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Abstract: Focusing on shape from calibrated images under complex illumination, a two-step reconstruction
policy is presented, which combines bounding edge model and level set method. Bounding edge model is used
to sample visual hull, while controlling noise by projection color variance threshold. Based on level set method,
evolution process of partial differential equation can shrink to target surface from the bounding edge samples,
while controlling filter effect by a revisory coefficient in energy model. A technique called varying time steps
TVD Runge-Kutta is proposed to reinitialize level set function, which guarantees upwind design of each Euler
step. The experiment results show that the deformable initial surface can automatically shrink to model of object
from the samples with accuracy and robustness under complex illumination that high light and shadow exist

synchronously.
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INTRODUCTION

Shape recovery from images has been one of the
most studied topics in computer vision and under a wild
application  background, e.g., inverse engineering,
image-based  modeling and  three  dimensional
measurements. This great number of applications has
motivated a great deal of research and led to many
significant achievements.

Many algorithms have been developed for
constructing volumetric models from a set of silhouette
images, that is, shape from silhouettes method and they
can be categorized into two groups: the discrete approach
(also called visual hull approach) and the differential
approach. The discrete approach takes the 3D
reconstruction from silhouettes as a problem computing
the intersection of the volumetric cones back projected
from silhouettes in different views. The main drawback of
this approach is that it cannot deal with the self-occluding
edges and the reconstructed surface is not smooth. The
differential approach is based on the assumption that the
object surface is smooth enough to allow a differential
analysis of the properties of the 2D silhouettes and of the
3D surface to be constructed. In this method, strong
assumptions are usually made about the motion of camera
and the local shape of the object to get a closed-form
solution and it cannot deal with sparse views. See the
work of Dyer (2001) and Slabaugh er af. (2001) for two
surveys on volumetric-based methods.

In the past two decades, stereo vision algorithms
have been investigated in computer vision in order to
infer 30 structure from images captured with different
viewpoints. The most challenging problem in stereo
reconstruction  is  the  establishment  of  visual
correspondence among images. This is a fundamental
operation that is the starting point of most geometric
algorithms for 3D shape reconstruction and motion
estimation. Although, significant progress has been made
in dense two-frame stereo matching (Scharstein er al.,
2001) for a comprehensive survey, producing accurate
results near depth discontinuities remains a challenge. In
eeneral, dense stereo techniques can be classified as local
or global, depending on whether they rely on local
window-based computations or the minimization of a
global energy function. In local-based methods, the
disparity computation at a given point depends only on
intensity values within a finite window. Clearly, these
techniques assume that all pixels within the window have
the same disparity and thus are sensitive near object
boundaries. Attempts to alleviate this problem include the
use of adaptive windows { Kanade and Okutomi, 1994) and
shift able windows (Kang e al., 2001),

Thus, shape from silhouvettes and shape from stereo
ar¢ the two classical methods. Shape from silhouvettes
(Ehsan er al., 2007} based on volume carving can estimate
robustly object surface, but it fails on the non-convex
part. Shape from stereo (Hirschmuller and Scharstein,
2007) concludes depth information using correspondence

Corresponding Author: Shuangtao Ma, No. Mail Box 1854, Xian Jiaotong University, Xian City, Shaanxi Province,

Zip Code 710049, China



Inform. Technol. J., 9(1): 34-40, 2010

of features between two/multi images, which introduces
the ambiguity issue during stereo match. Esteban and
Schmitt (2003) combined shape form silhouettes and
shape from stereo, coarse surface can be estimated by
shape from silhouettes and then a local shape from
stereo 15 used to  conclude the concave parts of
surface, but, ambiguity issue during stereo match is not
resolved.

We fuse shape from silhouettes and shape from
stereo essentially using bounding edge model; propose
a two-step reconstruction policy and avoid the stereo
match process. First, samples of object surface can be
obtained through resolving a 1D line-based wvarance
minimum problem, then an energy model is proposed to
reconstruct a smooth surface from the samples based on
a variation level set method and a Partial Differential
Equation (PDE) is thus deduced. We propose a fast
method to construct the initial surface, which saves the
temporal cost of reconstruction. Level set method i1s used
o resolve the initial value problem of the PDE, where we
discretize space by Weighted Essentially Non-Oscillatory
(WENO) technigue and discretize time by Total Variation
Diminishing (TVD) Runge-Kutta method. A TVD Runge-
Kutta method with varying time steps is proposed to
reinitialize the signed distance function, which guarantees
the upwind design of each Euler step. Evolution process
of the PDE can shrink to target surface by controlling a
revisory coefficient in the energy model.

SAMPLING OBJECT SURFACE

Bounding edge model proposed by Cheung et al.
(2003, 2005) can provide robust samples of object surface.

And it has the following Fundamental Property of Visual
Hull (FPVH):

FPVH: Each bounding edge of the visual hull touches the
objects at least one point.

The FPVH allows us to use bounding edges to store
and represent the key shape information of the object.
Thus, we can combine the FPVH and color stereo on the
bounding edges to extract 3D points on the surface of
objects, called Colored Surface Points (CSPs) of the
object:

«  Step 1: Capture some images (internal and extern
parameters of the camera are calibrated) at different
view-points

«  Step 2: Extract silhouettes of the object from the
images obtained from pre-step

« Step 3 Search a point on the boundary of a
silhouette image, project it into 3D space through the
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corresponding camera center and we can get a ray,
select the part on the ray whose projection lies
completely inside the silhouettes for any other image
plane as a bounding edge

«  Step 4: Search the parameterized bounding edge and
select the point which has the minimum variance of
projected color in all the color images as a CSP and
the wvariance must be less than a appointed
threshold e

«  Step 5: If the samples on the object surface called
CS5Ps are enough, then go to end; else go the step 3

Although, increasing the number of samples on the
boundary of silhouette images, the surface can be
represented more completely, In fact, due to noises,
inaccuracies in color balancing we felicitously select a
threshold @ to define CSPs based on the method of
Harten er al. (1987); if we select a higher threshold
the more C5Ps will be obtained with a higher noises
level, conversely, if we select a lower threshold o, noises
level can be satistied, but we can only obtain the less
CSPs.

ENERGY MODEL OF OBJECT SURFACE

Supposing points set P = {p; 1 = 1,..., N} comprised
of all the C5Ps obtained from the pre-section, for any
point in 3D space xeR’, we define:

(1)

dix)=distx,P)=min ., distix,p,)

where, dist (x, p,) 1s the Euclidean distance between x and
p. So energy model can be defined as:

(2)

E(T) = (1 — ) [I_d-’fxmﬁ. +n:L_+:IA

where, o, we call 1t revisory coefficient here, can
control the model filter ability and smoothing
reconstructed surface. Thus target integration surface is
depicted as:

Fit=[x(t)e R :dix,t) =0} (3)

where, the level set function dix.t) is the sign distance
function:

—dix,t)=—=dist(x, (1)), x e L)
dix,t) = 0. xe It (4)
dix,tr=dist(x,[t)), xeR"\Qit)

where, L(t) represents the domain surrounded by I'(t).



Inform. Technol. J., 9(1): 34-40, 2010

Using the Zhao (1990) result, geometry flow can be
constructed as:

E PV I +2(1 —a)V(d ) Vd (3)

5 ) W
=id" +o)div
( ) {II"E-'.;j Il

=2

The first item of energy Eq. 2 represents position
potential energy, through minimizing it, the target
integration surface I'(t) can shrink to CSPs step by step,
the second item represents elasticity potential energy,
through minimizing it, the CSPs noises can be filtered and
the target integration surface I'(t) can be smoothed. Thus,
the threshold « is the weight of elasticity potential energy
in energy model; and it control the filter ability of level
reconstruction algorithm, 1t’s range is (0, 1), in experience,
we select it in 0.0=w<0.3.

CONSTRUCTING INITIAL SURFACE

To construct the mmtial surface, distance function in
Eq. 5 must be resolved firstly, We calculate distance
between any point in 3D space and the points set P by
solving the Eikonal function, that is the boundary problem
|Vd(x)| = I, d (xeP) = 0. Using the equal distance mesh,
that is, Ax = Ay = Az = h, we select d(x) = & as the initial
surface, where, £ = 1.2 h generally. We construct the initial
sign distance function with following algorithm, which
saves the temporal cost of reconstruction:

«  Step 1: Any point in 3D mesh space 1s tagged as
tag = |

*  Step 2: The point which absolutely lies out of target
surface is tagged as tag = 1 and its neighbors which
are tagged as tag = -1 are putted into the heap

«  Step 3: The point in the heap having the maximal
distance is found out, if it has a neighbor whose
distance is less than e, then it and its all neighbors in
the heap are tagged as tag = 0 and go to step 4. else
it 1s tagged as tag = -1 and is deleted from the heap,
the neighbor which is tagged as tag = -1 and is not in
the heap is putted into the heap. Go to step 3

»  Step 4: If tag (x), then d(x)=0; else if tag (x) = 1, then
dix) =d(x)—¢; else dix)=—{d(x)—¢)

SOLVING DIFFERENTIAL EQUATION
Equation 5 is consisted of two items which depend
on the different numeric calculating domain. For

decreasing numeric vibration and the better resolution,
different discrete schemes are used for them for:
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- il . ?E -
Lid) = (d® + a)d C vl (6)
(=t T

Center-difference method with 2-order accuracy is
used to calculate the derivative. For the Hamilton-Jacobi
part HiVd) = 2(1-«)¥(d")Vd , upwind design policy is used,
that d, uses its left derivative d, or right derivative d’
depends on the sign of (d), . If (d%), =0.4d, , uses the left
derivative d_; if "), =0, d, uses the right derivative d; .
For d,.d,, the similar processes are used. Unilateral
derivative 15 calculated through WENO technique
proposed by Shu (1997).

During the iterations, level set maybe deposit to a
small domain, indeed shrink to nothing. Therefore, it is
need to reinitialize the sign distance function repeatedly,
that 1s, keep the zero-value surface and replace the current
sign distance function by another level set function with
the better property.

Since, target surface description do not depend on
the special level set function, we solve the Eq. 7 with a
varying time steps TVD Runge-Kutta technique we called,
which guarantees upwind design of each Euler step:

ad . - -
ﬁ:jlg"m“}{_]- NVl (7)
dix,0=d,(x)

where, sign 1s the sign function, Following Harten et al.
(1987). signid,) is approximated dynamically by:
d

{ﬁ':lz -1 BT 3 1
(d*+NVdIF h*)y'"?

Al the mesh point (ih, jh, kh), the discrete iteration
scheme of the function (7) 1s:

dot =@, + (A0 L) ®)
dy = 3+ (AUILEL") ©)
Ei;fl =':I"Hi;k +{]—':,f'j|L[d_i'|';!} (10)

where, dj, and d" represent the value of d,, atn, n+l
time step, respectively. The first and second Euler time
step (A7 and (AT are selected satislying the CFL
condition like as:

(ALY} El%
:‘.‘IT'I'Idl-!‘-,Ih ||:'||p, | {I I'}
I h

(At), =— -
3max; . Hpy |
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Where,

1
n EI 1

P = o=s o0 o2 p 2T
(i, ¥ +HIVid ) IF h)

dlk!

ip;lk:l!: B pe TR T
(O AL 1 e

The combination coetficient in Eq. 10 is:

o _ CAE)TY + (ALY
(AL + (ALY

RESULT AND DISCUSSION

The experiments are performed in PC (CPU: Intel
Pentium Double core 2.0 GHz; RAM: 4096 MB; OS5:
Ubuntu Linux 8.10). C4++ Language is used to descript the
algorithm proposed by this study.

Controlling the position of a powerful light source
and the rotation angle @ of the non-convex object, 72
images were captured under various and complex
illumination, sixteen of them show as Fig. 1. The size of
image is 640x480 or 480x640 pixels. Where, in Fig. la, the
powerful light source is in the left of object, thus the
shadow lies in the right part; in Fig. 1b, the powerful light

Fig. 1: Input images. (a) The powerful light source is in the left, @ =07, 907, 180°, 2707, (b) the powerful light source is
in the right, @ = 307, 1207, 2107, 3007, (c¢) the powerful light source 1s in the top,&@ = 0°, 907, 180°, 2707 and (d) the
powerful light source is in the top, © = 307, 1207, 2107, 3(0°. The images data come from our capturing process

under specified illumination
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Fig. 2: CSPs distribution. (a) 4089 CS5Ps, (b) 10654 CSPs,
(c) 5431 CS5Ps and (d) 10859 CSPs. The image data
come trom our object surface sampling process
under two noises level

source 1s in the right of object, thus the shadow lies in the
left part and in Fig. 1c and d, the powerful light source is
in the top of object, thus no shadow lies there.

We divide input images into two groups according to
different object in image, Duck or Buddha. For the first
group, 4089 CS5Ps were obtained when color variance
threshold ¢ = 0.1 and 18 images were used: 10654 CSPs
were obtained when color variance threshold e = 0.15 and
36 images were used. For the second group, 5431 CSPs
were obtained when color variance threshold e = (0.125
and 18 images were used; 10859 C5Ps were obtained when
color variance threshold ¢ = (125 and 36 images were
used. Here o represents the different noise level. The

CSPs show locally the profile of the object, distribution of

CSPs 15 shown as Fig, 2a-d.

At the four different noise level, Marching Cube
algorithm is used to visualize the sign distance field and
OpenGL 15 used to implement the 3D representation. The
two initial surfaces reconstructed from the two CSPs set
are shown as Fig. 3a-d.

As you see, the initial surfaces are un-accuracy and
coarse, then begin the level set iteration process, while
searching narrow-band 1s set to 12 h and the sample noise
is filtered, as result, the sign distance function shrink to
CSPs set step by step. The reconstruction results are
shown as Fig. 4a-d.

Time-consuming of our algorithm is show as Table 1,
where, the time of sampling object surface, time of
initialize the surface and time of surface moving are
illustrated.
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Fig. 3: Initial surface models. (a) 4089 C5Ps, (b) 10654
CSPs, (c) 5431 CSPs and (d) 10859 CSPs. The

images data come from our initial surface
reconstruction using the CSPs set
Table I: Time-consunung of our algorithm
Time of
reconsiruction {sec)
Mo, of Nao, ol Time of - - e Total
Images @ samples sampling (sec) Initialization Shrink  time (sec)
18 0,100 4089 6.92 0,82 1.0 8.78
36 0,150 10654 16.54 1.27 2.56 20.37
I 0,125 5431 9.19 [ .36 11.64
36 0.250 10859 16.83 1.29 2.60 20,72

The data in table come from our sampling and reconstruction experiments

To illustrate our algorithm performance, we had
implemented Jin ef al. (2008) algorithm at the same time,
Under the same iput conditions, the reconstruction
results are shown as Fig. 5a-d. As with Jin"s algorithm, the
object surface can be reconstructed with smaller number
of input image and lower noise level; a bigger error occur
with bigger number of input image and higher noise level.



Inform, Technol, J., 9 (1): 34-40, 2011

Fig. 4: Reconstruction results of our algonthm. (a) 18 images, (b) 36 images. (c) 18 images and (d) 36 images. The images

come our reconstruction algorithm implementation

Fig. 5: Reconstruction results of Jin algorithm. (a) 18 images, (b) 36 images, (c) 18 images and (d) 36 images. The images

data come from Jin algorithm implementation

Table 2; Time-consuming comparison between our algonthm and Jin's
algonthm

Mo, OF

images  «  Jin's algonthm (sec)  Owr algonthm (sec) Saved time (%)
| & RLEY [4.32 5.78 38

36 0. 150 35,34 20,37 42

18 0.125 [E. 19 [ 1.64 36

36 (h2510) 35.12 .72 4]

The data in the table come from owur algorithm and Jin algonthm

implementation

Comparison table of the both algorithm time-
consuming is shown in Table 2. Our algorithm saved
36~42% reconstruction time than Jin's algorithm.
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CONCLUSION

A two-step reconstruction method was proposed,
firstly bounding edge model was used to obtain C5Ps and
then level set method was used to reconstruct surface of
object. A technigue called varying time steps TVD Runge-
Kutta was used to guarantee upwind design at each Euler
step. Result of experiment show that the algorithm we
proposed could turn from the calibrated images to the
model of object surface with accuracy and robustness
under complex illumination. Future work in this field may
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include more sophisticated handing of non-Lambertian
scenes, new methods for  reconstruction from

un-calibrated images and more computationally efficient
methods for real-time reconstruction.
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