http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 9 (3): 453-459, 2010
ISSN 1812-5638
© 2010 Asian Network for Scientific Information

An Efficient ASCII-Based Algorithm for Single Pattern Matching

Rami H. Mansi and Jehad Q. Alnihoud
Department of Computer Science, Faculty of Information Technology,
Al al-Bayt University, Mafrag, Jordan

Abstract: In this study, we propose a new single exact pattern matching algorithm, called ASCII-Based-R1
algonthm. Furthermore, a string matching tool (RJ-SMT) has been developed to simulate and test the proposed
algorithm, the naive (brute force) and Boyer-Moore algorithms. Tn its searching phase, the proposed algorithm
improves the shifts in the naive and Boyer-Moore algorithms by excluding the text's segments that contain a
different character from pattern's characters. Based on the experimental results, the ASCII-Based-RT algorithm
outperformed the naive algorithm by 35.3% and Boyer-Moore algorithm by 2.3%. We may conclude that adding
some restrictions, or conditions, on text's characters during the preprocessing phase, increases the efficiency
of the searching phase, which increases the efficiency of the algorithm as a result.

Key words: String matching, boyer-moore algorithm, naive matching, ASCIl-based matching, design of

algorithms

INTRODUCTION

The string matching problem, also called pattemn
matching, is defined as the operation of finding one or all
of the occurrences of a pattern of characters P of length
m 1n a larger text T of length n. The problem has been
extensively studied and many techrniques and algorithms
have been designed to solve this problem. String
matching algorithms are mostly wsed in information
retrieval, bibliographic search, molecular biology and
question answering applications (Lecrog, 2007,
Wuet al., 2007).

String matching 1s a very important issue in the
domain of text processing and its algorithms are

considered as the basic components used in
implementations of practical software under most
operating systems. Moreover, they emphasize

programming methods that serve as paradigms in other
fields of computer science (Charras and Lecrog, 2004,
Watson, 2002).

In most of information retrieval and text-editing
applications, it 13 necessary to the user and developer to
be able to locate quickly some or all occurrences of a
specific pattern of words and phrases in a text
(Algadi et al., 2007). Moreover, string matching has many
applications including database query, DNA and protein
sequence analysis. Therefore, the efficiency of string
matching algorithms has a great impact on the
performance of these applications (Crochemore and
Lecrog, 2003). Although data are memeorized invarious

ways, text remains the main and most efficient form to
exchange information; since it is independent of the
software and hardware that used in different systems
(Kim and Kim, 1999; Sheu et al., 2008).

Basically, a string matching algorithm uses a window
to scan the text. The size of this window 1s equal to the
length of the pattern. Tt first aligns the left ends of the
window and the text. Then it checks if the pattern occurs
in the window (this specific work is called an attempt) and
shifts the wimdow to the right. It repeats the same
procedure again until the right end of the window goes
beyond the right end of the text (Amintoosi et al., 2006).

Exact string matching means finding one or all exact
occurrences of a pattern in a text. Naive (brute force)
algorithm, as mentioned by Charras and Lecrog (2004),
Boyer and Moore (1977), Morris and Pratt (1970) and
Knuth et al. (1977) are exact string matching algorithms.
Some of the exact string matching algorithms have been
presented to solve the problem of searching for a single
pattern in a text, such as Karp and Rabin (1987)
algorithms. In the other hand, some have been presented
to solve the problem of searching for multiple patterns in
a text. Although the Knuth-Morris-Pratt algorithm has
better worst-case rmning time than the Boyer-Moore
algorithm, the latter is known to be extremely efficient
in practice (Crochemore et al., 1994, Watson and
Watson, 2003).

Since 1977, with the publication of the Boyer-Moore
algorithm, there have been many papers published that
deal with exact pattern matching and in particular discuss
and/or introduce variants of Boyer-Moore algorithm. The

Corresponding Author: Jchad Q. Alnihoud, Department of Computer Science, Faculty of Information Technology,
Al al-Bayt University, Mafraq, P.O. Box 130040, Mafraq 25113, Jordan

Inform. Technol. J., 9(3): 453-459, 2010

pattern-matching literature has had two main categories:
Reducing the number of character comparisons required
in the worst and average cases and reducing the time
requirement in the worst and average cases (Danvy and
Rohde, 2006; Franek et al., 2006).

The brute force algorithm, as mentioned by
Charras and TLecroq (2004), consists of checking, at all
positions n the text between 0 and n-m, whether an
occurrence of the pattern starts there or not. Then, after
each attempt, it shifts the pattern by exactly one position
to the right. The brute force algorithm recuires no
preprocessing phase and a constant extra space in
addition to the pattern and the text. During the searching
phase, the text character comparisons can be done in any
order. The time complexity of the searching phase is O
(mn), where m 1s the length of the pattern and n 1s the
length of the text and the expected number of text
character comparisons 1s 2n.

The Boyer-Moore algorithm scans the
characters of the pattern from right to left beginming with
the rightmost one. In case of mismatch (or a complete
match of the whole pattern) it uses two pre-computed
functions to shift the window to the right. These two shift
functions are called the good-suffix shift and bad-
character shift. Assume that a mismatch occurs between
the character x(1) = a of the pattern and the character
v(itj) = b for the text during an attempt at position j. Then,
x(1+1. m-1)=y(i+j+ 1. j+m-1)=uvand x(1) # y(i+]).
The good-suffix shift consists in aligning the segment
y(i+j+1.7+m-1)=x(+ 1. m-1) with its rightmost
occurrence in x that is preceded by a character different
from x(1). If there exists no such segment, the shuft
consists in aligning the longest suffix v of y(i+j+1.. j tm-1)
with a matching prefix of x. The bad-character shift
consists in aligning the text character y(i + j) with its
rightmost oceurrence m x(0.. m-2). If y(1 +) does not occur
in the pattern x, no occurrence of x in y can include y(itj)
and the left end of the window 1s aligned with the
character immediately after y(it+j), namely y(itj+1). As
discussed in (Boyer and Moore, 1977, Navarro and
Fredriksson, 2004), tables bmBc and bmGs can be pre-
computed mn time O(m +0) before the searching phase and
require an extra-space in O(m + o). The searching phase
time complexity 1s quadratic O(mn), but at most 3n text
character comparisons are performed when searching
for a non periodic pattern. On large alphabets (relatively
to the length of the pattern) the algorithm is extremely
fast.

This study is an attempt to reduce the processing
time of both naive (brute force) and Boyer-Moore
algonthms. A new exact single pattern matching algorithm
1s proposed, amalyzed, implemented and tested. The
proposed algorithm improves the length of the shifts of

454

the naive and Boyer-Moore algorithms. Consequently,
enhances the speed of the performance as compared to

these algorithms.
MATERIALS AND METHODS

Ascii-Based-Rj algorithm: The preprocessing phase of
the ASCII-Based-RJ (ASCII-Based-Rami and JTehad)
algorithm finds the indices of the characters in the text
that not occur in the pattern. Suppose that a character at
index (z) in the text does not occur in the pattern, then the
pattemn cammot start i the segment (z-m+1 ... 2) in the text,
where m is the length of the pattern. Thus, this segment
and all such segments, will be excluded during searching
for the first, middle and last characters of the pattern in
the text. The preprocessing phase creates a zero-based
array called ASCIT Arr of size (95) elements (indexed from
0 to 94). This size represents the number of the printable
characters m the ASCII table (American Standard Code
for Information Interchange). These characters are from
(space), which has the code (32), to (~), which has the
code (126), in the ASCTI table. The algorithm scans the
characters of the pattern and for each character it
increments the value of the element in the ASCII Arr
array using the actual ASCTI code for that character minus
(32) as index. For example, if the character (m), which has
the code (109) mn the ASCII table, occurs in the pattern,
then the element in the ASCII Arr array at ndex (77),
(109-32 =77), will be incremented by one. Therefore, the
index of the (space) is (0) and the index of (~) is (94) in the
ASCI Arr array.

After that, the algorithm creates a new array, called
SKIP_Arr, to hold the indices of the text that the pattern
cannot start occwring at. These indices are determined by
scanning the text's characters from right to left and the
segment (z-m+1...7) for each index (z) in the text that
contains a character does not appear in the pattern will be
ignared during searching for the pattern's first, middle and
last characters in the text. The range from (z-m+1) to (z)
represents (m), which is the length of the pattern. The
algorithm determines whether a character in the text
occurs in the pattern by checking the corresponding
element in the ASCII Arr array (ASCIL code of that
character minus 32). If the value of the element in that
index is zero, then this character (z) of the text did not
appear m the pattern. Thus, the segment (z-m+1... z) in the
SKIP Arr array will hold the value (-1) to denote that this
segment will be ignored during searching for the pattern's
first, middle and last characters.

At this stage, the algorithm checks the elements of
the SKIP_Arr array to search for the segments of the text
that their first, middle and last characters equal the

Inform. Technol. J., 9(3): 453-459, 2010

pattern's first, middle and last characters. If the value of of text character comparisons. Furthermore, it decreases
the element is (0), the initial value, then it checks the text the number of expected occurrences of the pattern in the
at ndex equal to the current index of the SKIP Arramray text. As a result, it decreases the time complexity of
and 1if the first, middle and last characters of the text's searching for a pattern in a text.

segment at that index equal the pattern's first, middle and

last characters, the index will be saved in the Pseudocode of the ASCTI-Based-RJ algorithm: The
Occurrence List using a variable (1). The element will be pseudocode of the preprocessing phase s expressed as
skapped if it 15 (-1). This technique decreases the number follows:

procedure PRE-ASCITI-BARSED(array T(n),array P(m))

1 var Ji=ii=y:=z:=0, x:=n-1, nid=floor (m/2) as integer

2 Create array: ASCIT Arr(95) initialized by 0's

3 Create array: SKIP_Arr(n) initialized by 0's

4 Create array: Occurrence List(n-mtl) initialized by 0's

5 for 9 from 0 to m-1 do

6 Increment ASCII Arr (ASCII_CODE(P(3))-32)

7 for x from n-1 downto O do

g if }-\SCII_}-\rr(}-\SCII_CODE(T(x) 1-32)==0 AND x »>= m-1 then

El for ¥y from x-mt+l to x do

10 if SKTIP Arr(y) == 0 then

11 SKIP Arr(y):=-1

12 else

13 Break the loop

14 else

15 if }-\SCII_}-\rr(}-\SCII_CODE(T(x) 1-32)==0 AND x < m-1 then

16 for v from 0 to x do

17 if SKTIP Arr(y) == 0 then

13 SKIP Arr(y):=-1

1S else

20 Break the loop

21 for z from O to n-m do

22 if SKIP Arri(z) ? -1 AND T(z)==P(0) AND T (zt+tmid]=P (mid)
AND T(z+m-1)=F(m-1) then

23 Occurrence Listii):= z

24 ir=i+1

25 SEARCH-ACTT-BASED(TI(n), Pi(m}, i, Occurrence Listin-mtl))

end procedure

The searching phase of the ASCIT-Based-RT algorithm is as follows:

procedure SEARCH-ACII-BASED (array T(n), array P(m), i,
array Occurrence List(n-mt+l))
1 if i > 0 then
2 if m==1 then output the content of Occurrence List()
3 else
4 var ci=x:=0, count:=1, as= integer
] var value as Boolean
6 while ¢ < 1 do
7 value:= true
5] for x from Occurrence Tistic)+1
to Cccurrence List(c)+ m-1 do
9 if T(x)?P(count) then
10 value:= false
11 break the for loop
12 count:= count+l
13 if value==true then
14 output (Occurrence List (o))
15 ci=ct+l
16 count:=1
17 else output("The pattern is not found!™)
end procedure

455

Inform. Technol. J., 9(3): 453-459, 2010

The preprocessing phase builds the Occwrrence TList
array, which holds the of the expected
occurrences of the patten in the text. During the
searching phase, the algorithm uses the Occurrence List
to match the expected occurrences of the pattern in the
text with the characters of that pattern.

In the best case, when there i1s no any expected
occurrence of the pattern m the text, the searching phase
of ASCIT-Based-RT algorithm takes a constant time O(1).
Therefore, in the best case, the overall time complexity of
the algorithm 1z O(n).

In the worst case, the searching phase of the
algorithm scans (m-1) characters (1) times, where (1) is the
number of expected occurrences of the pattern in the text.
Thus, the algorithm takes O((1*m)-1) time 1n the worst case.
The ASCII-Based-RJ algorithm requires (95) additional
space for the ASCTT A array, (n) space for the SKIP_ Air
array and (n-m+1) space for the Occuwrrence List array. So,
it needs (2n-m+96), which 15 O(n-m) extra space, in
addition to the original text and pattern.

This study was conducted in 2009 as a part of the
MSc thesis of Rami H. Mansi at the department of
computer sclence at Al al-Bayt University, under
supervision of Jehad Q. Almhoud.

To compare between the performance of ouwr
algorithm with the naive (brute force) and Boyer-Moore
algorithms; we have bwlt a string matching tool (a text
editor) using Visual Basic 6.0 (Rami and Jehad-String
Matching Tool (RT-SMT)). In this tool, the ASCTI-Based-
RI, Naive and Boyer-Moore algorithms have been
umplemented and compared. The RT-SMT 15 available at
http:/fwww . gstringmatching. webs.com.

We have extensively tested the proposed algorithm
on random test data. A simple program 1s developed to
create random test patterns with different lengths (1 to 14)
of characters. Both characters of patterns and strings
were in the main memory, rather than a secondary storage
medium. The total nmumber of instructions that got
executed and execution time in seconds were considered
in the evaluation process. For each pattern length, 300
randomly selected samples were tested and averaged,
while the total string length was 10,000 of randomly
generated characters.

indices

RESULTS AND DISCUSSION

Table 3 shows the experiment results of the tested
algorithms. The execution time n seconds 1s denoted by
(T) while the number of executed instructions is
abbreviated by (Inst) for each algorithm.

In Table 3, the execution time (T} and the number of
executed mstructions (Inst) of an algorithm represent the

457

Table 3: Experimental results of the tested algorithms

ASCTI-Rased-RJ Brite force Bayer-Moore
Pattem length T Tnst T Tnst T Tnst
1 3.45 10100 3.30 30000 3.50 29470
2 2.91 T000 3.50 30414 3.20 15592
3 311 9991 4.36 30421 3.0l 10635
4 2.80 10000 4.85 30425 349 9225
5 2.90 9975 4.95 304061 3.20 9645
[3.20 T000 4.98 30452 340 T945
7 3.00 10009 5.20 30480 3.20 6967
8 3.20 9996 5.30 30459 3.51 T672
9 3.60 10000 5.40 30501 3.70 7400
10 3.70 10012 5.50 30507 3.80 6660
11 3.80 7300 5.80 30539 410 6230
12 4.10 8400 6.00 30543 440 7549
13 4.20 9900 6.30 30528 435 85066
14 440 10016 6.80 30535 450 10000
100000 _u— Exccuted instruction
—i— Execution time

E £ 10000 B S—N—8- _ _B-S—N—N.__ g =&

5 -

3

g

e B 10004

g3

g g 1004

Lg 2 10

l L) 1 T L) L] Ll T L] L] T L] T T 1
1 2 3 4 5 6 7 8 9 1011121314
Paltern length

Fig. 1: Experimental results of ASCII-Based-RJ algorithm

average of 300 runs of the algorithm using the same
pattern length (m) and random characters of the pattern at
each run. Figure 1 shows the average number of the
executed instructions and the average execution time in
seconds for each patterns sample of each pattern length
from 1 to 14 utilizing ASCII-Based-RJ algorithm.

It 18 apparent that the best performance of the ASCII-
Based-RI algorithm 1s when the pattern was relatively
long (more than 3 characters). This result 1s reasonable,
because the segments of the text that will be excluded
during the searching phase increase as the pattern gets
longer. Figwe 2 shows the average mumber of the
executed instructions and the average execution time in
seconds for each patterns sample of each pattern length
from 1 to 14 utilizing brute force algorithm.

The best performance of the brute force algorithms is
when the length of the pattern was relatively short. Since
the algorithm compares almost m characters at each index
of the text, the execution time increases as m gets larger.

Figure 3 shows the average number of the executed
instructions and the average execution time in seconds for
each patterns sample of each pattern length from 1 to 14
when the Boyer-Moore algorithm is used.

Inform. Technol. J., 9(3): 453-459, 2010

100000 _g Executed instruction —d— Execution time
—i—s—s—s—s—s——s—s s

10000+

1000+

g

Execulation time in sec and

No. executed instruction

—_
<
1

L] L) T L} L] L) T L] L] L} L] T T 1
1 2 3 4 5 6 7 8 9101112 1314
Pattern length

Fig. 2: Experimental results of the brute force algorithm

100000 _g Executed instruction —d— Execution time

w

10000+

1000+

g

Execulation time in sec and

No. executed instruction

—_
<
1

by ik —h—h

L] L) T L} L] L) T L] L] L} L] T T 1
1 2 3 4 5 6 7 8 91011 12 13 14
Pattern length

Fig. 3: Experimental results of the Boyer-Moore algorithm

107 g ASCTI-based-RT

—&—Brute force
—#—Boyer moore

Execulation time in sec

—

1234 5 6 7 8 9101112 13 14
Pattern length

Fig. 4: Execution times n seconds of the tested algorithms

Tt is apparent that the best performance of the Boyer-
Moore algorithm is when the pattern was relatively long
(more than 4 characters). This result 1s logical, because
the algorithm collects more information about the pattern
when it is long.

Figure 4 shows a comparison between execution
times of the ASCII-Based-RJ, Brute Force and Boyer-
Moore algorithms for each patterns sample of each
pattern length from 1 to 14.

It is apparent that the ASCII-Based-RI algorithm
outperforms the performance of the brute force and
Boyer-Moore algorithms. It is clear that the proposed

458

Table 4: Percentages of enhancernents in execution time
Enhancement on
brute force (%9)

353

Enhancement on
boyer-moore (%)
2.3

Algorithm
ASCII-Based-RJ

algorithm enhances the execution time of string matching
as compared to the brute force and Boyer-Moore
algorithms (Table 4). This enhancement is calculated by
considering the differences in execution times of the
algorithms to search for 14 patterns samples as recorded
in Table 3. The enhancements of the proposed algorithms
as compared to the naive (brute force) and Boyer-Moore
algorithms were 35.3 and 2.3%, respectively.

CONCLUSIONS

In this study, a new algorithm for improving the
performance of single exact pattern matching is proposed.
The ASCTI-Based-RJ algorithm creates an array called
ASCH Arr of size (95), which equals the number of
printing characters n the ASCII table. Then, it scans the
characters of the pattern and for each character it
increments by one the value of the ASCII Arr at index
equals to the code of that character in the ASCII table
muinus 32. After that, the algorithm scans the characters of
the text from right to left starting at the last one. If the
corresponding value of the current character (z) of the text
in the ASCIT Arr array is zero, then this means that this
character does not occwr in the pattern. Thus, the range
from (z-m+1... z) in the text will be ignored during the
searching phase, since the pattern cannot start occurring
at any index of this range in the text. The algorithm saves
this range of mndices in the SKIP Arr array, which 1s of
length #, where # is the length of the text. The algorithm
overwrites the values of the elements of indices of the
range (z-m+1... z) m the SKIP_Arr array by the value (-1)
to be skipped during searching for the first, middle and
last characters of the pattern. At this stage, the algorithm
saves the indices of the text's segments where their first,
middle and last characters equal the pattern's first, middle
and last characters, respectively, in the Occurrence Tist
array to be used during the searching phase. We
developed a string matching tool (RT-SMT) to simulate
and test the proposed algorithm, in addition to the naive
{(brute force) and Boyer-Moore algorithms and we have
extensively tested these algorithms on random test data.
A simple program 1s developed to create random test
pattemns with different lengths (1 to 14) of characters. The
total number of mstructions that got executed and
execution time in seconds were considered in the
evaluation process. For each pattern length, 300 randomly
selected samples were tested and averaged, while the total

Inform. Technol. J., 9(3): 453-459, 2010

text string length was 10,000 of randomly generated
characters. Based on the experimental results, the ASCII-
Based-R7J algorithm outperformed the naive algorithm by
35.3% and Boyer-Moore algorithm by 2.3%.

REFERENCES

Algadi, Z., M. Agel and I. El-Emary, 2007. Multiple-skip
multiple-pattern matching algorithm (MSMPMA).
IAENG Int. J. Comput. Sci., 34: 14-20.

Amintoosi, MH.Y., M. Fathy and R. Monsefi, 2006. Using
pattern matching for tiling and packing problems.
Bur. J. Operat. Res., 183: 950-960.

Boyer, R.5. and 1.5. Moore, 1977. A fast string searching
algorithm. Commun. ACM., 20: 762-772.

Charras, C. and T. Lecrog, 2004. Handbook of Exact
String-Matching Algorithms. 1st Edn., Kings College,
London, ISBN: 978-0-7546-6498-7, pp: 19-24.

Crochemore, M., A. Czumaj, L. Gasiemec, S. Jarominek,
T. Lecrog, W. Plandowski and W. Rytter, 1994.
Speeding up two string matching algorithms.
Algorithmica, 12: 247-267.

Crochemore, M.C.H. and T. Lecrog, 2003. A wnfymng look
at the apostolico-giancarlo string-matching
algorithm. J. Disc. Alg., 1: 37-52.

Danvy, O. and H. Rohde, 2006. On obtammmg the boyer-
moore string-matching algorithm by partial
evaluation. J. Inform. Proc. Lett., 99: 158-162.

Franek, F., C. Jennings and W.F. Smyth, 2006. A simple
fast hybrid pattern-matching algorithm. J. Disc. Alg.,
5: 682-695.

Karp, RM. and M.O. Rabin, 1987. Efficient randomized
pattern-matching algorithms. TBM. T. Res. Dev.,
31: 249-260.

Kim, 8. and Y. Kim, 1999. A fast multiple string-pattern
matching algorithm. Proc. 17th AoM/TAoM Int. Conf.
Comput. Sci., 17: 44-49.

Knuth, D.E., . H. Morris and V.R. Pratt, 1977. Fast pattern
matching in strings. SIAM J. Comput., 6: 323-350.

Lecrog, T., 2007, Fast exact string matching algorithms.
T. Inform. Process. Lett., 102: 229-235.

Morris, J. and V. Pratt, 1970. A linear pattern-matching
algorithm. Techmical Report 40, Unwversity of
California, Berkeley.

Navarro, G. and K. Fredriksson, 2004. Average complexity
of exact and approximate multiple string matching.
I. Theor. Comput. Sci., 321: 283-290.

Sheu, T.F., N.F. Huang and H.P Lee, 2008. Hierarchical
multi-pattern matching algorithm for network content
mspection. J. Inform. Sci., 178 2880-2898.

Watson, B., 2002. A new regular grammar pattern
matching algorithm. J. Theor. Comput. Sci.,
299: 509-521.

Watson, B. and R. Watson, 2003. A Boyer-Moore-style
algorithm for regular expression pattern matching.
I. Sei. Comput. Prog., 48: 99-117.

Wu, Y.C,, J.C. Yang and Y. 5. Lee, 2007. A weighted string
pattern matching-based passage ranking algorithm
for video question answering. J. Expert Syst. Appl.,
34: 2588-2600.

459

	ITJ.pdf
	Page 1

