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Abstract: The accuracy of various instances can hardly be ensured inherently by existing &-NN prediction
schemes, suffering from the single £ mechamsm. To address this problem, an ensemble A-NN numeric prediction
algorithm, Bsk-NN, 13 proposed. On the basis of boosting principle, a series of base A-NN predictors 1s
constructed firstly by Bsk-NN. Then the instance-relevant combination of each individual base predictor
presents the final composite estimate. The weight of each predictor changes adaptively with respect to the
distinct features of different unknown instances. Attribute selection is introduced into Bsk-NN as well to
optimize the proximity measurement and to perturb the stable traming set. Since the requirement that various
instances demand specific prediction schemes to match with has been taken into account thoroughly, the defect
of fixed & nearest-neighbor prediction is rectified consequently. Moreover, Bsk-NN is compatible with datasets
of any kinds of attributes, discrete, continuous or mixed. The experimental results on public datasets show that
Bsk-NN outperforms the traditional A-NN prediction and the improvement 1s statistically sigmificant according

to the paired f-test.
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INTRODUCTION

Classification and numeric prediction are important
research topics in data mining. A dataset 1 such tasks
often consists of a set of descriptive attributes x and one
special target attribute y. With this designation, the tuple
(x, y) refers to an instance of the dataset. The value of y is
confined to be categorical m classification, while it 1is
continuous n muneric prediction. Sometiunes the mumeric
prediction is also termed prediction for short. The &-
Nearest-Neighbor (k-NN) algorithm 1s an mstance-based
learning scheme for both classifying and predicting
applications, which classifies an instance in accordance
with a majority vote of its & nearest neighbors or predicts
it by the weighted sum of the estimates of those &
neighbors.

Extensive mvestigations of A&-NN learning have been
carried out in the past, mainly focusing on the
improvement of £-NN classifier. To calculate the distance
precisely and pick up proper neighbors, a text
categorization A-NN method with weight adjusting
assigned different weights to the attributes of training set
(Han et al., 2001). Based on Tabu search heuristic, hybrid
approach of simultaneous attribute selection and attribute
weighting for £-NN learning was presented by Tahir et al.
(2007). The combination of multiple - NN classifiers with
different distance functions improved the performance of

k-NN method as well (Yamada et al., 2006). Yang et al.
(2005) proposed a novel k-NN approach with semantic
distance calculation in terms of domain ontology. To
accelerate the neighbor search in a high-dimensional
metric space, the data was divided into small partitions
and indexed by B'-tree structure (Tagadish et al., 2005).
Another reduced method introduced gray relational
structure and instance prumng approach into &-NN, so
that the classification can be performed by fewer traming
instances at lower cost (Huang, 2006).

The works about #~-NN learmning typically concentrate
on the improvement of accuracy and the efficiency of
neighbor search. Although these efforts have promoted
kNN in some senses, a common problem remains: a fixed
number of neighbors are referenced in the classifying no
matter what the unknown mstance 1s. As a result, the
distinet features of each individual instance tend to be
ignored indeed by the existing A~NN methods, which make
the overall accuracy hardly being ensured. Meanwhile, a
similar situation arises in kNN numeric prediction,
suffering more from this weakness. Because the target
attribute of the instances in numeric prediction may have
numerous than
categories, compared with classification, the estimation
turns to be extremely sensitive to the reference neighbors.
In order to achieve better accuracy, we should try to
resort to different =NN prediction models and select

continuous values rather several
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appropriate quantity of neighbors thoroughly, especially
when the unknown instance changes. In this study we
accordingly attempt to resolve this problem meurred by
the fixed k¥ mechanism in numeric prediction.

In contrast with the fixed & prediction, if unknown
instances consult varying numbers of neighbors with
respect to the features of themselves, it 15 quite possible
that each one obtains perfect accuracy. Whereas this
intention also faces some challenges. First, it is quite
impractical to realize personalized prediction just through
a single &-NN predictor. Varying numbers of reference
neighbors imply diverse schemes rather than a fixed one.
It is necessary to initialize a series of predictors with
substantial differences among each other. By operating
on the unknown mnstance, respectively, the predictors
produce mdependent outcomes and the weighted sum of
them gives the final estimate. Furthermore, the weight
distribution keeps flexible to underline the specific
predictors and overlook the others according to the
current unknown mstance. However, straightforward
learning on the original dataset could only establish one
predictor; thus we have to provide sufficient training sets
prior to the learming procedure, which brings the second
problem. As an instance-based leaming scheme, kNN 1s
more suited for smaller datasets in practice, taking
computational cost into account. The challenge need to
be addressed to construct diverse training sets with only
one small origmal dataset available. The ensemble
methodology puts forward a comprehensive solution that
transforms weak learning methods into strong ones by a
combination strategy. Presently, boosting is a prominent
one of those practical ensemble methods.

AdaBoost, the classical algorithm of boosting family,
1s 1mtially proposed for bmary classification (Freund and
Schapire, 1997).  Successive AdaBoostM] and
AdaBoost M2 for multiple-label classification are also
presented meanwhile. After then, some improved
boosting algorithms based on ECOC (Error Correcting
Output Codes) techmque emerged, such as AdaBoost.
OC (Schapwe, 1997) and AdaBoost MO (Schapire
and Singer, 1999). In fact, boosting is applied not only to
improve the classification schemes, but also to enhance
the regression (mumeric prediction). By transforming
numeric prediction mto multi-class classification and
further binary classification, the representative algorithm
AdaBoostR (Freund and Schapire, 1997) submits an
original recipe for regression problem. Some other
boosting methods for regression have been proposed in
succession (Breiman, 1999; Ridgeway et al., 1999; Kégl,
2003). Although, these methods have promoted numeric
prediction theoretically in some ways, they could hardly
serve 1n practice for the reason of computational
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complexity. Hence, we turn to a lightweight boosting
regression method (Drucker, 1997) to facilitate the :-NN
prediction.

According to boosting, tramng sets are sampled
iteratively from the original dataset in terms of the
instance weight distribution. Then, the base leaning
model 18 built 1 turn on each sampling set. Within this
procedure, those instances of worse accuracy receive
heavier weights to maximize the chance of being picked up
in the next sampling. Consequently, we are able to
establish a series of base kNN predictors n like manner.
An emsemble A-NN prediction algorithm, Bsk-NN
(Boosted k-NN), is therefore proposed in this study, by
which radical changes have been made to the traditional
k-NN learning. Meanwhile, attribute selection treatment 1s
also introduced mto Bsk-NN on account of unequal
importance of different attributes to dissimilar instances
and k£ values. The
attribute subset optimizes the proximity measurement and
brings more performance gains.

distance calculation on selected

BOOSTING-BASED ENSEMBLE £-NNPREDICTION

Boosting: Boosting 1s an algorithm-independent method
used to improve the accwracy of weak leamers. According
to this method, a series of base models can be built
iteratively by particular data mining algorithin. While
classifying or predicting an unknown instance, boosting
combines all the outputs contributed by each individual
model separately into final result through voting or
averaging. The specific weight adjustment mechanism
guarantees the traimng procedure of diverse base models.
Firstly, a sampling training set is drawn with replacement
from the original dataset, with regard to the weight
distribution assigned in advance. Secondly, a base model
1s obtained from this sampling set and used to classify or
predict all the instances in original dataset, whose
performance controls the weight update entirely. Those
instances that are classified or predicted incorrectly will
have their weights increased, while those classified or
predicted correctly will be assigned lower weights. After
that, resampling from the original dataset produces
another new traming set for the next iteration. The
subsequent base models always focus on the hard
instances. By maintaining a measwe of hardness with
each instance, boosting provides an elegant way of
generating a series of base models that complement one
another. However, not all the weak learners could be
improved by boosting under any circumstances, because
this effective ensemble method only accepts unstable
algonithms. There are different ways to realize boosting for
classification and numeric prediction, the policies about






Inform. Technol. J., 9(3):

of its simplicity and practicability. Following the backward
elimination, each attribute is tentatively removed from the
original dataset to formulate different candidate subsets.
Then, the performance of the given learning algorithm
(here is the k-NN) is evaluated on the subsets
sequentially. The one producing the most performance
gains 18 selected to be the new full set of attributes, on
which the same process repeats contimuously. If there 1s
no more attribute available to make further improvements
after being removed from the current subset, the selection
comes to the end. Backward elimination 1s a standard
greedy search procedure and guarantees to find out a
locally optimal subset of attributes.

The second question for constructing base kNN
predictor is how to choose a proper value of £.

In order to predict a certain instance (x, y) in D, during
the training procedure, the contributions of the k nearest
neighbors (x,, ¥,), ..., (x5 ¥ are weighted by their
distances to (x, y), respectively. Let d, be the Euclidean
distance between (x, y) and the ith neighbor (x,, 3,), 1€1.. .k,
so that y is estimated as follows, where w, denotes the
weight of y;:

d=L =1k (1)
d
&
wWi= kl R i=1.k 2
S (2)
1=1
3 3
5= Y wi-p
1=1
Hence, the error of (%, y) 1s:
sz‘y*ﬁi “4)
¥y

Tt can be seen that the value of k, namely the number
of referenced neighbors, dominates the estimated value of
y. Thus, the mean error of D, will also differ if the value of
k alters. In other words, the best & and its attribute subset
chosen by the training procedure should optimize the
mean accuracy on D,.

Although, the necessity of optimized & has been
llustrated above, there 1s another outstanding question:
What is the search space for seeking out the best value of
k and its attribute subset?

In principle, the k& neighbors of (x, ¥) ought to be
found from the original dataset D. Unfortunately, the
sampling rules of D, shatter this notion. The training set
D, is drawn in fact from the original dataset D in terms of
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Function BaseTrain( D, ,D )
1 tor 1. .k, /7K, is a predefined integer
of maximum neighbors
Predict each instance in D, in terms of Egs. (3) and
(4), with k nearest neighbors. Calculate the mean error
asmin_k error;
for u=1...[U| /U] is the number of attributes of U
T=U-Ulu); /remove the uth atiribute from U
D'=D, (D";//only the attributes in U" are reserved
D=D(D");
Predict each instance of D in terms of Eq. (3)
and (1), where the neighbors are searched firom
D'. Calculate the mean error as g, (J);
end for
& (), 1L (U]
it 5=min_k_error then
U=,/ Uy is the attribute set corresponding to g
min k_ efror=g, goto 3;
ffcontinue looking for better attribute subset
else
Terminate the attribute selection. The minimum
mean error for & is just min_k_error;
15 endif
16 em(k)=min k error;
17 end for
18 K=argymin (err (k)), &1... K.
19 Return base predictor (K, A, E). The parameters refer
to &, attribute subset and error vector of D in sequence.

2

B I W R N P

8
9
10
11
12

13
14

Fig. 3: Realization of function BaseTrain (Dt, D)

weighted bootstrap. In this way any instance in D, must
be an element of D with no exception of (x, y), which
means an error-free prediction of all the instances in D, as
long as k is set to be one. At that time the nearest
neighbor is just the instance itself in D. Although such a
base predictor /, owns a significant accuracy, it 1s useless
1n practice due to the loss of generalization capability. To
avoid this, the search space is switched to D' = D-(x, y).

Now we intend to realize a function BaseTrain(D,, D)
for the traiming of base A-NN predictor 4. Letting U
denote the whole attribute set of D, the function is given
in Fig. 3.

Here, E, is a relative error vector of the original
dataset D predicted by the leave-one-out approach,
according to the parameters of k. Furthermore, this vector
is also used to reweight the instances of D by the end of
each iteration.

Weight update: The training set D,,; for the next base
predictor A, 1s sampled from the reweighted set D. Thus,
the performance of a base predictor can be seen as
reflection of its training set, so that the explicit weight
update of D, is a critical step to build the successful base
predictor k.

When classifying an instance, the result holds
nothing but two possibilities that the instance is classified
correctly or mcorrectly, namely the predicted value i1s
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either equal to the actual one or not. The accuracy of a
classifier 1s evaluated by a straightforward count of the
instances classified correctly. As a result, the weight
update in classification by boosting principle becomes a
cushy job as AdaBoost has done. On the contrary, the
situation is more complicated in numeric prediction tasks,
because the accuracy of a predictor can not be judged
directly by an accumulated count like in classification. For
this reason, the instance reweighting must be rectified to
assort with the numeric prediction. The resort is to
comvert a prediction mto mfinite binary classification
tasks, which determine whether the predicted values are
greater or smaller than the actual one, then the boosting
principle works. Although, various theoretical boosting
algorithms for numeric prediction have been proposed in
the past, most of them could hardly be applied practically
for the sake of complexity. With respect to a feasible
boosting regression algorithm (Drucker, 1997), the weight
adjustment of D benefits from the inspirations as well.

Once the relative errors have been mapped mto the
interval [0, 1] via some kind of loss function, the weights
of instances in D are updated in terms of the weighted
average loss. The loss of an arbitrary mstance (x, ) may
be calculated by any one of the equations below:

I - ¥-3] (5)
D
. 2
L, ="M ©)
D
_ 13-4 (7)
La=1 exp(—D )

,1=1...N. Obviously, the loss L and
1., always lie in [0, 1], so that the inequality I.,= L ,also
holds to the same mstance, which implies slight
adjustment of L,. In addition, L, only covers a sub internal
of [0, 1] for the reason of L,£[0,1] and 0<L,<1-e". Besides
the three omes, any other monotonically increasing
function with a range of [0, 1] 1s also able to work as a loss
functions. Following Eq. 8-11, the ith instance in D is
consequently reweighted:

Where: D= sup|jz1 — ¥

L= iwt(i) LaGi) (8)
_ L 9
b= L ©)
W(i) = w, (i) - B (10)
W (=g (11)
g‘iw'tﬂ(l)

In Eq. 8, the variables w.(i) and T.(i) denote the weight
and loss of the ith instance, respectively upon the base
predictor /. However, L, is the weighted average loss of
D produced by A, Tn Eq. 9, P, is the confidence level of ..
A smaller B, refers to lower weighted mean error and better
confidence level Each instance weight 1s re-calculated
and normalized by Eq. 10 and 11. According to the
regenerated weight vector, the training set D,,, for the next
base predictor A, is then sampled from D. Whenever the
average loss L, goes to exceed 0.5, the iteration should
be terminated since the performance of the mapped binary
classifier is even inferior to a random choice.

Combination of base predictors: So far, the ensemble of
base F-NN predictors has been established The last
problem to be addressed is how to combine these ones to
predict an unknown nstance? As we have described
previously, the weighted sum of each base predictor’s
individual estimate comes to be the final outcome. Thus,
the weight distribution, ie., the coefficients of base
predictors, plays a sigmficant role in the combination. The
regular strategy designates fixed weight to each base
predictor with regard to its performance in training, by
which the weight distribution keeps immutable, no matter
what the unknown instance 1s like. However, the reality 1s
that each base predictor has its distinctive capability
merely on certain kind of instances. The overall accuracy
is therefore going to be undesirable, according to the fixed
combination.

An instance-relevant combination approach 1s
presented here for the ensemble, by which only such base
predictors  suitable for the
dynamically assigned heavier weights with emphasis,
whereas those not suitable are given lighter weights. In
this manner, the weight distribution is adaptively refined
with various incoming unknown instances. In contrast,
the regular approach discussed above produces an
instance-wrrelevant distribution.

To combine the estimated values of an instance
(x, v,), its closest neighbor must be located from D in
advance. Note that the distance 13 measured successively
on varying attribute subsets offered by the base
predictors. In such a way, each base predictor is able to
determine one closest neighbor. The dissimilarity of all the
attribute subsets makes these closest neighbors possibly
different from each other. Letting (x;..., ¥..o) be the closest
neighbor of (x, vy,) searched by A (te1...T), we take
advantage of this instance in formulating the coefficient
C, for h, based on the assumption that (x, y,) may
potentially achieve a satisfying accuracy as long as
(X View) cOUld be predicted precisely by h.. There are
two concerns about the formulation of C,: the error of

cuwrent instance are
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(Fpews View) generated by h, and the distance between (x,, »,)
and (X,.., Vuew). The former may be taken easily from the
parameter E, of the previous function BaseTram( ), the
latter even available while locating (x,.... ¥,..)- Especially,
C, will be assigned a greater value in the case of both
slighter error of (¥,,., V..) and closer distance between
(x, ) and (x... V,..). Otherwise, C, turns to be lower.
According to various base predictors, the closest
neighbors of different unknown instances will always
change, so that the coefficients respond adaptively to
underline the promising base predictors. Inevitably, the
instance-relevant combination demands more time cost,
compared with the instance-irrelevant one. However, it is
worthwhile for higher overall accuracy.

We summarize the practical steps of instance-relevant
combination as follows:

Search out the closest neighbor of the unknown
instance (x,, y,) from the original dataset D and use
d_.(t) to denote their distance calculated on the
attribute subset of h, tel... T

Assume that e, represents the error of the closest
neighbor by A, e, € E,. We normalize the contribution
of both d,,.(t) and e,to be the coefficient C, by

following equations:

0= G 06 (12)

A
-t (13)

C'.

o
Co=g 14
o o

t=1

The symbol A, in Eq. 12 indicates the aftribute

subset of b, whereas |A | refers to the number of attributes
that A, holds. The distance d,,,(t) has to be divided by |4
in Eq. 12 due to inconsistent number of attributes among
the base predictors.

Bsk-NN algorithm and its complexity: By now the critical
issues of ensemble A-NN prediction have been fully
addressed. We continue to realize a specialized numeric
prediction algorithm named Bsk-NN (Boosted A-NN), a
complete implementation presented in Fig. 4.

Bsk-NN algorithm consists of four modules: lines 1-3
initialize the variables used in Bsk-NN; lines 5-6 draw the
sampling set and train a base A-NN predictor; the instance
welghts are updated with respect to the accuracy of A, in
lines 7-12; at last the test instance is predicted by the
ensemble in lines 13-19.
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Algorithm:Bsk-NN numeric prediction
Tnput:dataset D,test instance (x,.)
Output:estimated value 3,
1 =1,
2 Initialize the instance weights:
W (DF1MN=]L . N NSD);
31,70
4 while f‘ <0.5

{
Draw the training set D, from D in terms of Bootstrap
and weight vector w, D =N,
Build the base predictor # 0n Dy
(K, A, E)=BaseTrain{ D, D );
Calculate the loss Ly (i) of each instance in D with Eq.
(5),i=1...N;
Calculate the weighted average loss f‘ with Eq. (8);

if f‘ <0.5 then

5
6
=

8
9

10 Reweight and normalize the instances in D with
Egs. (9-(11);
11 t=t+1;
12 endif
}
13 T=t-1; /T is the number of base predictors
14 forj=1...T
15  Calculate the estimated value ¥(j) of (x..¥,) on A;
16 Calculate the coefficient C"(j) of A; with Egs. (12)
and (13);
17 end for
18 Nommnalize C'(j) to C{j) in terms of Eq. (14), j=1...T ;

19 5= 3G p(
=1

Fig. 4: Bsk-NN numeric prediction algorithm

Tt is necessary to examine the computational
complexity of Bsk-NN, each iteration of which involves
two phases of dataset sampling and base predictor
construction. The cost of bootstrap sampling is negligible
owing to its simplicity. For this reason, we restrict our
attention to the latter phase, which 1s the dominating part
of the cost. For a given k and its training set with d initial
attributes, firstly we consider an extreme case that none of
the attributes will be eliminated by the selection treatment.
In other words, the overall accuracy on this training set of
d attributes is actually better than that on any other set of
d-1 attributes. Although, this situation rarely occurs, it
does exist. To prove the best performance of the full
attributes, the accuracy of any reduced traimng set with
d-1 attributes must be verified, according to backward
elimmation. There are totally d possible datasets of d-1
attributes, generated by removing each attribute from the
full set mn sequence. Hence, intensive traimng procedures
are required to repeat d+1 times on all the candidate
datasets, 1.e., d times on the sets of d-1 attributes and
once on the set of d attributes. More generally, suppose
a resulting set of d-1 attributes after the selection,
120...d-1, where, 1 accounts for the number of attributes
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having been eliminated. In this situation, the training
procedure needs to run 1+dH(d-1)+...+(d-1) = 1+2d-1)
(i+1)/2 times. It is clear that there are a total of 2%1
candidate datasets with different numbers of attributes.
Among these ones, the probability that a dataset of d-i
attributes 1s chosen to be the result is,

e

Thus, the training procedure has to be performed S times
on the average to find out the right attributes, where S 1s:

d
d—i)(H

d-1

|

(2d-i)
2

i+1»

i=0

5=

(15)

Since, we have:

1%[9}(2d+ 2d—Di- i)
2i=0] 1

i+1)=—3
ot 5]

L [P CE T SR
2|3 1

)

s dy(2d-
%[i] 2 a

1
2

substitute this result into Eq. 15:

1
S=1+=

2 29-1
£ 5d71d27d

g §2°-1

(idzzuidztdtﬂ
4
.

3

(17)

+1

8

The takes  the
computational cost within each traimng procedure and
leads to a complexity of O (n®), where, n is the number of
mnstances 1n traimng set. Taking the Eq. 17 mto account,
the attribute selection treatment corresponding to a given
k has the complexity O (Sn”) = O (d’n®). Letting & refer to
the predefined maximum value of £, i.e., the maximum
mumber of reference neighbors, the complexity of an
iteration is therefore O (Kd’n?). Then, the overall
complexity increases to & (TKd’n®) for the purpose of
establishing an ensemble of T base predictors. Compared
with the training iterations, the cost of base predictors’

distance  calculation most
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combination need not be considered for its magnitude.
The tradeoff between accuracy and complexity always
stands there. However, the computational complexity of
Bsk-NN may be possibly reduced by some techmques of
accelerating neighbor search, optimizing attribute
selection and so on. After all, this ensemble 1s a feasible
solution to promoting the 4NN numeric prediction,
especially for the datasets not too large.

EXPERTMENTAL RESULTS

Settings: Experiments on five public datasets are made in
this section to evaluate the performance of Bsk-NN.
These test datasets involve different fields
automobile, computer and cloud seeding, available from
the website of WEKA (2008)-a kind of well-known open
source software for data mining. We normalize the

about

datasets initially and skip few instances for the reason of
missing values. Bsk-NN 1s actually able to cope with this
by an alternative distance measurement of overlooking
those attributes. Because this treatment may interfere with
effective attribute selection, we remove those instances.
Besides, the absence of a very few mstances will not
bring adverse effects to the verification of Bsk-NN. After
the preprocessing, the five datasets auto93, autoHorse,
autoPrice, Cloud and CPU comprise 82, 159, 155, 108, 209
instances, respectively and 23, 26, 16, 7, 8 attributes in
sequence.

Also we realize a traditional -NN numeric prediction
algorithm as a comparison, where the only parameter, the
value of %, 13 determined by a leave-one-out leaming
process. The selected k& produces best overall accuracy
on the training set.

Methods: Cross validation is a principal performance
evaluation approach for both classification and numeric
prediction, overshadowing other ones like holdout,
bootstrap and random subsampling. Hence, a standard
3-fold cross validation is applied in our experiments. All
the test datasets are firstly split into 3 subsets of
approximately equal size. Then, each subset is used for
testing in turn and the reminders are used for training by
both Bsk-NN and traditional A-NN. In spite of the usual
partition of ten folds, a 3-fold cross validation 1s used here
because of the concern that the large number of folds
would produce smaller partitions, which potentially brings
on biased assessment in virtue of msufficient test
instances within each partition, especially for a small
dataset and instance-based kNN learmning. Thus, 3-fold
cross validation is preferred here. The randomness of
both weighted sampling and cross-validation partitions
may very likely mcur different parameters for the base
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Table 1: p-value of paired t-test

p-value
Dataset. Round 1 Round 2 Round 3
auto93 0.0225 0.0209 0.0031
autoHorse 0.0011 0.0013 0.0041
autoPrice 0.0149 0.0018 0.0041
Cloud 0.0001 0.0002 0.0001
CPU 0.0000 0.0000 0.0000

So far we are not very sure yet that whether the
observed improvement is caused by the solid difference
between the two algorithms or just a chance effect in the
estimation. Thus, an additional paired #-test continues to
be performed. Let M, denote the difference between the
two estimated values of the ith instance predicted by
k-NN and Bsk-NN respectively, 1= 1...N. The differences
M,...M,; are assumed to be mdependent of each other and
M, obeys normal distribution N (p,,0,). The right-tail
t-test is taken as follows:

Hy:pM =<0, H;:pM=>0,

where, the null hypothesis H; means the accuracy of the
traditional k--NN is greater than or equal to Bsk-NN and
the alternative hypothesis H, against H, shows the
contrary. The p-values of pamred #test
experimental round are given i Table 1. Apparently, all
these figures are far less than 0.05. In particular, the
figures of CPU dataset are very close to zero, which is
comsistent with the most sigmificant performance
mnprovement on the same dataset. Hence, the null
hypothesis is rejected and the alternative one is accepted
at a significance level of ¢ = 0.05. We conclude that the
mprovement of Bsk-NN prediction 1s statistically
significant on these test datasets.

mn  each

CONCLUSIONS

As a feasible and effective lazy learning scheme, &-
NN has been widely used in a mass of classification
problems and relatively small numbers of numeric
prediction tasks as well. However, the weakness of A&-NN
caused by a single k parameter prevents us from moving
forward to improve its overall accuracy.

An ensemble kNN prediction algorithim named
Bsk-NN 15 proposed. According to this algorithm, diverse
base k-NN predictors are established based on various
training sets sampled from the original dataset. The
composite outcome of an unknown instance is the
weighted sum of all the estimated values predicted by
each base k-NN predictor respectively, where those fit
better for the unknown instance tend to be assigned
heavier weights. Tt is conceivable that for most of the

unknown instances there are suitable base predictors.
Thus, the fixed k& prediction without considering
individual features of distinet mstances will not happen.
The performance improvement of A&~-NN leaning comes to
be most likely credible. We have explored all the essential
issues of Bsk-NN including ensemble /NN model, base
k-NN predictor training, instances reweighting and base
predictors combination. Besides, we have also introduced
attribute selection into Bsk-NN to pertwb the stable
datasets and to optimize the neighbor search.

We have made a series of expermments on different
public datasets to compare the performance between Bsk-
NN and traditional #-NN prediction. The results show that
Bsk-NN actually outperforms the latter and the minimum,
maximum and mean errors are all reduced. Additional
paired t-test claims the statistical significance of the
improvement.

Moreover, Bsk-NN prediction may be performed on
all kinds of datasets, mcluding attributes that are
categorical, numeric, or mixed. It 1s another distinguishing
characteristic of Bsk-NN.
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