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Abstract: In this study, we present our experience in developing a tool for Software-Implement Fault
Injection (SWIFL) mto Windows operation system. The fault injector uses software-base strategies to
emulate the effects of radiation-induced transients occurring mn the system hardware components. The
SWTFT tool called MOFT (Memory Oriented Fault Injector) is being used, in conjunction with an appropriate
system fault model, to evaluate the applications, measure the injecting strength of injector and mean time
to failure of injected applications and determine the sensitivity of applications to faults. The MOFT has
been validated to myject faults into user-specified CPU registers and memory regions with many random
distributions in location and uniform random distribution in time. The different random distributions chosen
in location could produce different experiment results. The reason will be discussed in this study.
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INTRODUCTION

Now more and more Commercial-Off-The-Shelf
(COTS) hardware and software components are
employed in spacecrafts. A fault tolerance mechanism
for satellite processing application had been
unplemented through redundant COTS components
(McLoughlin et al., 2003) and Remote Exploration and
Experimentation (REE) project was launched to bring
commercial cluster technology into space (Some and
Ngo, 1999). In future more applications and projects like
them will run in space to execute scientific explorations.
Generally software and hardware of these COTS are not
radiation hardened to protect them from radiation, for
example Galactic Cosmic Ray (GCR) and Solar Proton
will cause Single Event Effects (SEEs) (Some et al.,
2001) in registers and memory. In order to reduce
influence of SEEs some fault-tolerant mechamsms were
designed and implemented by both hardware and
software.

Recently, software-implemented fault tolerance
became focus of research. Oh et al. (2002) brought up
control-follow checking. Torres-Pomales (2000)
discussed single-version and multi-version software
fault tolerance techniques in detail. The theory and
practice of fault-tolerant high-performance matrix
multiplication i REE Project of NASA’s High
Performance Computing and Communication Program
was designed and implemented by Gunnels et al. (2001).
Before a fault-tolerant system 1s deployed, it must be
tested and wvalidated to check 1if fault-tolerant
mechanisms take effect. These tests are more important
in systems composed of COTS since, there are no
radiation-hardened chips used. Usually these tests are

implemented by fault injection techniques (Some et al.,

2001). These techniques are basically divided mto four

categories:

¢ Hardware-implemented fault
(Madeira et ai., 1994)

» Software-Implemented Fault Injection (SWIFT)
(Han et al., 1995)

¢ Simulation-implemented
(Blanc et al., 2002)

¢ Hybrid fault injection-a combination of the former

three methods

njection

fault njection

Hardware-implemented fault injection techniques
need special hardware and may produce permanent
harm to object hardware. Simulation-implemented fault
injection techniques are difficult to create models, more
cost m computation and inaccurate. The SWIFL
techniques are naturally simulations of hardware faults
in order make the system behave as if real hardware
faults had occurred. Compared to the other techniques
SWTFT techniques have some special advantages: (1)
no complexity models, (2) less development effort, (3)
lower cost and (4) mereased portability (Some et al.,
2001). There are quite a few SWIFIL based fault
mjectors such as FIAT (Han et al, 1995), FERRART
(Kanawati et al., 1995), NFTAPE (Stott et al., 2002),
DOCTOR ORCHESTRA (Dawson et al, 1996),
BOND  (Baldini et al, 2000), Holodeck
(http://www securityinnovation.com/holodeck/index s
html) and Xception (Carreira et al., 1998). They run on
Unix, Linux and WindowsNT platforms. In this study,
MOFT 18 like BOND and Helodeck, since all of them run
on WindowsNT platform. But there are basic
differences of iyecting method between them.
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BOND and Holodeck focus on injecting faults into
APT (Application Programming Interface) parameters
and when these parameters pass through interfaces of
layers and components of software, faults are ijected.
So both of them need to intercept API, modify
parameters and continue to pass. This way obviously
can only mnject determined faults into special locations
but can’t iyject fault into any positions of registers and
memaory. The MOFT is different from them. Tt can inject
faults into registers and any location of memory. The
difference comes from the aim of ijection. In both
BOND and Holodeck SWIFI techniques are aided
approaches to normal software test. In MOFTI the aim is
to emulate SEEs occurring in registers and memory in
order to evaluate reliability of software wiich will run in
spacecraft and other ground systems that work m high
radiation environments.

Heeption i3 similar with MOFI in functions.
Xception operates at the exception handler level and
needs debugger mechanism of CPU. Both MOFI and
Keeption minimize intrusion into application. The MOFT
doesn’t depend on specific hardware architecture.

This study describes the theory of MOFI fault
mjector and the methods to compute reliability
parameters and analysis the influence of different

injecting  locations  distributions on  injecting
experiments results.
INJECTING METHOD

MOFI can mject faults mto registers and memory
when object applications are running. The MOFI can
inject one-bit or multi-bits faults that emulate SEEs
effectiveness into registers and memory with the same
method. There are only limited registers in x86
architectire where our experiment platform Windowsxp
runs. In one research detailed techniques of injecting
faults into 75 registers of POWERPC were studied
(Some et al., 2001). The registers in x86 are less than
POWERPC so the work of injecting faults 1s easier. So,
in this study, we mainly focus on injecting faults into
memory and all computations and experiments are
surrounding it. First it 1s necessary to study the
application memory image when it is running as a
process.

Process is put into memory according to various
regions such as code region, data region, heap region,
stack region and so on. When MOFT mjects faults mto
application it just injects faults into regions of process
of application. Figure 1 is a concept display of process
memory image. This concept display corresponds to
almost any popular operation system that supports
multitask and virtual memory. The number on left is the
address of memory cell. The range 1s from 0x00000000 to
OxFFFFFFFF. Theoretically MOFT can inject faults into
all memory cells of process of an application.

577

Address Content
Ox FFFFFFFF
Region 1
- . g
[ 11} [ 11} .E
Region n
0x00000000

Fig. 1: Process memory image
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Fig. 2: SEEs illustration

Figure 2 shows what is the SEEs. The MOFT can
emulate the SEEs effectively. In this example MOFL
mjects one-bit SEEs fault into address 0x00001000 by
changing the fourth bit from 1 to 0. So after injected
fault the content of address 0x00001000 becomes
01001010. The MOFI caninject one-bit or multi-bats fault
into memory space of the running process and this is its
main injecting method.

THEORY OF INJECTION OPERATION AND
ALGORITHM

MOFI 15 an application-level software-implemented
fault injector providing an easy-to-use environment for
fault iyection experiments including massive fault
injection campaigns to get statistical data on fault
performance and accurate fault injection into any
determinate location for specific purpose. The user just
needs to tell MOFT the name of object application that
will be mjected or PID (process identifier) of its process.
Although, MOFI could imect faults into any
applications, with or without sowrce code, that run in
windows, n our mjecting experiments all applications
are with sowrce codes. This 15 umportant because if a
campaign needs to implement 1000 injecting
experiments and the injected applications are not silent
with exceptions, the human operator might have to
close windows Application Error dialog hundreds times.
The massive human work 1s terrible and will affect the
precision of time in experiments records. So,
(SetErrorMode) MSDN, 2007. All API functions
referred in this study come from it function could be
added into source code and after compiled again
the application will be silent with exceptions. With a
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configuration file and execution Tcl scripts, a campaign
of a thousand fault injection experiments may be
automatically run, results collected and evaluated and
statistical results obtained without human interference.
The injected application is to be created by injector
using (CreateProcess) APL. But after created the
process of application is not as a subprocess of
mjector, there no longer exists relationship between
application and injector.

Some et al. (2001) classified the result of each
injecting experiment as Correct, Incorrect, Crash, Hang,
or Invalid. The reason of so many classes 1s in that
research faults were injected into code region, data
region, heap region and stack region with uniform
distribution. ITn present research the mainly injected
region 1s code region and almost any fault njected mto
this region of a running application will cause it hang or
crash. So the number of fault classes declines and
judgment standard is easier: Injector observes injected
application after a fault was injected into its memory
space. The application is checked through
(FindWmdow) on a prescribed time wvalue. If
(FindWindow) return NULL within the time value it
indicates that this injection makes application failure.
Otherwise if (FindWindow) still could find window
handler of application it indicates that this injection
didn’t make application failure. Tf (SetErrorMode) is
used when windows operation system finds a failure
occurring the most usual disposal route is to close the
application and collect all resources allocated to it. The
behaviors can be seen is the windows (or dialogs)
opened by application disappearing or the PID of
application disappearing in task management. So far the
detailed techniques were discussed. Now an injecting
method algorithm will be given.

Injecting Method Algorithm (IMA): Set N is the munber
of mjecting experiments and T 1s a prescribed time value
that injector needs to check whether the injected
application is failure. In each experiment only a fault will
be injected into an object application. After injecting a
fault the ijector will observe the imjected application
within T. If within T the injector find application failure
then it fimshes this experiment, records experiments
results and begins next experiment (if number of
experiment 1s less than or equal to N). If withuin T
application doesn’t failure the injector will consider that
this injection can’t hit application and begin next
injecting experiment. Set application failure mumber is fn
during all experiments are executed.

*  Step 1: (Imtiate) Set N, T and produce a list X(IN)
that contains all locations that will be injected.
Each experiment chooses a location to inject. Set
I=0,n=0,m=1

¢ Step 2: (Tnject) If T =N, inject fault at location X (i),
go to step 3. Else finish experiments and exit

Table 1: Experiment record format of TMA

#Num Narme #Num MName

#1 Inject-id #7 Inject-cont
#2 Start-time #8 Finish-time
#3 Inject-addr #9 Execute-time
4 Read- flag #10 Failure-flag
#5 Read-cont #11 Accurn-fail
#6 Inject-flag

*  Step 3: (Observe) If within T application failure
then fn=fot+l and go to step 4. Else also go to
step 4

* Step 4 (Record) Record the results of this
experiment, I = 1+1, go to step 2

In step 1, the way to choose X(N) is deserved to
discuss. Different ways make different experiment
results. This will be discussed at end of the study.

In Step 4, we need to record the results of
experiments. The format of record 1s described by
Table 1.

Table 1 gives all fields of one record. By algorithm
IMA each experiment has one record so after N
experiments N records will be produced.

#Num stands for number of data field The
description after it stands for name of data field. #1
records the mjecting experiment 1d, for example for the
1th (1 = N) experiment the 1d 1s 1. #2 records the starting
time of each expeniment. #3 records the location that will
be iyected in this experiment. #4 1s a flag it indicates
whether the content of location could be read. If
content can’t be read the Read-flag will be set to 0, else
1. #5 will store the content that is read. If #4’value 15 0
then #5 will be set to FFFFFFFF. #6 and #7 are sunilar
to #4 and #5. #6 mdicates whether myector can inject
fault mto the memory cell pointed by #3. #7 stores the
fault that is injected. #8 and #9 stand for finishing time
of experiment and executing time, respectively. And #9
is also the swrviving time of application after injected.
#10 18 a failure flag. It indicates whether this injecting
experiment causes application failure. #11 stores
accumulating number of faillures from the first
experiment. It equals value of fn in IMA.

In algorithin IMA the experiment time 18 mainly
consumed in Step 3 and the value is O (1). So, all time
needed to execute N injecting experiments can be
computed as:

P (N) =O(1)+ D, (N 1) (1

So, the result 18D, and it easy to know that max

(Ppes(N)) = TN.

Next section the method to compute interesting
parameters by experiment results will be discussed.

ANALYSIS AND COMPUTATION OF
PARAMETERS

Interesting parameters can be computed by the
records of experiment results. To demonstrate how to
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compute parameters by format of record, a fault
mnjecting campaign will be run. Injecting strength,
MTTF (Mean Tine To Failure) and fault sensitivity are
chosen as parameters that will be computed. Any
application can be used as imected object. In this
campaign a GUI sine wave generator 1s chosen. The
campaign will be executed by IMA. 50 experiments will
be run so N = 50 and by scale of application code
region the prescribed time value is set to 2 sec,
T =2 sec. For each parameter first we give its definition
and computing formula by format of record then
illustrate the computing results and analyze its meaning.

Definition 1: (injecting strength A): It is the average
value of mumber of application failures caused by
Injector per umt time. It can be computed by Eq. 2. All
items on right of Eq. 2 are described in Table 1.

_accum_um(j+n-1) - accum_num(j)

== — (2)
finish time(j +n-1}-start time(j)

A, 1)

where, A4 (j, n) represents the injecting strength of
injecting experiment form jth ttme to nth time. It is
obvious that A (j, nn) is an average measure of injecting
effect. We can extract #8 and #11 from experiment
records and plot them 1n Fig. 3.

In Fig. 3, x-axis stands for time of the whole
campaign. In this campaign 50 experiments are run and
experiment time is about 120 sec. By Eq. 2 and Fig. 3, 4
can be computed on any time interval between (0,120).
If A = 0 it means that injector didn’t cause application
failure during the corresponding time interval, for
example during (0, 10) accumulated failure count 13 0 s0
A0, 10)=0.

Definition 2: (failure time): The time interval from time
when application 18 injected to time when failure
happens.

Usually average failwe time, 1.e, MTTF (Mean
Time To Failure), is an interesting parameter. So by
definition 2 we directly give the formula Eq. 3 to
compute MTTF.

i (f flag(i)>e_time (1))

MTTF = =L (3)

i f flag (i)

where, f-flag (i) is #1 0 field in table 1 and e-time (i) is #9.
The i in Eq. 3 is the sequence number of N experiments.
We can extract #1 and #9 from experiment records
and plot them in Fig. 4.
In Fig. 4, x-axis stands for the number of
experiments, i.e., N = 50. Y-axis is the application run
time for each experiment. There are 37 experiments in
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which the run time is greater than 3.1sec and others run
time about 0.2 sec. Because T = 2 sec and by IMA when
t =2 injector believes that this injection doesn’t
make application failure, in Fig. 4, we can see only
13 experiments are considered to make application
failure. We can compute MTTF by experiment records
through Eq. 3. In this campaign MTTF = 0.058 sec. This
umplies that when the sine wave application 1s running
in space if SEEs happens in its code region it will fail in
0.058 sec. So, if deploying some fault-tolerant
mechanism to avoid failure the mechanism should be
effective in time within 0.058 sec.

From Fig. 4 all the time of 37 experiments after
mjected 1s greater than 3.1 and T = 2 sec, tlus error
comes from the tasks schedule of operate system. Tt
doesn’t affect our understanding and analysis of
experiment results.

Sensitivity: From Fig. 1, it can be seen that an
application 1s put into memory image based on different
kinds of region. For example there are code region, date
region, heap region and stack region. In this study,
present research focuses on code region. The
characteristic of injecting faults injected into this region
15 that 1t almost causes application exception
immediately. We can extract#3 and #10 from experiment.
records and plot them 1n Fig. 5.
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In Fig. 5, value of y-axis comes from #10 of each
0 and
1.1 means application failure and 0 no failure. X-axis

experiment record. Tt only has two values:

comes from #3 of each experiment record. It 1s obvious
that the failures are converge at the top third of injected
code region, so we can conclude that this part of region
1s more sensitive to SEEs faults. The meanming of this
parameter 1s that it will be easier to target the locations
region where failure occurs once an application fails.
Although, in this study we focus on injecting faults
mto code region, MOFI can imyect faults into any
regions;, next we discuss how to compute sensitivity
about different regions by records. For different
applications the sizes of regions allocated are different
from each other. It s hard to define sensitivity m this
situation but for each region the comresponding
sensitivity can be computed according to the way we
compute sensitivity of code region discussed above.
No matter what situation the method to compute the
number of failures occurring in corresponding region 1s
important. For example, code-num stands for number of
failures occurring in code region. The value can be
computed by Eq. 4.

N
Code mum= 2 (Inject addr(i) € code regiomyx<f flag (1)
i=1
(4)

where, Inject-addr 1s the #3 of each record and {-flag (1)
is the #10. By Eq. 4 other numbers such as data-num,
heap-num and stack-num can be computed. When we
use umiform distribution to produce X (N) over all four
regions, four numbers can be compared to analyze the
Sersitivity.

EXPERIMENTS BASED ON DIFFERENT X (N)

Tn above injecting experiment implemented by TMA,
we use uniform random distribution to produce
locations list X (N) over the whole code region. What
about other distributions? Here, we will discuss the
influences of the different distributions on experiments
results.

We choose umform, normal and exponential as
three different distributions. Three different lists are
produced by corresponding distributions, respectively
on the same area of code region (Note that in this
section the code region 1s different from the one used to
demonstrate how to compute parameters in above
section. The differences come from different original
locations and different sizes of injected areas in code
region). Then three campaigns are run. Each campaign
mcludes N = 50 experiments as before and uses its
own random distribution to generate list X (N). We use
X-Exponential, X-Normal and X-Umform to indicate
coresponding  experiment cwrves. In  all three
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campaigns T 1s set to 2 sec. Figure 6 shows experiment
time and faillure number of three
respectively.

In Fig. 6, x-axis stands for time of experuments
executed Y-axis stands for failure number of
50 experiments. There are three cwrves in this Fig. and
each of them represents a distribution. Tt is obvious that
when we use exponential random distribution to
generate locations lLst X (N), corresponding curve
indicated by X-Exponential, the time of 50 experiments
is longest and when use normal random distribution,
coresponding curve indicated by X-Normal, the time is
shortest.

Figure 7 shows experiment number and failure
number of three campaigns, respectively. X-axis stands
for the number of experiments. Tt corresponds to #1 of
each experiment. Y-axis 1s same with Fig. 6.

In Fig. 7 it can be found that when use normal
random distribution the number of failures caused by
iyection 18 the most but exponential random 15 smallest.
Comparing Fig. 6 and 7 a conclusion can be obtained,
i.e., the more number of failures the less time of
experiments. Now let’s analyze the reason. By IMA
set the time of finishing N experiments 1s t-all. Set
t-obser Tx(N-fn) that 1s time injector need to
observe application when injection doesn’t make it

campaigns,
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failure. Set t-fail = MTTF =fn that is whole time needed
to observe application on condition that it fails during
all N experiments. So,

t al=t obser+t fail =Tx(N_fi)+MTTFxfn (5
where, T, N and MTTF are constant, then
dt all/dfn=-T+MTTF (6)

Since, T = MTTF, dt_all/dfn = 0. So, if fn s smaller,
t_all 1s longer.

There are many other distributions that can
generate X(N). Although, we don’t test all of them, by
Eq. 5 and 6 and Fig. 6 and 7 we could conclude that
there always 15 a distribution that makes fn smallest and
t-all longest.

If one kind of distribution generating X(N) can
make more failures than others with same number of
experiments, it will be considered better than others.
This 1s because the more failures make more problems
found. These problems can be used as clues to deploy
fault-tolerant mechanism m order to mmprove the
reliability of application and system. It can be seen that
in Fig. 6 and 7 X-Normal is a better distribution than
others 1 the three campaigns.

CONCLUSION

A fault injection tool MOFT for use in injecting
experiments on Windows platform has been developed.
Using this tool reliability parameters of application were
computed and analyzed. In the course of the
experiments, the different lists X(N)
generated by different random distributions were used
to execute Injecting experiments. By analysis of
experiments result, it proves that there always exists a
better distribution than others to run injecting
experiment by MOFIL.

location
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