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Abstract: Loop invariants are important parts in program verification and proof. Correspondingly, techniques
for automatically checking and finding invariants have been studied for many years. In present study, an
approach using Wu's characteristic set method for automatically finding polynomial invariants of imperative
programs 15 presented. Present method is based on the algebraic theory of polynomial set over polynomial
rings, which have wider application domain. We implement this method with the computer algebra tools MMP.

The application of the method is demonstrated on a few examples. Compared with other polynomial algebraic
approaches, our method is more efficient through experiments.
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INTRODUCTION

There has recently been a surge of interest in
research on automatically finding loop invariants of
imperative programs. Program verification based on
Flovd-Hoare's  inductive  assertion method, using
preconditions, post-conditions and loop invariants, was
considered a major research problem in the seventies,
leading to the development of many program verification
systems. Karr first showed an arnithmetic algorithm for
finding invariant linear equalities at any program point of
a procedure in literature (Rodriguez-Carbonell and
Kapur, 20044, b). Recently, Muller-Olm and Seidl (2004)
proposed an interprocedural method for computing
invariant polynomial of bounded degree in program. Due
to the advance of computer algebra and there appears to
be a revival of research activities relating to mechanically
finding loop invariants, especially using abstract
interpretations, quantifier elimination and the associated
widening operators (Muller-Olm and Seidl, 2002, 2004
Rodriguez-Carbonell and Kapur, 20044, b).

Wu's method is an algorithm of representing the
zeros of a set of polynomials with the characteristic
sets, which is invented by Chinese famous
mathematician Wu Wen-Tsun. As an important method
and tool, Wu's method performs mechanical geometry
theorem proving better than other ways in symbaolic
computation and has aroused attention to symbolic
computation once more. It mainly calculates a
characteristic set of a finite set of polynomials and Wu
Wen-Tsun  successfully  applied it to  geometry
theorem proving. Wu's work inspired the study of more

efficient characteristic set algorithms and he becomes
a leader in  mathematics mechanization n China
(Mao and Wu, 20035).

An invariant of a loop is hypothesized as a
parameterized formula. Parameters in the invanant are
discovered by generating constraints on the parameters
by ensuring that the formula is indeed preserved by the
execution path corresponding to every basic cycle of the
loop. Constraints  on  parameters appearing in a
parameterized formula hypothesized as an invariant can be
successively generated by considering every basic cycle
through the program location (typically the beginning of
the loop) to which the invariant is associated.

The other methods for finding loop invariants are
cenerally based on Grobner bases which are the theory of
ideals over polynomial rings, Before we use the methods
based on Grobner bases, we must prove that the methods
are used over ideals (Sankaranarayanan er al., 2004). It is
not necessarily for us to use Wu's characteristic set
method because i1t is algebraic theory of polynomial set
over polynomial rings. Wu's characteristic set method can
be used to find loop invariants and we implement the
approach with the computer algebra tools MMP
(http:/fwww.mmre.iss.ac.cn/mmp). Compared with other
approaches, our method is more efficient through
experiments.

WU'S CHARACTERISTIC SET METHOD

Most approaches to geometric reasoning are
formulated in terms of synthetic geometry which 15 a
logical system expressed using properties of points, lines,
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angles, etc., considered as primitive elements. In
contrast, Wu's method is algebraic. Hypotheses (or given
conditions) and conclusions (conjectures) in a geometry
problem are represented as polynomial equations.
Geometry theorem can be proved using a fairly simple and
elegant algebraic method such as Wu's method. A
seomeltry statement of the form a finite set of hypotheses
(or given conditions) implying a conclusion is considered.
Hypotheses (or given conditions) are polynomial
equations expressing geometric  relations  and  the
conclusion 1s also a polynomial equation stating a
geometric relation to be derived; a subset of variables
corresponding to coordinates of points that can be
arbitrarily chosen in a geometry statement are viewed as
parameters. Unlike the methods of Tarski, Seidenberg,
Monk, Collins and Ben-Or et al., vanables in Wu's method

range over an algebraically closed field.

Definition 1: Given a polynomial:

(1)

F= T, X+ 1 x x Lk L ax )

Its initial polynomial, In(f) 1s defined to be the
polynomial 1,(x,,....x; ).

Theorem 1: For any two polynomials f and g, there exist
a non-negative number ¢ and polynomials g and r, such
that:

In(f)*g = gl+r (2)

which, is called t pseudo-divides g and r is called
pseudo-remainder of f pseudo-dividing g.

In geometric proving we algebraize the proposition
(conclusion or conjectures) which need to be proved and
the given conditions (or hypotheses) firstly. Suppose that
the algebraized conclusion 15 p and the algebraized given
conditions (or hypotheses) are 5= {f, =0, 1,=0, ..., 1 =0}.
Then we set pas goal and set S = [, =0, f,=0,....f = 0}
as constraint conditions. From the hypothesis (constraint
condition) polynomials we compute a set of polynomials
in a triangular form called Wu's characteristic set
B=1(g =10,.., g =0 which every polynomial in 5 is a
lingar combination of polynomials in B, namely feS and

In(g, )" ..In(g, )" f, =Y hg,
=1

Next we check whether the conclusion polynomial p
pseudo-divides to (0 using the polynomials in the
characteristic set, namely we use every element of the
characteristic set pseudo-divide the conclusion p to
obtain pseudo-remainder r (prem is abbreviation of
pseudo-remainder).

350

r, = premip.g,)
r_, =premir,g,)

(3)

r, = premir,. g, )

and we know there should be:

jL
=

Ing, )" - In(g,)" p= Y h

T

If r, = 0 and In{g,)"=0.,...., In(g,)*' 20, then we can draw
a conclusion p = 0. Characteristic sets are computed using
pseudo-division by introducing a total ordering on
dependent wvariables. The inequations In(g,)"#0.....,
In(g,)*'#0, have been called nondegenerate conditions or
subsidiary conditions in the literature (Mao and Wu,
2003).

Definition 2: We use Zero(S) to denote the zero set of S:

! ; , n.
{8, e K5t

ferolS) = (4)
(Vpe S}I[pl{a,,a:,-.._ar )= []-]
Theorem 2: Let B be a characteristic set of 8. Then:
Zero{S) = Zero(B)\ Zero(In{B)))
. (3)

ulJ(Zero(S unig, )

Theorem 3: Given ecach PuUB. we calculate the
corresponding characteristic set by using Wu's method.
Let {B:1<izu} be all the characteristic sets obtained that
include B and have

ZerolP) = U(Ecm{ B, )\ Zero(Ini(B, )1

(6)

FINDING LOOP INVARIANTS BASED ON
WU'S CHARACTERISTIC SET METHOD

An invariant at any program point is a formula
relating program variable such that whenever control
passes through the point, the formula is true. A path in a
program is assumed to be a sequence of assignments,
possibly interspersed with Boolean tests (which is
assumed to evaluate to true) arising due o conditional
statements and loops. For a given loop L, let p,, ... . p..
be all possible basic cycles, consisting of Boolean
tests and assignment statements, each of which starts
at the beginning of the body of the loop and ends at
the same point. For a formula Iix) to serve as a loop
invariant, it should be the case that the Hoare triple
{Iix)) p, [Iix)} where p. stands for the code fragment
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corresponding to the path p,and x is the tuple of all of
the variables in the program.
Loops are supposed to have form as follow:

While Eix) do
Pﬂlh I: {Pm s P }

P-L’lth 2: {PEI‘ rs43 F']L.}
: (7)
path m: {p;, ... P}
End
where, p; = 0 is a assignment statement

(x,=e,(x) & x, —e,(x)=0, where e, is a expression) which
is polynomial generally and x=ixx, x,) denotes the
tuple of program variables and E are Boolean expressions.

Suppose that polynomials p and q. Let r is pseudo-
remainder of p pseudo-dividing q. Jyr(y) = 0 *p(y) =
0Ag(y) =0. When p = 0 and q = () we can also obtain r = (),
Therefore we have Zero(r) = Zero(q/Mq) = Zero(p)nZero(q)
under nondegenerate conditions. Similarly if r is pseudo-
remainder of polynomial p pseudo-dividing polynomial set
Q(q,. Qs....q,,) then there should be:

Zero(r) = Zerolp ~a ~_ q,) = Zero(p)m Zerolr q,)

under nondegenerate conditions.
Invariant polynomial 1ix)=0 should satisfies Eix)=0
andp, =00(=1,2.....m;)=1,2,..., k), namely:

EE]'{!I{“_;J}E
. mi (8)
Zero[E(x)) [ )| Zero(P,)
i=1 I
Therefore we have:
100 A () A al, abs P ) = 10x) (9)
Suppose that the invariant assertion I(x) is a

parameterized polynomial equation over program variables
or states:
X (10)

) S

(%)%, X, 0 = E Ry

For a given loop L, suppose that p,, . .., p,, are all
possible closed paths, consisting of Boolean tests and
assignment statements, each of which starts at the
beginning of the body of the loop and ends at the same
point. Suppose a closed path p, which includes a

sequence of assignment statements p,. Pa. ...pw. We
compute characteristic set B {p'. P ...p%.} and I(x)
pseudo-divide the characteristic set B to obtain pseundo-
remainder 1'1x). s=I{x)-I'x)=0 where sisa polynomial
formula. Because s equals zero for all the possible values
of X, X, . . .. X, (Sankaranarayanan et al., 2004) and its all
coefficients are identically zero (Iix) is a invariant). The
coefficients of s are linear combination of coefficients of
invariant assertion Iix). In the closed path we can
determine the partial or total coeflicients of invariant
assertion lix). Let the invariant assertion of which partial
coefficients are ascertained be [,ix) and obviously I,(x)
are derived from 1ix). Because the same parameterized
assertion can be used for multiple closed paths, 1,(x) is
invariant assertion of another closed path. Repeat the
above way and we can compute other coefficients of
invariant assertion 1,(x). Similarly, the rest coefficients of 1(x)
may be deduced by analogy. Finally we compute constant
coefficient of invariant by substituting initial values of
variables. In this way, we can obtain the invariant
assertion 1(x) for every closed path.

Algornthm [:
Inpurt: Algebraized goal ],:;] with parameters and constraint conditions of all
closed paths pyy. pis....pik;. which have been represented as equations.

Outpur: Invariant assertion of loop
Begzin

for i=1 to m{
Compute characteristic set B = [pl. p.
conditions { py. pa, ...piki. ] of the ith closed path;
I{';] p_ﬁt:udu-_dix'id.l-:Bm obtain |'.:;:|:
5= Nx)-1Ux)-
Because all coefficients of 5 are identically zero, we compute part
parameters of I{;,'I ;
|
Substitute initial valves of vanables to compute constant coefficient of
invariani;
return [y /*lts coefficients are determined!

...plik.| of constraint

End.

In order to demonstrate our method, we give an
example which is shown as follow.

Example 1:

function product (X, Y integer) return z: integer
VA X, ¥, 22 Inleger
i:x. V. z:;n ={}{. Y, l]:!-;
while y<=0 do
(xoy.zp={2x ydiv 2 z);
1] '::.Jl'.. ¥, ::I =2, (v-1)div 2, .T.+£::-;
end while

emid
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We transform the assignment statements of each
closed path in Example 1 into polynomial equations.

. — . — A
T,:p, =%x—2u T,:py, =X —2u

(11)

P=v—il/ 2w Par =¥ — (12w —1)

Py =2 —(u+w)

Suppose that I(x, v, z) 1s a polynomial equation in x,
y, Z in which the degree of every variable is at most 1.

lix.,y.z)=
a,xyz+a,xy+axz+a,yz+ax+ay+az+a =0

(12)

At first we compute characteristic set B of
[py =x-2u. p,. = y-(1/2)v]. Then we compute the pseudo-
remainder r of [(x,y,z) pseudo-dividing the characteristic
set B through MMP.

=cssi=[lal*x*y*z + a2*x%y + ad* %z + ad¥vFz4 ad*x +
ab®y + a7*z +al], [x-2ul.[v-( 1/2)v]]:

=ord:=([x, v, z, u, v]:

=Charser(css, ord);

where, variables’ ordering is given by ord and charser is
a function in MMP.
After computation we obtain:

I(x,y.2) =
(13)

| |
a,};}'z+a:x}'+23111+5a4}'z+ Zaﬁ:{+5an}' +a,z+a, =0

Successively we compare the coefficients of I{x,y.z)
and I'{x,v,z) to obtain:

s =a,X% -2a,yz + 4,X -éﬂﬁy =0 (14)

According to literature (Sankaranarayanan ef al.,
2004 a polynomial s is zero for all the possible values of
X3 Xaweo., X, 0 its all coefficients are identically zero. This
implies that the coefficient of every term in the polynomial
is 0, namely a, = a, =a,= a, = ().

(13)

lix.y,z)=axyz+a.,xy+a,z+a,

In succession we compute characteristic set B of
[ pa = x-2u, po = v-(12)(v-1), ps: = z-(u+w) }. We compute
the pseudo-remainder r of I{x.y,z,) pseudo-dividing the
characteristic set B through MMP.

>essi=[[al Fx*Fy*z + a2¥x*y +aT*z + aB],[x-2u],[y-(1/2)
(v-1)], [2-(u+w)]]:

=ordi=[x. y, 2, u, v, w]:

=Charsericss, ord);

We obtain:

dax*y+ 2aXyz +a Xy +(a. - a)x+az + a, =0

(16)

1%, v, 2]

We  compare the coefficients of lix,v,z) and
I'ix.,y.z) to obtain a, = () and a,-a, = (). Now we have
l(x,y,2z) = a,xy+a,Z+a, = (). When loop is entered, the initial
values x* and y* of the variables will be substituted in
I(x, v, 2) toobtain I(x*, y*, () = a.x*y* + a, = 0 which gives
a, =-a,x*y*,

In this way the loop invariant is found:

]i_;[_ v, 1_:| =a,Xy + a,z .;.]_:;l;_1}"1 =1 = XY + £ 'lrj"l =0

(r7)

In the above computation we hypothesize that the
bounded degree 15 1. When we hypothesize that the
bounded degree is greater than 1, we can still obtain loop
invariant xy + z - x*y* =0,

EXPERIMENTS

Impressive results achieved using Wu's method have
once again sparked a great deal of interest in automatic
ceometry theorem proving. Kapur and Wan (1990) in
particular has reported success in using Wu’s method for
all of these problems and his program took much less time.
Based on the experiments of Kapur and Wan (1990), it
appears that the method using Wu's characteristic set
computation is more efficient than the method using
Grobner basis algorithm,

Let Wu's characteristic set B {8, Za.B)=
K (%, %5....X, ) and degl(g)=d,<i=t. By literature (Gallo and
Mishra, 1994) the complexity of computing Wu's
characteristic set 15 O""d+1n™"y. Then the Wu's
algorithm  for  finding loop  invariants  takes
O il + 1™ + mny . where m is the number of closed

paths. Therefore, the complexities are all o™ (d+1"")

which is called a singly exponential complexity w.r.t,
n. If we adopt Grobner base algorithm the
complexity is:

ul

Drj{i- +d)*" + mn)
(Lakshman, 1990), namely:
1.'2 N h]
O(2{—+d)” )
(2 > )

which 1s double exponential w.r.t n. The method using
Wu's algorithm is superior to Grobner base obviously.
The experiments also validate the case.
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Table 1; The time comparison of finding loop invarants between the
experimental results using Grobner bases (Pentium 4 with a 3.4
GHz processor and 2 GB of memory) in literature {Rodriguez-
Carbonell and Kapur, 2007) and our results using Wu's method
(Pentium 4 with a 1.8 GHz processor and 512MB of memory and
obviously the computer performance applving Grobner bases is
sUpEror 1o ming). in: Seconds

Name Function Source Grobner bases Wu's method
Dvijkstra ;:.f_ i Dijkstra) 1.5 0.56
Drivbin Division i Kaldewaij) 2.1 .99
Freirel {,I'_ i Freire) 0.7 .48
Freire2 3 (Freire) 0.7 0.51
Cohencu Cube (Cohen) 0.7 .33
Fermat Factor i Bressoud) 0.5 0.43
Wensley  Division i Weghreit) 1.1 0.47
Lem Lem i Dijkstra) 1.0 44
Petter3 Power sum  (Petter) 1.3 0.33
Petierd Power sum (Peller 1.3 38
Petters Power sum (Petter) 1.4 043

We have presented a sound method based on Wu's
characteristic set method for finding polynomial invariants
of imperative programs. The technique has been
implemented using the algebraic geometry tool MMP. The
implementation has successfully computed invariants for
many non-trivial programs, Its performance is satisfactory
as can be seen in Table 1. Compared with other
approaches (Rodriguez-Carbonell and Kapur, 2007), our

method 1s more efficient through these experiments.

CONCLUSION

An invariant of a program at a location can be seen
an assertion (we transform the assertion into
polynomial equation in this study) that is true of any
program state reaching the location. The importance of
the automatic invariant finding problem for the venification
and the analysis of programs are well-known. We have
presented an approach for automatically finding
invariants of loop programs using Wu's characteristic
method and implement it on auto reasoning platform
MMP. The technique has many advantages: first of all,
our method has wider application domain. Secondly
compared other methods by experiments we prove that
our method 15 more efficient. Automatic proving and
verification of program is a trend and algebraic method
can be mechanized easily. For future research, we are
interested in  exploring the proposed research along
such directions: generalize and extend our method to
other program models and integrate this and other
methods  for mechanically program verification and
proving etc.

il
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