http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 9 (4): 609-620, 2010
ISSN 1812-5638
© 2010 Asian Network for Scientific Information

A Semantic-Based Genetic Algorithm for Sub-Ontology Evolution

Yuxin Mao
School of Computer and Information Engineering, Zhejiang Gongshang University,
Xuezheng Street NO. 18, Hangzhou 310018, Zhejiang, Peoples Republic of China

Abstract: When using genetic algorithms to solve optimization problems in semantic-based applications, we

find that these methods cannot interpret semantic relations and hence overlook useful mformation in evolution.
Therefore, genetic algorithms are insufficient to satisfy the requirements in this case. We propose to use formal

semantics of ontology to improve genetic algorithm in several aspects and make it more adaptive to solve
semantic-based problems. In this study, we present a semantic-based genetic algorithm to incorporate domain
knowledge into the algorithm and perform evolution based on the ontology semantics. The advantages of the
algorithm include expressing semantic information in chromosome representation and preserving the
information by applying genetic operators in evolution. We illustrate the usage of the algorithm by applying
it to solve the problem of sub-ontology evolution Owr experiments with a large-scale traditional Chinese
medicine ontology as the benchmark demonstrate the feasibility of the algorithm in solving semantic-based

problems.

Key words: Evolutionary computation, genetic algorithm, ontology, semantics, sub-ontology

INTRODUCTION

Genetic Algorithm (GA) is a kind of efficient
computational approach inspired from evolution theory
and aimed to find optimum solution by searching problem
space randomly. The theoretical foundations of GAs were
first introduced by John Holland in early 1970s (Holland,
1975). Goldberg (1989) defined GAs as search algorithms
based on the mechames of natural selection and natural
genetics. The GAs are used as a tool of optimization and
searching m several brunches of science such as
engineering, medical, business, statistics, signal
processing etc. However, we face some difficulties when
using canonical GAs mentioned above to solve
optimization problems in semantic-based applications,
because of the limitations or disadvantages of GA. In
cancnical GAs, chromosomes are often encoded as linear
strings using binary or non-binary alphabet and genetic
operators are performed based on probability and
position. In the problem space of a semantic-based
application, there are many complex semantic relations.
We find that those methods cannot interpret the semantic
relations in the problem space and hence overlook some
useful mformation i evelution. Therefore, GAs are
msufficient to satisfy the requirements in this case.

On the other hand, ontologies (Gruber, 1993,
Van Heijst et al., 1997) provided a means of representing
complex semantics in a formal and reusable from and play
a critical role in building a large variety of semantic-based
applications. The recent advent of the Semantic Web

609

(Tim et al., 2001) has facilitated the mcorporation of
various large-scale on-line ontologies in different
disciplines and application domains. For example, Unified
Medical Language System (UMLS) (Bodenreider, 2004)
included 975,354 concepts (a concept 1s a basic element
denoting an object in ontology) and 2.6 million concept
names in its ntegrating
biomedical terminology. Gene Ontology (Ashburner ef af .,
2000) included about 17 632 terms, 93.4% with definitions
for gene product. Ontologies are increasingly seen as a
key technology for enabling semantics-driven knowledge
processing (Maedche et af., 2003; O Leary, 1998).
Therefore, we try to use the formal semarntics of
ontology to improve canonical GA in several aspects and
make it more adaptive to semantic-based problems. In this
study, a new semantic-based GA 1s suggested i order to
encode domam knowledge into the canomical GA for
evolution based on semantics. Some advantages of this
algorithm include the ability to express semantic
information in chromosome representation and to
preserve the mformation when applying genetic operators
in evolution. We illustrated the feasible of the semantic-
based genetic algorithm by applying it to solve the
problem of sub-ontology evolution for dynamic ontology

source vocabularies for

reuse.

Since, the emergence of GA, there have been various
improved versions. Janikow (1993) argued that the two
most important characteristics of GAs are robustness and
the domam mdependence of thewr search mechanmism.
However, such an approach has both advantages and

Inform. Technol. J., 9 (4): 609-620, 2010

disadvantages. On the negative side lies the fact that the
quality of the coding is crucial to the performance of GA.
Operating i this space means using problem blind
operators that often overlook some important information
that could be utilized to guide the search. They propose
a method of abstracting GA to the problem level for the
supervised mductive learmng. Imtial results of their study
indicate that GA can be effectively used to process
high-level concepts and incorporate task-specific
knowledge. Settea and Boullart (2000) introduced a
Genetic-based Machine Learming application to achieve
the automatic development of a rule set for an industrial
production process. They argue that the basic
representation scheme for chromosome was a simple
string, which may in practice limit not only the class of
suitable problems, but also the optimizing capabilities in
the problem itself. Therefore, there is need for more
complexity in the encoding structures of genetic
mechanisms to escape from this rigid fixed string
representation scheme. Kim and Cho (2005) argued that
incorporating domain knowledge into evolutionary
computation can improve the performance of evolved
strategies and accelerate the speed of evolution by
reducing the search space. They propose the systematic
incorporation of opening domain knowledge and an
endgame database into the framework of evolutionary
checkers.

Compared with those improvements on GA, the focus
of this study is to incorporate the formal semantics of
ontology into GAs to solve semantic-based problems.
The major difference with other methods 1s that semantics
15 used throughout the process of evolution in GA. We
enhance the major components of canonical GA with
formal domain knowledge.

PRELIMINARIES

In this study, we use Web Ontology Language
(OWL) (McGuimess and Van Harmelen, 2004,
Patel-Schneider et af., 2003) as the ontology language.
Generally, an OWL Ontology (or simply an ontology), O
is a pair <T, A>, where T and A are a T-box and an A-box,
respectively in the Description Logic (DL) (Baader and
Nutt, 2003). In OWL ontology, there 13 no direct
definition about link; however, we can interpret
property restrictions as cross-links between different
classes.

Definition 1: (Triple): Given an ontology O = <T, A> a
triple, t, is represented as <c,, 1, ¢, >, where ¢,, ¢, are
concepts and ¢,, ¢,€T and r denotes either a subsumption
relation or a kind of cross-links.

610

Fig. 1: The graph representation for a sample ontology

Therefore, an OWI, ontology is treated as a set of
semantically related triples. A triple refers to a set of
statements in OWL ontology, abbreviated to <c, 1, ¢;>,
which means that there 1s a relation between ¢, and c,.
Concepts as nodes and relations as arcs, an ontology can
be represented as a graph. Figure 1 shows a sample
ontology in form of graph. The number of arcs in the
graph denotes how many triples there are in the ontology.
Considering the direction of relation, the graph for an
ontology is directed.

Definition 2: Relation path: Given a set of triples T = {t|
t=<a,r, b>1=1,2,..,n} and two triples t, = <a, r,, b>,
t, = <a, 1, b> t.t & T, ifthereexistsm <n-2and
t,.b, = toa, t.b = than, oo, ten b e = tea, then we say
there 1s a relation path from t, to t,.

Definition 3: Connective point: Given two triples t, = <a,
r, b> and t, = <d, s, &>, if eithera = e or b = d holds,
then we say there 1s @ commective point between t
and t,.

A relation path in the ontology graph consists of a
collection of triples, which comnect to each other at
connective points.

One of the most important tasks for ontology is
reasoning. In OWIL, ontology setting, not all entailments
are equally valued. Grau et al. (2006) shown three main
reasoring tasks that ontology-based systems have
traditionally focused on:

» Atomic concept satisfiability determines whether an
atomic concept in the ontology 1s satisfiable

Iform. Teckmal. £, 2 (4): 609620 2010

Classification compates the subsumption partia
ordering of all the domic concepts in the ontol ogy
Instantiation atd retrieval determine whether an
individual iz an instance of an atomic concept and
retrieve all the instances of an atomic concept,
tespectively.

EBesides, we complemert another reasoring task
called indirect relati onship, which determines whether or
fiot there is a relation path between two concepts. For
example, there iz arelation path from I to & aswe caty see
inFig 1, 501 has an indirect rel ati o with A

Definition 4: Question: Given an ortology O = <T, &%, a
guestiony, o, is a trple <0, Q. Q= where O iz an
ontology, O, is { ontal ogy concept ¢}, where W O, and
. ate a conditional string that denctes one of the
reasoring tasks above,

We use cquestion to represent a concrete ortology
reagoritg task.

SEMANTIC-BASED GENETIC AL GORITHM

We identifyy a canonical G4 as these components:
chromosome represertation, fitness evaluation and
genetic operdors. We give semartic-based extension to
each component in the following sub-sections. We
present a semantic-baged genetic algorithen (SemGA) to
enicode dotman knowledge into GA and perform evolution
bagsed on semantics. We show the overall architectire of
SetmGa tlrough Fig 2. Compated with caondcal GA
there iz an additi onal semantic mediator as the mid level
between the components of GA and problems The
SemGa utilizes the semartics of domain ort ol ogy to solwe
settatitic-baged pr oblem s,

Chromosome representation: The first step in the
implementation of aty GA iz to geherate an indtial
population In canohical GA each member of this
popdation is a binary sting of length L, which
cottesponds to the probletn encoding Each string is
sometimes referredto as a genotype (Holland 19757 o, a
chrotmozome (Schaffer, 19287 In most cases the indtial
population is generated randomly. & chromosome is
cothposed of alist of genes.

Cht otn osotmes encodingin A iz to map the problem
space to the parameter space. Possible solutions to the
provlem are represented as clwomosomes by some
encoding methods, We find that there are semartic
relations between soluticnis to a semartic-hased problem.
We might owvetlook this inform ati on if we just use generd
litneat string to represent chromozomes. Therefore, to a

a1l

EEE

= o
Domain /{ntology

| Senantic~based Problers

i

Semant ic-based Genetic Algorithm
Sopantic Mediaror

e =

A

A
a

g

o

3 g

Nepresentati
£
i

fenetic Operators|

Fig 2: The abstract architechwre of the semantic-based
genetic algorittem

setant c-based problem, we use a composite sthacture for
tepreserting chramosotm es, instead of linear string If we
tepresert the undetdying semardics of a problem by a
collecticry of triples, then a scluticn to the problem can
also be described by a collection of triples. Therefore,
triple is used as the atomic component to express
semmatitics of the problem space. We take all possible
solutionis to the problet as the problem space. Export all
triplesin the provletm space as a triple list and each allele
i a chromozome denotes a triple.

There are two possible methods to represent
cht otn o sottes setnatitically

Triple-based hinarvencoding: Export all triplesin the
probletn space as atriple list. Each triple appeating in
a solution will have the allele in the correspotding
chromosome set to 1, or 0 othetwise

Triple-hased non-hinary encoding: & chromosom e
caty be represerted as a pair <E, T>, where E 12 the
cottert of the solution and T = {triple t,}, a semarntic
descriphi o of the solution

We show the two different encoding methods
throuagh the example inFig 3. Asaune there are ondy three
catdidate solubions in the problem space. The
chromosom es generated by the first method are shown in
Fig 3aand the second in Fig 3. Asthere is at most one
role between two concepts, so role names for each triple
ate omittedin Fig 3b If atriple isrepresented as a hitary

Inform. Technol. J., 9 (4): 609-620, 2010

© (a)
(&)
® (B (©
(B) (©
() ()

Cimosons
Chrmosome 2
Chrmosome 3 @
Chrmosome |
Chrmosome 2
Chrmosome3 | AB | AC | CF |

Fig. 3: The results of the two different encoding methods
to the same problem space

character 0 or 1 by the triple-based binary encoding, we
do not know whether or not two chromosomes have
connective points in commeon, so it cannot preserve the
comnectivity of triples when we apply genetic operators
like crossover to chromosomes. In other words, the
method overlooks some mformation in evolution.
Therefore, we adopt the triple-based non-binary encoding
m SemGA. We encode semantic entities including
concepts and roles into chromosomes. A non-binary
alphabet composed of concept names and role names in
the problem space 1s used in chromosome representation.
The length of chromosome is variable.

Fitness evaluation: The fitness evaluation function 1s a
measure of performance for solutions. In order to
determine an evaluation function for SemGA, we should
think of the criteria for measuring whether a solution is
better to the problem. As a chromosome for a solution is
represented as a collection of triples in SemGA, we can
evaluate the fitness value of a chromosome by computing
the value of each triple. Let P be a population with n
chromosomes. Assume the fitness evaluation function for
triple is g(t), then the fitness value of a chromosome, S in
P 15 calculated as follows:

fis)y=g_ B)Zg_(5).i=1,2,..,n (1)

where, g, =Y gt). tisatriplein S, j=1,2, ., m; S;ith
chromosome 1n P

A chromosome with a collection of triples that have
higher values gets a higher chance to swvive in
evolution. The overall fitness value of P 15 calculated as
follows:

£(P) = SRSV, i=1,2....n (2)

Genetic operators: After an initial population is
generated, a GA carries out some genetic operators to
generate offspring based on the 1mitial population. Once
a new generation is created, the genetic process is
performed iteratively until an optimal result is found. We
propose a collection of semantic-based genetic operators
based on the chromosome representation and the fitness
evaluation mentioned-before. Selection, crossover and
mutation are three most important and common operators
in SemGA.

Selection: When we apply the selection operator to a
collection of chromosomes, we will compute the selection
probability of each chromosome and chromosomes with
large fitness values will gain a high chance to be selected
into the next generation. The selection operator is almost
the same as the one in canonical GA besides an additional
comparing operation.

We will compare the semantic similarity between
chromosomes. The semantic similarity is computed based
on their Levenshtein distance (also known as edit
distance) (Levenshtein, 1966). As the length of
chromosome 1s not fixed, we use a relevant Levenshtein
distance instead of the conventional one directly.

Definition 5: Relevant levenshtein distance: Given two
sets S, S, and LD is the Levenshtein distance, then the
relevant Levenshtein distance (RLD for short) between S,
and 3, is computed as follows:

RLD{S,, S,)=LD(S,, S,¥S | or LD (S,, S,)/|S,| (3)

Given two chromosomes S, = <E,, T,>=. 3, =<E,, T,>,
the semantic similarity between S, and S, is equal to
RLID(T,, T,

Assume P 15 a population of chromosomes and
the original selection operator 18 S (P). Then the
semantic-based selection operator is described as follows:
» Compute the selection probability of each

chromosome by its fitness value
¢ Perform S(P) to get the candidate for the next

generation
» Compere the semantic similarity of chromosomes in
P. If the semantic similanty of two chromosomes 1s

Inform. Technol. J., 9 (4): 609-620, 2010

Parent 1 | BA CA | BC |*DC

Paremi2 | FD 4m|
- m| e T[]
oftpring2| cc | oF | on | e [m |

Fig. 4: An example of the crossover operator

larger than a threshold value, only one of them can
be selected into next generation
Get the next generation P'

Crossover: A single-point, triple-based crossover
operator is applied, as shown in Fig. 4. We can apply the
crossover operator to two chromosomes only when they
are semantically related with each other, that 1s, there are
connective points between them. Assume P is a
population of chromosomes and the original crossover
operator 1s C (8, 8), where, S, SeP. Then the semantic-

based crossover operator 13 described as follows:

Randomly select two different chromosomes from P,
for say, S, and 3,

Compare the semantic description of 5, and 3,. Check
whether or not there are connective points between
them

If there exist connective points between S, and S,, it
means that they have some semantic relations.
Therefore, it makes sense that we apply the
crossover operator to the two chromosomes and get
offspring. The crossover operator mampulates two
chromosomes at the connective points where the
triples in both chromosomes can be connected
Perform C (S|, 8,) to get two offspring S,' and S’

The crossover operator can optimize the knowledge
structure of parents. As the crossover operator
manipulates two chromosomes only when there is
comnective point between them, it can optimize the
semantic structire of parent chromosomes and make it
more compact by generating offspring. Therefore, the
overall structure of chromosomes is improved. For
example, the two chromosomes mn Fig. 4 have four
connective points. We can randomly select a connective

613

Triples in BA CA BC nc CG
cache | Fpp | GF | GH | GE | FA
Paent [BA | CA | BC | DC | G |
oftspring| BA | ca | Bc | pc| co | on |

Fig. 5: An example of the mutation operator

point, e.g., D between FD and DC, divide the two parents
into four parts and then mate them to get two offspring.

Mutation: A single-point, triple-based mutation operator
is applied, as shown in Fig. 5. The operator adds one
randomly chosen triple from the problem space to the
chromosome or removes a triple from the chromosome.
Assume P is a population of chromosomes and the
original crossover operator is M (5)), where S € P. Then
the semantic-based mutation operator i1s described as
follows:

Randomly select a chromosome from P, for say, S,
Export all triples mn the problem space as a triple list L,
Compare the semantic description of S, with L, Check
whether or not there are connective points between
them

Randomly select a triple from L, and add the triple to
3,; or randomly remove a triple from 3,. If we want to
add a triple to S, we should check whether there is a
connective point between the new-coming triple and
the triples already in S,

Perform M(3,) to get an offspring 3/’

The mutation operator enhances the chance for the
evolution to jump out sub-optimization. Moreover, as the
operator appends triple to a chromosome with some
probability, it also enhances the chance for the
chromosome to be connected with other chromosomes in
the problem space. For example, to the chromosome in
Fig. 5, we can randomly select a triple, GH from the triple
list of the problem space and add it to the chromosome at
a connective point, G to get an offspring.

SUB-ONTOLOGY FOR ONTOLOGY REUSE
A large-scale ontology like Gene Ontology contains

relatively complete knowledge about the domam (e.g.,
gene product) it focuses on. The activities of many

Inform. Technol. J., 9 (4): 609-620, 2010

semantic-based applications rely only on localized
information or knowledge (Ghidini and Giunchiglia, 2001).
For example, a TCM ontology contains domain knowledge
about TCM. If we want to build a semantic-based website
about herbal medicine, we can extract a portion of
knowledge about herbal medicine from the TCM
ontology. All applications in that website are then
umnplemented based on the portion of ontology, mstead of
accessing the complete TCM ontology. Our conjecture is
that the activities of a specialized semantic-based
application need only some specific aspects of a complete
ontology. Small and context-specific portions of cntology
are often needed in semantic-based applications
especially those with limited capacity like embedded
systems or mobile agents. This calls for the ability to
extract from a large-scale ontology some context-specific
portions and to allow them to evolve to achieve
specialization. We represent and identify context-specific
sub-ontologies (Mao et al, 2005) from the whole
ontology and allow them to evolve according to past
experience for gaining optimality.

Sub-ontology definition: In the following, we give a formal
defimtion of sub-ontology to facilitate the discussion in
the sequel.

Definition 6: (Sub-ontology): Given an ontology O = <T,
A>_asub-ontology (SubO for short), B, 1s a tuple <B,, B,
B., O> where, B.c T, B,c A and C are {ontology concept
¢}, where, Y¢,cB,. V¢, and ¢;€B,, are is a path from ¢, to ¢
mB.

The concept set B, denotes the context of a SubO
and <B, B.> denoctes the local knowledge-base of the
SubO. Given B,, one can derive the knowledge-base of the
SubO by searching the ontology O for the concepts in B,
For example, to the sample ontology O m Fig. 1 and a
concept set B, = {B, A}, we can get the SubO in Fig. 6a.
The SubQ represents a indirect relation between the
concept B and A.

Our definition of SubO is similar to the microtheory
(Blair et al., 1992) in Cyc (Lenat, 1995). However, the
difference is that microtheories in Cyc are static and
mvariant division of knowledge base, while SubOs can be
extracted dynamically from source ontology and evolve in
the process of semantic-based activities like reasoning
(we will discuss the SubO evolution later). The evolution
itself will not produce new knowledge, but it will improve
the local knowledge structure of semantic-based systems,
which can reuse SubOs in dynamic and adaptive way.
Compared, with SubO, domain ontology can be treated
as static and invariant resource to semantic-driven
systems. Changes of domain ontology require owner

614

(8)
®-o0-9

@ ©)

Fig. 6: Several SubOs from the sample ontology

privilege and domain experts intervention, so it 1s
unpractical to let high-level systems directly modify and
update source ontologies. However, different systems can
have their local repositories of semantics from domain
ontologies in terms of local and dynamic SubOs.

Ontology cache: As mentioned before, the context
specific portions of ontology are represented as SubOs
for semantic-based systems. Therefore, we can construct
an omtology cache, which draws mnspiration from the
memory caching mechanism, to support SubO reuse. First
emerging from data processing, caches work well because
of a principle known as locality of reference. An ontology
cache refers to a local repository for retrieved portions of
ontology (in terms of SubOs) for future reuse. When a
semantic-based system lacks the knowledge to perform
reasoning tasks, it has to access ontologies. If the system
extracts the required SubOs and keeps the most active
ones in an ontology cache, the overall performance for
reasoning is then optimized.

The domain knowledge mvolved m SubOs 1s reused
to support reasoming tasks like a question We try to
answer questions by searching knowledge among a
collection of SubOs in an ontology cache. For example,
there is a question Q = <{H, B}, classification, O, where,
O, refers to the sample ontology 1 Fig. 1. The meamng of
Q is to check the subsumption between H and B. Assume
there are three SubOs in an ontology cache (Fig. 6a-c).
Then we find out SubO (b) m the cache and give a
positive answer according to the semantics of SubO (b).
When a collection of questions come, an ontology cache
will try to answer each request by searching and reusing
existing SubOs. If it can retrieve a SubO to answer the
question, we say it 1s a cache Int, otherwise, a miss. If a
cache miss occurs, the cache will try to extract SubOs
from the source ontology. A newly-extracted SubO will be
placed mto the cache if the cache 1s not full; otherwise,
the cache will try to replace the existing SubOs with the
new one.

When a SubO is used to answer a question, not all
parts in the SubO are equally used. When a triple 1s used
as a part of proof for answering the question, it gets an

Inform. Technol. J., 9 (4): 609-620, 2010

— 7 a
¢ \ i ~\ DAL
0.5 6.0 1 3.0 ;I ’
i \ /51 6.0
@ S01 o Sub02 © Buw03

Fig. 7: Optimizing SubOs mn ontology cache

incremental value. Therefore, different triples in a SubO
will gain different values. We define every m (m=1)
questions as a section. The cache value of a triple 1s
updated every section. The initial value (section 0) of a
triple is zero. The cache value of a triple, t is computed as
follows:

0 ifn =0, 4
cvﬂ(t =) 4
Acv, (t) + h-ev,, (t) otherwise
Where:
n = No. of section
A = Expired rate of the cache value t got in the last

section
Acv,(t) = Hit number of t during section n

Equation 4 takes mto account both the past
experience and recent performance for each triple. Then
the cache value for a SubQ, B, in section k 15 as follows:

cv, (B)=Scvk(t,)/n,i=1,2,...n (5
where, 1 15 the number of triples n B.

As the size of SubO is not fixed and there exists
redundancy amoeng SubOs, a SubO with a lugh value do
not stand for a good SubO 1n an ontology cache. For
example, there are two SubOs in an ontology cache in
Fig. 7a-c. The cache value for SubQ, is (6.04+0.5)/2 = 3.25
and the cache value for SubO,is (3.0+1.5+0.5)/3 =1.67. Tt
seems that SubO, 13 a good SubO 1n the ontology cache.
However, if we connect SubO, and SubO, at F and trim
some triples with low cache value (less than 1.0), we can
get a new SubO (Fig. 7¢), the cache value of which is
(3.0+1.5+6.0)/3 = 3.5. Therefore, we get a optimized SubO
by comnecting and trimming (a more complete evolution
approach is discussed later). Therefore, we should go
beyond using traditional cache replacement policy, in
order to improve the performance of ontology cache. We
must optimize the overall structure of SubOs 11 ontology
cache. Such optimization can be achieved by some
evolutionary computation algorithms like GA.

Therefore, the problem for SubO reuse m ontology
cache can be summarized as follows:

615

How to search knowledge contents in an ontology
cache?

How to optimize the knowledge structure of SubOs 1n
ontology cache for better performance?

APPLY SEMGA TO SUB-ONTOLOGY EVOLUTION

The term Ontology Evolution in the area of ontology
engineering is treated as a part of the ontology versioning
mechanism (Klein and Fensel, 2001; Noy and Klein, 2004),
which refers to access to data through different versions
of an ontology. To contrast with ontology evolution, our
concern of Sub-Ontology Evolution is inclined to evolve
highly dynamic update of the SubOs in the local
repository (ontology cache) of semantic-based system.
We here adopt SemGA proposed earlier to solve the
problem of structure optimization to support SubO
caching.

Chromosome representation and fitness evaluation: We
take the SubOs m ontology cache as the problem space.
A SubO in ontology cache 1s represented a chromosome
by the triple-based non-binary encoding in SemGA. We
define two operators based on the
representation for SubOs:

chromosome

Encode: Given a SubO B = <B_ B, B., O>, the encode
operator proceeds as follows:

» Convert B, mto a set of triples T
Group <B,, B,, O> mto a triple E
Retun a chromosome S = <E, T>

Decode: Given a chromosome S = <E, T, where, E = <B,,
B,, O=, the decode operator proceeds as follows:

s Convert T into an ontology T-box B,
s RetunaSubO B=<B,B, B, 0>

The fitness function is a measure of performance for
SubOs. In order to evaluate the fitness of chromosomes
in evolution, we should think of the criteria for measuring
whether a SubO 1s better to ontology reuse or not. The
major objective of SubO evolution 1s to improve the cache
performance. Therefore, the fitness function i our
evolution appreach mainly evaluates the fitness of a
chromosome by the cache value of the corresponding
SubO. A chromosome that has a higher cache value gets
a higher chance to survive in evolution. Let P be a
population with n chromosomes. We use Eq. 4 as the
function g (t) in Egq. 1. Then the fitriess value of a
chromosome, S in P 1s calculated as follows:

Inform. Technol. J., 9 (4): 609-620, 2010

0 ifB is disconnected, 5
S)=) _ (6)
cv(B)/Ecv(B‘), i=1,2, .., n otherwise
Where:
B = Corresponding SubO for 3
B, = Corresponding SubO for the ith chromosome mn P

According to definition 6, the concepts in a SubO
should be connected. However, we may get disconnected
SubO m evoelution. In order to suppress the emergence of
disconnected SubOs, we just give them a value of zero
(fitness value should be non-negative). Tt makes sense
that a connected SubO contains more information than
discomnected one and thus should be preserved in
evolution. For example, to the three SubOs in Fig. 6, SubO
() has 5 triples, SubO (a) has 2 triples and SubO (b) has
3 triples. SubO (c) 18 as a combmation of SubO (a) and
SubO (b). There are 2 relation paths in SubO (a) and 5 in
SubO (b). However, there are 12 paths in SubO (¢). If one
relation path is corresponding to a question, SubO (c) can
answer more questions than SubO (a) plus SubO (b)
together.

Genetic operators: SemGA operators are triple-based
operations to optimize the semantic structure of SubOs in
ontology cache. We mmplement the genetic operators of
SemGA based on the SubO operators.

Selection: The selection operator uses the roulette wheel
method, in which the selection probability of chromosome
is defined below:
P =f'(8,¥fsum,i=1,2, ..,n (7)
Where:
n =No. of chromosomes in the population
'(S) =f (S)f.x
f(S,) = Fitness value of chromosome S,
fome = Max (£{S)
fw =XF(S).7=1,2,...n
The procedure of selection is as follows:
Step 1: Compute the selection probability P; for
chromosome 1
Compute cumulative probability CP,=YP_ i=1,
2,..,T
Step 3: Letk=1
Step 4: Generate a random number, 1), uniformly
distributed from the range 0.0to 1.0.Tf CP,, <m <
CP,, select chromosome 1 as one of the elements
1n the next generation

Step 2:

E

616

Step 5: Setk=k+1
Step 6: If k = N (size of population), terminate; otherwise
gotostep 4

Crossover: Assume the population size is N and the
crossover rate 1s P, The crossover operation is as follows:

Step 1: Letk=1

Step 2: Randomly select two different chromosomes from
the population. Randomly select a connective
point between the chromosomes and divide each
chromosomes into two set of triples at the pomt,
one with the average cache value no less than
the cache value of the whole SubQ, the other
with the average cache value less than the cache
value of the whole SubO. Jom the two parts with
higher value from the two chromosomes together
and the other parts together

Setk=k+2

If k 18 larger than N« P, stop; otherwise repeat
step 2

Step 3:
Step 4:

The crossover operator can optimize the structure of
parent SubOs and make it more compact. More 1mportant,
the operator results in a better offspring and a worse
offspring compared with the parents. The better offspring
with high value will swrvive, while the other one will die.
Therefore, the overall structure of ontology cache i1s
improved.

Mutation: Assume the population size is N and the
mutation rate 1s P_. The mutation operation is as follows:

Step 1: Export all SubOs in the ontology cache as a
triple list L,

Step2: Letk=1

Step 3: Select a chromosome from the population and
generate a random integer, n, with a umform
distribution of (0, 1/P,). If n equals to 0, a
mutation 15 conducted to the chromosome.
Randomly select a triple from T, with high cache
value and append it to the chromosome; or
remove a triple with low cache value from the
chromosome

Step4: Setk=k+1

Step 5: If k 13 larger than N, stop, otherwise repeat
step 3

Evolution procedure: We use SemGA to achieve SubO
evolution based on the chromosome representation,
fitness evaluation function as well as genetic operators
before-mentioned. The evolution procedure 1s shown as
follows:

Inform. Technol. J., 9 (4): 609-620, 2010

Step 1: Extract SubOs from the
according to some questions
Start evolution if the volume of the SubOs in the
cache exceeds a predetermined level 1.e., about
9% of the cache space is occupied by SubOs
Encode the SubOs in the cache as an initial
population of chromosomes

After an initial population 1s generated, evolve
the population based on SemGA. The genetic
process 1s performed iteratively until an optimal
result is found

Carry out some genetic operators to generate
offspring based on the initial population

Once a new generation is created, compare the
chromosomes in the population and merge ones
with high similarity

Evaluate the fitness values of the chromosomes
in the population. Terminate if the overall fitness
is higher a threshold value; otherwise, go to step
5

Decode the chromosomes in the result
population to a set of SubOs and replace them
with the original ones in the cache

source ontology

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

We can improve the performance of the SubO
caching by using SemGA. The local knowledge structure
of the ontology cache becomes more adaptive to
answerlng questions via evolution.

EMPIRICAL RESULTS

Here, we examine the performance of SemGA by
using a large-scale TCM ontology (Zhou et al., 2004). As
the ontology is very large in scale, we only select several
parts (Traditional Chinese Drug, Acupuncture, etc.) from
the TCM ontology as the data-set for the experiment.
There are about 3000 concepts in the selected ontology
subset.

Experiment design: An important issue that impacts the
performance of cache 1s the cache replacement policy.
Such policies always apply a value function to each of the
cached items and choose the items with the lowest values
as victims. Therefore, we want to compare the SemGA
approach with three traditional cache replacement
policies: Random, FTFO and LRU. The experiment setting
and major parameters are shown m Table 1. We have
unplemented four sumple agents, each with an ontology
cache and a cache replacement policy. With each agent,
we perform the following procedure:

Step 1: Warm up the ontology cache by extracting
SubOs from the source ontology according to
some questions

Table 1: The experiment setting and major parameters

Parameters Value
Size of the question set (N) 200.00
Size of question section (N;) 20.00
Expired rate of the cache value (A) 0.50
Cache space (N,) 50.00
Depth of SubO extraction (d) 8.00
Evolution level (L,) 0.90
Size of the population (N,) 50.00
Crossover rate (P,) 0.10
Mutation rate (P,)) 0.01

Step 2: Generate a collection of questions based on the
TCM ontology

Step 3: Submit the questions to the agent section by
section. Questions are selected randomly. The
agent answers gquestions by reusing existing
SubOs in its ontology cache

Step 4: For the agent with the SemGA policy, check the
free space of its ontology cache. Perform
evolution 1if the cache 1s nearly full For other
ontology caches, just skip tlus step

The process of evolution 1s performed between the
intervals of questions. This 1s to some extent similar with
the behavior of prefetch, so we do not take mto account
the time of evolution when computing the cost of cache
response.

» For each agent, calculate the average response time
and hit-ratio of its ontology cache every section

Compare cache performance: The primary metrics used to
evaluate the performance of an ontology cache are
hit-ratio and response time. A cache with higher hut-ratio
and less response time 13 better.

The response time for ontology cache 1s as follows:

_ { T, T T ifarequest hits, (8)
FEE | Togaty + Tonwer Otherwise.

Where:

Tienay = Temration 7 Taore

Tewn = Time to search and retrieve a SubO from the
ontology cache

Tawe = Time to answer a question by reusing a SubOQ

T ietion = 11me to extract a SubO from the sowrce
ontology

T = Time to store a SubQ into the ontology cache

As the TCM ontology is stored in a relational
database as a Tena (McBride, 2002) model and ontology
cache is implemented in memory in this experiment,
T o™ Towwn and Ty > T Therefore, we can
ignore T, and T,.... when computing response time.
The results presented here are a small, but representative
set of the experiments we have run.

Inform. Technol. J., 9 (4): 609-620, 2010

—&— Rand
- FIFO
=i— LRU
0.4 3~ SemGA
g 0.3
= 0.24
0.1
0.c T L] T 1
50 100 150 200
No. of questions
Fig. 8: Hit-ratios for four cache policies
The hit ratio for ontology cache is as follows:
H, = N /AN (9)

Where:
N = Number of reusing existing SubOs in the cache
AN = Section of questions answered within a time span

Figure 8 shows the average hit-ratios for the four
agents with different cache policies. The x-axis of the
figure denotes the number of questions submitted to an
ontology cache. Tt can be seen that four policies provide
different performance across the range of questions. From
the Fig. 8, we can see that SemGA does the best followed
by LRU, FIFO and then Random. In the beginning, there
is enough free space for SubOs in the SemGA cache, thus
far from performing evolution. Therefore, the performance
of the SemGA cache is fairly close to the LRU cache. After
answering a batch of questions, the volume of the SubOs
in the cache exceeds L., and the SemGA cache starts to
evolve the SubOs. When evolution occurs (at the point of
60 questions), the performance of the ontology cache will
be improved a lot. After several generations of evolution,
the SemGA cache performs much better than the LRU
cache. Figure 9 shows the average response time for the
four agents with different cache policies. As response
time is directly related with hit-ratio, the result in Fig. 9 is
similar with that in Fig. 8 and the SemGA cache performs
best in terms of response time. Generally speaking, the
average response time for the SemGA cache 15 decreased
by evolution.

Analyze fitness value: We now investigate the fitness
values of chromosomes i evolution. To the SemGA
cache, we record the fitness values of the chromosomes
in every generation. Figure 10 shows a plot of the fitness

618

2004

180

1601

Response time

—A— Rand
- FIFO
—d— LRU

-
1200 SemGA T

50

1401

100 150 200

No. of questions

Fig. 9: Response time for four cache policies

0.259 Fitness value

0.20+

0.15+

Fitness value

0.10+

»

0.05+

L3 1]

ot e e

0.00

-
oo

Generation

Fig. 10: The fitness value of the chromosomes in

evolution

values for the chromosomes after each generation of
evolution, which is used to evaluate the overall fitness of
the population.

As can be seen in the Fig. 10, the fitness values of
chromosomes are polarized to the two ends after several
generations of evolution, a few of chromosomes with high
values and a number of chromosomes with zero value. It
is mainly because the crossover operator can generate a
better offspring and a worse offspring compared with the
parents. Although, the chromosomes with zero value
increase, the chromosomes with high value also increase
via evolution. As the chromosomes with zero value
cannot pass the selection, the total number of
chromosomes 1s reduced via evolution. The evolution
produces a collection of chromosomes with high fitness
values. Tt means the knowledge in the cache clusters into
more compact and useful SubOs. Therefore, we get a new
set of the SubOs with optimized knowledge structure and
high cache values in the ontology cache.

Inform. Technol. J., 9 (4): 609-620, 2010

0.5 caa

-~ SemGA

0.4+

0.34

Hit ratio

0.2+

Q.14

0.0

100 150 200

No. of questions

Fig. 11: The hit ratios of CGA and SemGA
200+

180+

160+

Response time

140

-4~ CGA
==~ SemGA
120 T

0 50

|] 1
100 150 200

No. of questions

Fig. 12: The response time of CGA and SemGA

Besides, we find that the fitness values of the
chromosomes become almost invariant after about
5 generations. The fitness values converge at the value of
0.16. It means the chromosomes have reached a stable
states via evolution.

Compare with canonical GA: We also compare the
performance of SemGA with canonical GA. We implement
a canonical GA with the triple-based binary encoding and
the genetic operators based on position and probability.
As canonical GAs cannot enswre the connectivity of
triples when applying genetic operators, we modify the

fitness function for the canonical GA used in the
experiment.

f(8)=cv(B)Zcv(B,),1=1,2....n (10)
Where:

B = Corresponding SubO for 3
B, = Corresponding SubO for the ith chromosome in P

619

Compared with Eq. 6, it means we allow disconnected
SubO 1n the canonical GA, which will not always get a
value of zero m evolution.

We compare the performance of SemGA and
canonical GA by following the same procedure for
comparing SemGA with cache replacement policies. The
results are shown in Fig. 11 and 12. As we can see,
SemGA performs better than canonical GA in both
response time and hit ratio to the problem of SubO
evolution.

CONCLUSIONS

We present a semantic-based genetic algorithm called
SemGA to incorporate domain knowledge mto GA and
perform evolution based on semantics. We identify a
these components:
representation, fitness evaluation and genetic operators

canomcal GA as chromosome
and give semantic-based extension to each component.
SemGA utilizes the formal semantics of domain ontology
to solve semantic-based problems. We propose the
concept of sub-ontology to represent context-specific
portions from the whole ontology and reuse them in a
cache-like repository. We identify the factor that impacts
the performance of ontology cache is knowledge structure
of SubOs. Therefore we propose to apply SemGA for
SubO evolution to optimize the knowledge structure of
ontology cache. We have designed a simulation
experiment to evaluate the proposed approach with a
large-scale TCM ontology.

There 1s still much room for improvement on the
proposed algorithm. Future research issues include (1)
improve the algorithm to get better speed and
performance, (2) evaluate the algonthm with more complex
and large-scale domain ontologies and (3) extend the
evolution approach to a multi-agent environment and
study the knowledge distribution in such an environment.

ACKNOWLEDGMENTS

The study was partially supported by a Science and
Technology Department of Zhejiang Province Program
(NO. 2008C33G1770004) and a Science and Technology
Program of ZIGSU (NO. 1130X71200920).

REFERENCES

Ashburner, M., C.A. Ball, . A. Blake, D. Botstein and
D. Butler et al., 2000. Gene Ontology: tool for the
unification of biology: The gene ontology
consortium. Nat. Genet., 25: 25-29.

Inform. Technol. J., 9 (4): 609-620, 2010

Baader, A.F. and W. Nutt, 2003. Basic Description Logics.
In: The Description Logic Handbook: Theory,
Implementation and Applications, Baader F.,
D. Calvanese D. McGuinness, D. Nardi and
P. Patel-Schneider (Eds.). University Press, New York,
ISBN: 0521781760,

Blair, P, R.V. Guha and W. Pratt, 1992. Microtheories: An
ontological engineer’s guide. Techmcal Report
Cyc-050-92.

Bodenreider, O., 2004. Unified medical language system
(umls): Integrating biomedical terminology. Nucleic
Acids Res., 32: D267-D270.

Ghidini, C. and F. Giunchiglia, 2001. Local models
semantics, or con-textual reasoning locality+
compatibility. Artificial Intell., 127: 221-259.

Goldberg, D., 1989. Genetic Algorithms in Optimization,
Search and Machine Learning. Addison Wesley,
Londoen, ISBN: 0201157675.

Grau, B.C., B. Parsia and E. Sirin, 2006. Modularity and
web ontologies. Proceeding of the International
Conference on the Principles of Knowledge
Representation and Reasoning, (CPKPR'06), AAAT
Press, pp: 198-209.

Gruber, T.R., 1993. A translation approach to portable
ontology specifications. Knowledge Acquisit.,
5:199-220.

Holland, T.H., 1975. Adaptation in Natural and Artificial
Systems. 1st Edn., University of Micligan Press,
Ann Arbor, Michigan, ISBN: 0472084607.

Tanikow, C.Z., 1993, A knowledge-intensive genetic
algorithm for supervised learming. Machine Learn,
13:189-228.

Kim, K.J. and S.B. Cho, 2005. Systematically incorporating
domain-specific knowledge mto evolutionary
speciated checkers players. IEEE Trans. Evolutionary
Comput., 9: 615-627.

Klein, M. and D. Fensel, 2001. Ontology versioning for
the semantic web. Proceedings of the International
Semantic Web Working Symposium, (ISWWS'01),
Stanford Umversity, CA, USA., pp: 483-493.

Lenat, D.B., 1995 Cyc: A large-scale investment in
knowledge infrastructure. Commun. ACM, 38: 33-38.

Levenshtein, V., 1966. Binary codes capable of correcting
deletions, insertions and reversals. Soviet Physics
Doklady, 10: 707-707.

620

Maedche, A., B. Motik, L. Stojanovic, R. Studer and
R. Volz, 2003. Ontologies for enterprise knowledge
management. IEEE Intell. Syst., 18: 26-33.

Mao, Y., WK. Cheung, Z. Wuand J. Liu, 2005. Dynamic
sub-ontology evolution for collaborative problem-
solving. Proc. AAAL Fall Symposium FS-05-01,
pp: 1-8. http://www aaai.org/Papers/Symposia/Fall/
2005/FS3-05-01/F3505-01-001.pdf.

McBride, B., 2002. Jena: A semantic Web toolkit. TEEE Int.
Comput., 6: 55-59.

McGummness, D.L. and F. van Harmelen, 2004. OWL web
ontology language overview. W3C Recommendation.
http://www.w3.0rg/TR/2004/REC-owl-features-
20040210,

Noy, N.F. and M. Klem, 2004. Ontology evolution: Not
the same as schema evolution. Knowledge Inform.
Syst., 6: 428-440.

O’Leary, D., 1998. Using AT in knowledge management:
Knowledge bases and ontologies. IEEE Intell. Syst,
13: 34-39,

Patel-Schneider, P.F., P. Hayes and 1. Horrocks, 2003.
Web Ontology Language (OWL) abstract syntax and
semantics. Technical Report, W3C.
http:/~Awww . w3.org/TR/owl-semantics/.

Schaffer, 1.DD., 1987. Some Effects of Selection Procedures
on Hyperplane Sampling by Genetic Algorithms. In:
Genetic Algorithms and Sinulated Annealing,
Davis, L. (Ed.). Pitman Publishing Ltd., London,
ISBN: 1-4020-7263-5.

Settea, 3. and I.. Boullart, 2000.. An implementation of
genetic algorithms for rule based machine learming.
Eng. Appl. Artificial Intell., 13: 381-390.

Tim, B.L., I. Hendler and ©. Lassila, 2001. The semantic
web. Scientific Am., 284 34-43.

Van Heijst, G., A.T. Schreiber and B.J. Wielinga, 1997.
Using explicit ontologies in KBS development. Int.
I. Human Comput. Stud., 46: 183-292.

Zhou, X, 7. Wu, A. Yin, L. Wu, W. Fan and R. Zhang,
2004. Ontology development for umfied traditional
Chinese medical language system. J. Artificial Intell.
Med., 32: 15-27.

	ITJ.pdf
	Page 1

