while constraint set (18) ensures the
processing of O, can be started only after O, is finished.
Constraint set (19) defines job flow time. Additionally,
constraint set (20) 18 composed of constraints (1) and (5),
(21) of (2) and (6), (22) of (3) and (7), (23) of (4) and (8),
(24 of (9 and (13), (25) of (10) and (14), (26) of (11) and
(13) and (27) of (12) and (16). The non-negativity and
binary restrictions on F, and s; and X, and Z%,.
respectively, are specified in (28). The size of the above
model is 4n*-2n binary variables, 8n*-6n constraints and
3n continuous variables.

The 2VFSP_C,,.. model: The 2VFSP_T model can be
readily modified to a 2ZVFSP_C,. model by using
makespan as the criterion. The 2VFSP C_. meodel
included constraint sets (20)-(27) of the 2VFSP_F model.
The objective fimetion (17) and constraimnt set (19) are
changed to (29) and (30), respectively, as follow:

Minimize C_

(29)

s, t Py X)) +p, X, 2C,, i=1,2,...n

(30)

Additionally, the non-negativity and binary
restrictions (28) are specified in (31).

Chrue 20,8, 20, i=1,2,..nj=12;

k
iy’

Xxj andZ..=0orl l=i<i's n;j,jk=1,2

(31)

Consequently, the 2VFSP C_. model, which
minimizes the makespan of jobs for a 2VFSP, includes
objective (29) and constraint sets (18), (20)-(27), (30) and
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{(31). The size of the above model is 4n®-2n binary
variables, 8n’-6n constraints and 2ntl
variables.

continuous

HEURISTIC SCHEDULING ALGORITHM

Although, the integer programming approach can
solve small problems, large problems are difficult to solve
without considerable computation time; we therefore
propose heuristics to solve larger problems.

The alternative operation type of a job refers to its
processing route, namely, the machine on which the first
and second operations are processed. Let t denocte the
alternative operation type of I.. The value t = O represents
that there is no alternative operation for T, or, the first
operation 18 processed on M, and the second on M,. For
t =1, the first operation of I, is not an alternative one,
while the second 1s; i other words, both operations are
processed on M,. Moreover, t = 2 denotes that the first
operation of I, 1s an alternative operation while the second
is not, that is, both the first and second operations are
processed on M,. Lastly, let t = 3 designate the situation
that both operations of I; are alternative one, that is, the
first operation 1s processed on M, and the second on M,.

Rule 1: The processing route of I, must obey one of the
following four alternative operation types: (1)t = 0, that is,
X=X, =0, (2)t=1,thatis, X, =0and X, = 1, 3) t =2,
thatis, X, =land X, =0, ()t =3, that is, X;, =X, = 1.

Minimizing the mean flow times: Heuristic H, is
established for 2VFSP, with mmimizing the mean flow
times as the criterion. All jobs are first placed in the
unassigned job set. Then we use the selecting rule to find
the best job and its alternative operation type. This best
job is removed from the wmassigned job set when the best
job is determined. The procedure is terminated until the
unassigned job set 1s null.

Let TM, (k = 1, 2) denote the current earliest finish
time on M,, TM,”* (t = 0, 1, 2, 3) denote the TM, value
when J; is sequenced with alternative operation type t on
the schedule and ' = max {TM,",TM,"}. Let T; denote
the job scheduled at the gth position in the processing
sequence, A = (I, Iy, ..., I;q) represent the subsequence
of the Q jobs that have already been assigned.

LetU= {11, ...} - iU I -, T} be the set of
unassigned (n - Q) jobs. The jobs in U and its alternative
operation type are to be decided as follows. For each job
I, in U, calculate the TM ;" value and then use TM}' to
identify the best job J. along with its t' value. Next,
sequence I, at the (Q+1) position of A. Rule 2 states the
computational process for TM,* and rule 3 describes the
procedure for selecting the best job T, and its t'.
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Rule 2: Consider a job J; in U, If its alternative operation
type t = 0, then TM,*" = TM, + p;;, TM,”” = max {TM,”,
TM;} + py and F** = TM,*". If t = 1, then TM, ' = TM, +
P + P, TMY = TM, and F*' = TM/*". If t = 2, then
TM}* = TM,, TM;"* = TM, + py;; + pi and F? = TM . Tf
t=3, then TM,”> = TM, + p,5, TM,” = max {TM,”, TM,}
+ piy and F¥ = TM,".

Rule 3: Determine the best job I. and its alternative
operation type t” as {(i, O)min {F* J,inUand t=0, 1, 2,
311 If (17, t7) is not unique, choose (i t) = {(i, t)max
ITM ", T inUandt =0, 1, 2, 31} where TM, =
|TM,"-TM,". If a tie still exists, select one arbitrarily.

After determining the best alternative operation type
t" of ., the flow time F., of J.. 1s thus F*"". TM, can be
updated by setting TM, = TM,"*". The mean flow time F
(H,) can be calculated once the flow times of all jobs are
determined.

The stepwise description of the heuristic H, 1s as
follows:

Step 1: ¢ denotes the null set. Set TM, = TM, =0, A
=dandU={J, T, ... I}

Step 2: Determine TM,”* and F*' for each job in U
according to rule 2

Step 3: Identify the best job I. and its alternative
operation type t’ using Rule 3

Step 4: Set TM, =TM,/" and F,. = F"*

Step 5: Delete job J,. from Uand add it to A

Step 6: If U = ¢, then stop. Otherwise, go to step 2

When completing heuristic H,, the F (H,) value can
be obtamed using 1/n)y" F..

The complexity of heuristic H, can be investigated as
follows: Step 1 performs the mitialization procedure with
time-complexity O (n). Step 2 then performs a selecting
procedure to find the best job and its alternative operation
type with time-complexity O (n”). Step 3 identifies the best
job and its alternative operation type with time-complexity
O (n). Step 4 defines the current earliest finish time on
each machine and job flow time with time-complexity
O (n), while step 5 modifies the assigned and unassigned
subsequence with time-complexity O (n). Finally, step 6
performs a comparison procedure with time-complexity
O (n). Therefore, the time-complexity of heuristic H, is O

(x’).

Minimizing the makespan: Heuristic H, is established
two heuristics for 2VFSP with minimizing the makespan as
the criterion. All jobs are first placed m the unassigned
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job set. As defined in above, 2VFSP is actually an
w/2/G/C,_,, problem because the machines can be visited
in any order. Jackson (1956) shown that the specific rules
can optimize the makespan for the n/2/G/C,_, problem. The
selecting rule is used to find the best job and its
alternative operation type. This best job 1s removed from
the unassigned job set when the best job is determined.
The procedure is terminated until the unassigned job set
is null.

Suppose the alternative operation types of the (@ jobs
are given and can be partitioned into four job types, as
follows:

{A}: Set of jobs with t = 1, that is, jobs for processing
on machine M, only

{B}:  Set of jobs with t = 2, that is, jobs for processing
on machine M, only

{AB}: Setof jobs with t = 0, that is, job for processing on
both machines in the order M, then M,

{BA}: Set of jobs with t = 3, that 13, job for processing on

both machines mn the order M, then M,

An optimal makespan then is obtained by the
following theorem:

Theorem 2: Given the alternative operation type of jobs
of the 2VFSP problem, an optimal makespan is determined
by the following rule:

(1) On the machine M,, arrange in the order {AB}, {A},
{BA}

On the machine M,, arrange in the order {BA}, {B},
{AB}

All jobs mn {AB} are scheduled according to
Johnson, 1954, Johnson’s rule, ie., for I, I € {AB}
and i # j, job ], precedes job I, on both machines if
min {Py;, Pad < MINEP; 5 Piaf

All jobs in {BA} are scheduled according to
Johnsen (1954), Johnson’s rule, i.e., for I, ], € {BA}
and 1 # j, job ], precedes job J, on both machines if
MIn{p,;, P} € MIN{P, Pt}

All other jobs m {A} and {B} are scheduled in
arbitrary orders

(2)
3

4

(5)

Proof: If the alternative operation type of jobs is known,
then the 2VFSP problem can be reduced to the n/2/G/C,,
problem. Jackson (1956) shown that the above rules can
optimize the makespan for the n/2/G/C, , problem.
Suppose there are Q jobs in set A which have
already been assigned in the schedule and their
alternative operation types are given. Then select one
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candidate job to enter set A from the unassigned (n-Q)
jobs in set U. Fowr alternative operation types exist for
this candidate job. Theorem 2 is applied to optimize the
makespan for each alternative type of this candidate job.
This procedure is repeated until all alternative types of all
candidate jobs have been tested. The election job and
that of the election altemative operation type can minimize
the makespan among all candidate jobs as well as the
makespan of alternative operation types. Let CM, (k = 1,
2) denote the current earliest completion time on M, and
let CM,' (t =0, 1, 2, 3) denote the CM, value when I, 1s the
candidate job with alternative operation type t on the
schedule and C* = max {CM,", CM,"}. CM™ is used to
identify the best job T, along with its t value. T, andt’
thus are the election job and its alternative operation type,
respectively. Theorem 2 states the computational process
for CM,** and Rule 4 describes the procedure for selecting
the best job J,, and its t.

Rule 4: For the 2VFSP with minimizing the makespan as
the criterion, determine the best job I, and its alternative
operation type t* as {(i, t)jmin {CM", ], in the candidate
jobsand t=10,1,2 3}} If (i, t)is not unique, choose
(i, t) = {(, tmax {CM,", T, in the candidate jobs and
t=0,1,2 3}}, where CM, " = |CM,*-CM,"|. If a tie still
exists, select one arbitrarily.

The stepwise description of the heuristic H, is as
follows:

Step1: Set A=dandU={I, T, ..., I}

Step 2: Select the combination of the candidate job
Jin U and its alternative operation type t. Determine
CM," (k =1, 2) and C* according to theorem 2

Step 3: Tdentify the best job T. and its alternative
operation type t’ using Rule 4

Step 4: Delete job T from Uand add it to A

Step 5: [f U = ¢, then stop. Otherwise, go to step 2

When completing the heuristic H,, the C,_.(H,) value
can be obtained by C"*"". The complexity of heuristic H,
can be mvestigated as follows: Step 1 performs the
mtialization procedure with time-complexity O (n). Step 2
then performs a selecting procedure to find the best job
and its alternative operation type with time-complexity
O (n’logn). Step 3 identifies the best job and its alternative
operation type with time-complexity O (n), whule step 4
modifies the assigned and unassigned subsequence with
time-complexity © (n). Finally, step 5 performs a
comparison procedure with time-complexity © (n).
Therefore, the tune-complexity of heuristic H, 1 O
(n’logn).
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ILLUSTRATIVE EXAMPLE

Consider the five jobs, I, to I, with processing times
listed in Table 1. First solve thuis problem by the proposed
integer programming formulations. In the 2VFSP_F
model, the optimal mean flow time obtained is 13.8 and the
values of relevant variables are as follows: s, =7,8,, =15,
$,=0,8,=2,8,,=5,8,=9,8,=15,8,,= 18,8, =0, 5.,
=& X, =LX,=LX=LX,=0X=1LX;=1.%,=
1,¥,=1,%,=03,=0F,=17,F,=5F,=15F, =23
and F, = 9. In the 2VFSP C,. model, the optimal
makespan 1s 21 and the value of related variables are as

Table 1: Data of the illustrative exarmnple

Job 1 I I3 Jq Js
Piy/Pira 9/8 8/2 82 8/3 8/7
Pio/Pioy 442 3/5 10/6 6/5 6/1
(@
é M, o, p] o, 0, 0.,
M’ 021 02: D:u 011 04\
0 2 5 89 5 1718 23
Time
@)
M, 0, 0, 0, o)
M| o, |0,]0, 0y 0y 0.,
[H] 3 3 7 9 14 18 20 21
Time
(©
é M, o, a 0, 0.
Mlo,| 0, | 0, o, 0,
2 9 14 16 1 24
Time
()
. 0, b 0, 0. |0,
Mo, | o, 0, o, | o,
o 2 5 [ 13 15 18 20 22
Time

Fig. 1. Gantt chart of the schedule generated for the
llustrative example. (a) Generated by the
2VFSP_TF model, (b) generated by the 2VFSP C,..
model, (c¢) generated by hewristic H, and (d)
generated by heuristic H,
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follows: s, =0,8, =14, 8, = 3,8, =18, 8,, = 5,8, =14,
84 =0,8,=9,8,=7,8,=200X;=0,X,=0,%; = 1,
=0, =L%X:=1L%=1X,=L%,=1,%X,=1
and C,_ .. = 21. The optimal schedules with mean flow time
and makespan as criteria are shown in Fig. la and b,
respectively.

To mimmize the mean flow time problems, heuristic
H, concurently determines the sequence and the
alternative operations type for each job. The best
combination (i',t") follows the order (2, 2), (5, 1), (4, 3),
(1, 3) and (3, 3). The job flow times found are: F, = 18,
F,=5 F,=24 F,=14and F, = 9. Moreover, the mean flow
time is 14 and Fig. lc shows the schedule found by
heuristic H,.

For minmimizing the makespan problems, the best
combination {1, t') in heuristic H, follows the order (2, 2,
(3,3), (4,3), (1,3 and (5, 1). Additionally, the makespan is
22 and Fig. 1d shows the schedule found by heuristic H,.

EXPERIMENTAL RESULTS

Computational experiments were conducted to test
the effectiveness and efficiency of the mixed binary
mteger programming model and the proposed heuristic
algorithm. The heuristic algorithm was coded in C. The
mixed binary integer programming formulations were
solved with ILOG CPLEX on an Intel P4/2.67 GHz with
512 M DRAM. The tiume limit 1s set to 86,400 sec for ILOG
CPLEX. The processing times of jobs were generated
randomly from a discrete uniform distribution with a range
of 1 to 100.

The test problems were divided into two sets, one
comprising of problems whose optimal solutions could be
dentified quickly by solving the mteger programming
formulations and the other containing problems whose
optimal solutions were unknown. Three problem sizes,
n=10, 11 and 12, were tested with the 2VFSP_C,__ model
andn= 10 and 11, with the 2VFSP_C,,,, model in the first
set and ten test problems were generated for each problem
size. There were seven problem sizes tested in the second
set, namely, n = 20, 50, 100, 200, 400, 800 and 1000, in
which 100 problems were generated for each size. Thus, a
total of 1450 (5x10 + 2x7=100) problems were randomly
generated and tested.

Problems with known optimal solutions: Table 2
sunmarizes the computational results using known
optimal mean flow time and makespan, respectively, for
the first set of test problems. Notably, the efficiency of
integer programming is reported based on the solution
time (in seconds). Table 2 also shows the average
percentage error. The percentage error 1s defined as:
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Table 2: Computational results for problemns with known optimal solitions

Mean flow time Makespan

Integer Integer

programming  Heuristic H,  programming Heuristic Hy

Solution Solution
Problem time (sec) Error (%) time (sec) Error (%)
10-17 8.2415 50431 7.2514 0.8416
10-2 42134 9.4440 20.3210 9.4533
10-3 5.7854 7.1490 30,4502 10.1475
104 24.2178 0.0000 21.4509 8.1578
10-5 8.2147 9.5890 13.7450 0.0000
10-6 35141 6.9140 7.2370 9.1550
10-7 24.2314 9.8290 15.2045 11.0630
10-8 6.4857 0.0000 7.2350 11.8791
10-9 31.5612 0.0000 42,2103 0.0000
10-10 3.6524 8.8310 15.2450 7.4588
Avg. 12.0118 5.6799 18.0350 7.4156
11-1 84.2451 6.2717 11254.1551 0.7960
11-2 83.249 0.0000 5124.7851 12.1746
11-3 20.1250 9.1784 72.9681 13.4785
114 50.6587 4.1575 300.0851 0.0000
11-5 10.5874 2.0123 1058.3875 2.5145
11-6 95.0451 47246 1352.6540 5.0820
11-7 70.1254 9.1475 1293.2457 1.8567
11-8 23,1260 0.0000 TOB.B5T6 0.0000
11-9 251.0045 8.7183 3914.2580 3.85%
11-10 123542 8.6277 558.8964 7.2540
Avg. 70.0580 5.2838 2563.8293 5.3616
12-1 28975.8504 14.1930 N/A N/A
12-2 75282517 3.3740 N/A N/A
123 5852.6578 0.0000 N/A N/A
124 8831.2561 11.9605 N/A N/A
12-5 16387.5264 5.5891 N/A N/A
12-6 8804.2578 12.6680 N/A N/A
12-7 058.9511 0.0000 N/A N/A
12-8 4645.6221 5.9510 N/A N/A
12-9 17564.8524 7.0470 N/A N/A
12-10 8925.2581 10.0141 N/A N/A
Avg. 10823.4490 7.0797 N/A N/A

Specified by 10 jobs-1st problem. NA: Not available

~S0 100
a

Percentage error =

where, S denotes the mean flow time (or makespan)
obtained by the heuristics and S, represents the optimal
mean flow time (or makespan) of the schedule. Table 2
yields the following observations.

Integer programming technique is not efficient even
for small problems. Experiments with the 2VFSP F
model demonstrate that this approach solved the
11-job problems with an average computation time of
roughly 70 sec and took more than three hour for the
12-job  problems. Moreover, results on the
2VFSP _C,.. model reveal that it solved the 10-job
problems with an average tune of 18 sec and required
approximately 42 min for the 11-job problems

The average percentage error of heuristic H, or
heuristic H, is below 10%
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Problems with unknown optimal solutions

The mean flow time: To evaluate the solution quality for
the mean flow time problem, the percentage error is
defined as:

F(H,)-F(LB)

it %100
F(LB)

Percentage error =

where, F (H,) denotes the mean flow time obtained by
heuristic H,. F (I.B) denotes the lower bourd en the mean
flow time and is calculated as follows:

Letr; be the minimum completion time for T, in the four
alternative operation types defined by Rule 1. It 1s
expressed as follows:

L =min{pyy + Pags Pur ¥ Pas Piz ¥ Pazs Pig T Pzt 112,50

Re-indexr,(i=1,2, ... ,nysuchthatr; < rpy <
where I;; is the job scheduled at the gth position in the
processing sequence and ry; is the minimum completion
time for Jjg. The term prge (q= 1,2, ..., m;j=1,2,k=1,2)
is the processing time of operation j of I;; on M,. Let I ;

o= T

(k=1,2,q9=1,2, ..., n) be the total processing time of J

on M. I 1y = pryi + Prgae then I [q] =~ P andl q]22>

else if 1y = prgn T Py 21,1;henl Prgit T B andl

else if 1y = Py + Pryga then 'y = Oand I° p[q]12+pq]22,

else, if 1y = iz + Prgas thenl Praz andl g = Pz
Let TXM (g=1,2, ..., n, k =1, 2) be the current

earliest finish time when Iy,
expressed as follows:

scheduled on M, Tt is

k _ qk —
TXE = I k=1,2

k — k k —
Ty = Ty + by =

[a+]

1,2,...n-1;k=1,2

Denote by iy (q=1,2, ...,
expressed as follows:

n) the flow time of Jj;. Itis

Therefore, the lower bound on the mean flow time 1s
as follows:

’Til

=R

Since, 1, 18 the minimum completion time for J,;. and
TX*,; doesn’t consider the precedent constraints (the idle
time of each job is set to zero), F (LB) is a valid lower

bound to the flow time problem. Table 3 shows the mean
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Table 3: Computational results for problems with unknown optimal

solutions

Mean flow time Makespan

Heuristic H; Heuristic H,
n (H)) Avg. Yemror  Cp..(H) Avg. % error
20 318.75 18.92 75225 21.43
50 715.81 20.54 1882.58 21.06
100 1362.25 19.21 3593.28 20.97
200 2712.01 2022 726812 20.05
400 5159.47 21.35 14685.84 21.68
800 10205.50 19.82 2035045 19.42
1000 1241212 20.58 36278.21 21.25

flow time and the average percentage error. The average
percentage emrors of heuristic H, for solving the mean flow
time problem is 20.09%.

The makespan: To evaluate the solution quality for the
makespen problem, the percentage error 1s defined as:

CpeHy)-C,, (LB)
Cow(LB)

Percentage error = =100

where, C,.(H,) denotes the makespan obtained by
heuristic H,. C,(I.LB) denotes the lower bound on the
makespen and 1s estimated as follows:

Cpe (LB)=INT (O-SZ;(min {pm’pm} + min{pm ’puz}))

where, INT (x) denote the greatest integer less than or
equal to x.

Table 3 shows the makespan and the average
percentage error. The average percentage errors of
heuristic H, for solving the makespan problem is 20.84%.

CONCLUSIONS

This study considers a two-machine flow-shop
scheduling problem in which alternative operations are
available to mimmize the mean flow time and makespan of
jobs, respectively. Two integer programming formulations
are proposed and two heuristics are developed for solving
large problems. The two integer programming
formulations are the 2VFSP_T moedel for the mean flow
times and the 2VFSP_C, .. model for the makespans.
Meanwhile, the two heuristics are heuristics H, for the
mean flow times and heuristics H, for the makespans.

The computational results show that the integer
programming technique is inefficient even for small
problems. For the set of problems with known optimal
solutions, the average percentage errors of heuristics H,
and H, are within 10%, respectively. For the set of
problems with unknown optimal solutions, the average
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percentage errors of heuristic H, for solving the mean flow
time is 20.09%, while the average percentage errors of
heuristic H, for solving the makespan 1s 20.84%.

Future research may be conducted to further improve
the integer programming formulations. The use of
meta-heuristic methods, such as taboo search, simulated
annealing or genetic methods, 1s another method of
solving 2VFSP.
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