http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 9 (1): 67-78, 2010
ISSN 1812-5638
© 2010 Asian Network for Scientific Information

Querying Ontology using Keywords and Quantitative Restriction Phrases

'N. Hasany, 'A.B. Jantan, "M.H.B. Selamat and '"M.I. Saripan
'‘Department of Computer and Communications System Engineering,
Faculty of Engineering, University Putra Malaysia, Malaysia
‘Department of Computer Science and Information Technology, University Putra Malaysia, Malaysia

Abstract: Many approaches for converting keyword queries to formal query languages are presented for natural
language interfaces to ontologies. Some approaches present fixed formal query templates, so they lack in
providing support with increasing number of words in the user query. Other approaches work on constructing
and manipulating subgraphs from RDF graphs so their processing is complex with respect to time and space.
Techniques are presented to perform operations by obtaining a reduced RDF graph but they limit the input to
some type of resources so their complete complexity with all type of input resources is unknown. For formal
query generation, we present a variable query template whose computation is facilitated by less complex and
distributed EDF property and relation graphs. A prototype QuriOnto 1s developed to evaluate our design. The
user can query QuriOnto with any number of words and resource types. Also, to the best of our knowledge,
it 1s the first system that can handle guantitative restrictions with keyword queries. As QuriOnto has no support
for semantic similarity at this time except for rdfs labels so its recall is low but high precision shows that the

approach is promising for the generation of corresponding formal queries.

Key words: Natural language interfaces, ontology, keyword search, SPARQL, query, semantic weh

INTRODUCTION

Many systems providing natural language interfaces
to ontologies have been presented, based on either
syntactic (Kaufmann er af., 2006; Mithun er al., 2007,
Wang et al., 2007) or keyword or unrestricted input
(Let et al., 2006; Kaufmann ef al., 2007; Tran et al., 2007;
Damljanovic er al., 2008; Tablan er al., 2008; Wang et al.,
2008; Ramachandran and Krshnamurthi, 2009,
However, search engine users feel more comfortable with
keyword input because it did not restrict users to follow
erammatical rules hence require less time and effort in
formulating a query. From the systems mentioned earlier,
it can easily be observed that the latest trained is towards
keyword or unrestricted input approach.

We discuss here the two major differences for
keyvword search interface for web pages and for
ontologies. The first difference lies in the expectation of
the output or result generated by the interface. The
search engine for web pages return the links to pages and
documents containing the user words based on some
ranking criteria. However, posting a keyword query to a
search interface for ontology, the user expects the specific
and precise result to be returned.

The second difference 15 in the processing
mechanism for the user query. For finding the terms in a

web page, the general information retrieval technigues are
applied to count the occurrences of the word or their
synonvms. But, as ontology posses a formal structure
with well-defined concepts and relations related to a
domain, the keywords query needs an understanding
to be explored for the supplied user terms. This
interpretation is then needed to be converted in a formal
query language e.g., SPARQL (Prud and Seaborne, 2006)
to access the facts from the ontology. This difference in
processing a user request for HTML search and for
ontology is shown in Fig. 1. The transformation logic
mentioned is responsible for the two issues of processing
the user query i.e., to provide the possible interpretation
for the wuser query and to deal with the issues for
converting it into the formal query language for the
retrieval of facts from the ontology. Present system
QuriOnto discusses the mechanism for this transformation
logic with both aspects.

On one side. QuriOnto provides the user to get to the
specific information on the privilege of writing natural
language keyword queries and on the other side, the
domain independent architecture of QuriOnto verifies its
portability to any domain. QuriOnto uses variable
template to support any number of resources from the
user query. Its processing is based on two simple
property graphs. With the combination of property

Corresponding Author: Noman Hasany, Department of Computer and Communications System Engineering,

Faculty of Engineering, University Putra Malaysia, Malaysia

Inform. Technol. 1., 9(1): 67-78, 2010

Ontology search |

Transformation
logic

ML interface
Search engine
HTML search |
i"
Cieneral 1R
] e
~ Tl b

Ranked web pages

\ Ranked results

Fig. 1: Overview of an ontology search supported search engine

graphs and variable template. QuriOnto supports better
coverage for SPARQL, as to the best of our knowledge:
QuriOnto 1s the first system that handles guantifier
restrictions with keyword queries.

THE PROBLEM MODEL

Before discussing the actual problem, we discuss the
ontology model O,, on which we apply the user query
elements. For our problem model. we define the ontology
maodel O, as:

DH . "':: {:_l.i+ IH" P[}-h"‘ PD&"‘ T.\..]_.:.;. Siln.. SF‘::}

Where:

C, = 5Setofclasses

I, = Setofindividuals

PO, = Setofl object properties that maps C, to C, where
C.CeCy

T, = Setof literal datatypes

PD, = Set of datatype properties that maps C, to T,

where C,e C, T, e T,
Ly = Set of literal strings used in the ontology as
values of T,, where T, e T,
Set of statements, where each statement 1s a
triple of type:

Lo
=
i

<C,.L>xPO.x<C,L>

68

where, S, is the set of statements of, where each
statement 1s a triple of type:

<Coli>xPD;x<L;>

where, Oy, is the ontological resource model contains the
elements that can be distinguished using URIs, hence:

Oy < Cy. I, PDy. PO, >

The elements of Oy defines the formal vocabulary of
the ontology.

Generally, the problem can be viewed as converting
a natural language query Nq to all possible formal ranked
queries, Fq,...Fq,. This implies a two step mapping:

f;: Nq - Pq;...Pq,
f.: Pg, - Fg, | null

where, f, provides a mapping of user words to formal
ontology vocabulary Oy, The collection of all mapped
terms with their ontological category is a pattern Pg. f,
applies rules to interpret the combination in Pq, and to
obtain a formal query Fq, representative of Nq.

THE QURIONTO

QuriOnto takes the user input as free-form natural
language keywords, maps it o ontological resources,

Inform. Technol. J., 9(1): 67-78, 2010

Llser query

Quantifier restrictions processing

L

Shallow lingLustic processing

Il

Query terms to resource mapping

=

Query pallern processing

SPAROQL generation

1L

SPAROL query

Fig. 2: Phases of QuriOnto

provides an interpretation to it and compute candidates
for the elements of the variable template for construction
of the SPARQL query which 15 then presented to Jena
access layer for execution to access the facts from the
selected ontology,

QuriOnto undergoes five processing steps (o achieve
the target query, which are termed as shallow linguistic
processing or preprocessing, filter expression processing,
resource matching, pattern identification and processing
and formal query generation.

The steps mentioned in Fig. 2 are repeated for each
user query for the ontology. But the preprocessing is
performed once when an ontology is selected for
querying.

Preprocessing: The preprocessing of QuriOnto involves
a list of ontological resources and two matrices
representing graphs. List of ontological resources iLe.,
classes, individuals, object property and datatype
property are maintained separately to facilitate the
matching in the mapping process. A matrix representation
of the object property triples with each domain and range
extended to the subclasses also i1s defined to determine
the relation between classes. We term that a PO-C-C
graph. Another matrix that we call a C-PD graph is
maintained to store datatype properties along with classes
on which they are defined.

Quantitative restrictions processing: This phase of
QuriOnto is responsible for dealing with the quantifier
restriction phrases. We consider 19 modifiers shown in
Table 1 and two heuristic cases discussed below as
quantifier phrases.

Table 1; Quantitative Restriction phrases for QuriOnto and equivalent

operators
Modifier phrases Relational operator
Less than/below <

Less than or equalfequal to or less thanfequal <
or less than'below or equalfequal or below

Gireater than/above/more than =
Greater than or equalfequal or greater than/above
or equalfequal or above/more than or equal

tofat leastfat least

Equal tofexactly =

[

The syntactic input based ONLI+ (Mithun er al.,
2007y has considered only 10 modifiers without any
heuristics. Besides some new modifiers for QurOnto we
also consider some options which are usually uncommon
in written or spoken english but can occur while writing in
a sequence without going back to correct the form due to
the confidence on keyword interface. For example,
observe the phrase “above or equal”, however the
commonly used form is “equal or above™. This increased
list makes an option to tolerate up to some extent the
ungrammatical input regarding the modifier phrases.

The phrases listed in Table 1 are replaced directly by
the corresponding relational operators in the query and
the tag is changed to FO i.e., filter operator to exclude it
from any tagging or morphological processing. In addition
to these modifiers, the two rules are histed below that can
yield to filter expressions also.

Rule 1: when quantifier restriction is not a single value
but a range specified using terms “between”, “in the
range of” or simply the word range. Such cases need an
intermediate step before operator conversion. As the user
is free to formulate the query by providing the larger value
first, range values are needed to be checked. Consider the
queries, “salary between 10000 wo 200007 or “salary in the
range of 20000 to 100007 then these values are parsed and
converted to float to determine the lesser and greater
values. This expression 15 then converted nto the
following filter expression:

i 7salary = lesser_value & & 7Tsalary =greater_value)

Rule 2: If the user specifies a value besides a datatype
property with or without a proposition has two
possibilities:

= It can be a value of a datatype property, for example
in phrases like “students with GPa 3" or “students
with 3 GPa"” or “students with GPa of 3"

« It can be a part of an ontological resource name, for
example in our extended university ontology we have

Inform. Technol. J., 9(1): 67-78, 2010

instances like ‘Batch2006." “Semester_17 etc. But it is
difficult to come up with a final decision in this phase
as ontological resources are not explored. S0, two
interpretations are marked and carried forward to the
next phase. If the concatenation of the numerical
value with the adjacent term corresponds to an
individual or class, the second interpretation is
discarded, otherwise the equal to operator
interpretation is carried forward

Shallow linguistic processing: The shallow linguistic
processing phase helps QuriOnto in two ways. First, 1t
removes stop words and noisy words from the query.
Second, 1t makes the remaining query words capable for
the processing in mapping phase discussed next.

Stop words like ‘a’, "an” and ‘the’ are first removed
from the query. Noisy words or phrases are those which
have no positive impact from the target query point of
view but rather have a drastic negative impact.
These words will be propagated to the later phases and
the system will try to accommodate them in each
processing phase. Some noisy words and phrase are
“show”, “tell me”, “please 1 want to know™, “find for me”
etc. QuriOnto has taken the list of these words/phrases
from the questions of the Mooney data (Tang and
Mooney, 2001).

The remaining query words are then passed from
morphological processing and tagging. Morphological
root provides help for matching of inflected words e.g., if
user query is ‘professors’ and ontological label or
resource tag is ‘professor’ then morphological root for
both elements make the comparison successful. The POS
tagging helps in making rules for consideration and
concatenation of words for an ontological resource. e.g.,
if the user query is “assistant professors and lecturers”
then the equivalent tag for the query is “J1 NN CC NN™,
JJ NN words can be combined and searched in the
ontology for a possible single match as in this case it is
matched to the label of a single resource class
‘AssistantProf”. All these shallow linguistic processing
steps are helpful for the matching component.

Mapping query terms to ontological resources: Matching
of user terms to ontological resources is performed. Single
or a combination of user terms can be mapped to single or
multiple ontological resources in O,. We first try to match
multiple terms from the user query to map to a single
ontological resource. This process select terms based on
some tagging combination; e.g., “assistant professor”
have tag pattern “JJ NN” can be considered for a try. I a
group of terms map to a single ontological resource, the

70

Template = Prefix + “Select “+ select_vars + “ where {* + relation_triples

+ % + class_association_triples + * * + property_specification_triples +

* * + individual_specification_filter + * * + Quantifier_restriction_filter +
** + label_triples + * }

Fig. 3: Variable template used in QuriOnto

terms under the group are considered as covered. If a term
is completely matched with an ontological resource, this
15 considered as the best match for that wser term and
other options which partly cover the termis) are
discarded. We term it a maximum match principle. The
terms are stored with their ontological resource identifiers
and category in a structure discussed next.

Query pattern processing: This is the main phase of
QuriOnto. In this phase, the categories marked by the
previous phases are combined as a string of pattern and
the algorithm working on pattern decides the candidates
for elements of variable query template. The varable
template of QuriOnto is shown in Fig, 3.

For storing all the necessary information required for
formal query generation, QuriOnto uses a list of lists of
strings. termed as a query structure for reference. Each
row of gquery structure corresponds to the details
regarding a single ontological resource identified in the
mapping phase.

Instead of defining fixed templates as in SemSearch,
we identified six primitives or constituents for the where
clause of SPARQL. Each constituent is either a triple or a
filter, listed as follows:

*« Relation triple: This type of triple is uvsed to
determine the connection between classes. For
example, the triple “{711 ?pl 72}" indicates that
individuals represented by 7il are connected to
individuals represented by 72 with the help of
property represented by Upl. We require the
exploration of the relation graphs to determine the
relation triple

« Class association triple: This type of triple
associates a variable to the ontology class resource
to access the individuals of the class. For example, in
triple *{ 11 rdf:itype :C1} or *{ il a:C1}’, the variable
Tcl is uwsed to represent the individuals of the
ontology class C1

*» Property specification triple: It is used when a
property resource is determined from mapping. For
example, in the triple {711 :supervises 7i2}" ‘Ml and
712 act for domain and range individuals for which the
object property “supervises” is defined. Or in triple,

Inform. Technol. J.,

{1 :has salary ?pvar}” ?pvar is used for accessing
the value stored in the datatype property range for
individuals 7il

* Individual specification filter: This filter is used to
restrict the class individuals to a particular individual
or individuals. It is used when an individual is found
from mapping. For example *filter (?11=:11)", where 71
individuals 1s restricted to individual 11

* Quantifier restriction filter: The quantifier
restriction 1s implemented using a filter expression to
put a restriction on data type property values. For
example, “filter (7salary »= 20000)". The operator of
this filter is determined on the basis of phrases
discussed in section of Quantitative phrase
processing

C Label triple: It is used to access the linguistic names
associated with an ontology resource. For example,

“iAssistantProf rdfs:label Nil }oor *{ 7pl rdfs:label
Npl})’

The algorithms listed below compute all the
necessary information required for the generation of the
triples and filters for the final generation of the SPARQL

query,
The pattern_processing algorithm

Query structure= Resource Category + Resource term + filter operator and
filter value for datatvpe property
if (one {object propernty or datatype Property) in Query structure }{
assign arbitrary labels for domain and range classes;
returm;/f to generate SPARQL
|
for (individual in Query structure)
find and store the class of Individual in Query structure;
if (more than one class in Query structure)|
find_Class_Relation for all distinct classes;
if (not (successPath or SuccessConnection)) |

check and merge common category classes;

il (classes do not belong o same category)
print “MNo relation between concepts exists™;
return (=13 }

else |
select one from PathList and ConnectionList which
has minimum edge count;
Hif equal prefer PathList
store im FinalPath; |
i
check_class_Tor_insiance;
for ieach edge in the FinalPath) |
insert a property row in the Query structure with
property marked as variable;
fior (object property in Query structure)
[
fetch property statements from PO-C-C;
find appropriate property row by matching
domain and range with PO-C-C triple:
if {(domain and range matched in Query structure) |
replace property variable by object property
for that row:
delete the object propenty row from Query structure;

71

il): 67-78, 2010

search domain class in Query structure and
replace with class varable:

search range class in Query struciure and
replace with class vanable;

)
for (datatype property in Query structure) |

fetch property statements from PD-C;

lind appropriate class in Query Structure

replace class with class vanable;]

Find_class_relation algorithm

Create subgraph for the classes in Query structure;
fselect all triples that contain any of the class as domain or range
put all classes in class_list;
consider the class columns of PO-C-C graph:
while (the length of class_list)
i
place one class in Ci;
put all other in remaining_class_list;
Boolean Connection possible=true:

for (the length of remaining_class_list)

[
put current indexed class from remaining_class_list in Cj:
path=calculate shortest path Trom Ciow Cj;
if (path is null} fmeans no connection between Ci and C)

Connection possible=false; /mo need to check the remaining
/nodes for connection path
il (path 15 not null)

if path contains all classes of class_list

[
place the path in PathList:
if (edges count = class_list_length — 1)
return with successPath=1; Yoptimal solution found
]

else it (Connection possible)
place path in temp Connection:
| Mend of for the length of remaining class
if (Connection possible) |
place temp Connection in ConnectionList;
increment index of ConnectionList;
il (number of edges in temp Connection = class_list_length)
return with success Connection=1;

initialize temp Connection:
increment index in remaining_list;

I
Check_class_for_instance algorithm

while (class C as first element in Query structure)
if {no instances found for C)
substitute C with subclasses having instances:

DESCRIPTION OF THE ALGORITHM

Now, we explain the algorithm by dividing it into two
major cases. The first case is the single resource case
where the user query 1s mapped to a single ontological
resource in O and the other one is when the query is
mapped to multiple resources in Oy,

Single resource case: In this case, the resource can be
any of the four, a class, an individual, a datatype property
or an object property.

Inform. Technol. J., 9(1): 67-78, 2010

« (Case la: ldentified resource 1s a class
» Example query#1: BS students

In this case, these two query words is converted to
a single ontological resource by keywords to mapping
resource module and identified as a class. Class
BSstudents 15 checked for instances, 1if found the
instances are displayed otherwise the class is replaced by
subclasses having instances.

« (Case 1b: Identified resource is an individual
« Example query#2: Noman Hasany

In this case, all the object and datatype property
values related to the individual are displayed.

« Case lc: Identified resource 1s an object property or
datatype property

This pattern alone is rarest to happen but we have
the provision for it in QuriOnto. If the query term leads to
a datatype or object property, it means the user wants to
see the domain and range for which the property is
defined. Often the terms(s) resulted in object property are
defined in the domain or in the range of the object
property. For example, for the user query “Departments™
can result in the class ‘Department’ or object property
‘has department’. In such a case, where this sort of
ambiguity occurs, QuriOnto treats it a class and case 1a is
applied.

« Example gquery#3: Recruiter (in job KB of Mooney
data)

Here, is an issue. If some similarity technique is
implied in the system and it finds company as a synonym
for ‘recruiter” and reported it as a class resource, which is
the range of “has recruiter’ in the job ontology of Mooney
data then the results are the instances of the companies.
Usually, object property occurs in multiple resource case
that will be discussed later.

» Example query#4: Salaries

The datatype property pattern alone can be a case
that has a little bit higher chance than object property but
lesser than C and I. The terms resulted to datatype
property have lesser chances to be found in the domain
or range of the triples. For example, Salaries become salary
after Morphological analysis and results in datatype
property ‘has salary’. May be here the user wants to see
the salaries of the employees, so salaries with respect to
each individual for which the property is defined are
displayed.

Both types of properties are considered in a single
case because the resultant SPARQL for them is:

Select il ?lprop 712 where {711 :Prop 7i2. :Prop rdfs:label
prop |

Multiple resources case: The main processing of
QuriOnto lies in the exploration of relations for the
classes, directly or indirectly referred in the query. As
finding the relation between classes involves at least two
classes, it is discussed in the multiple resource case. Here
we explain the process the
find_Class_Relation pseudo code.

mentioned 1n

« Case 2: All identified resources are classes
+ Case 2a: When the classes are linked
« Example query#5: Teaching staff course semester

Output: The query means that the teaching staff taking a
course in the semester be displayed.

The semantics are supported by ontology that the
classes are found interconnected. To explore whether or
not they have relations among them, QuriOnto implies
three scenarios.

Scenario 1: Whether the nodes lies on a path. As for the
example query#3, Fig. 4 shows the segment of the
ontology where the three classes are connected on a path
(Teaching staff, Course), (Course, Semester).

Scenario 2: Whether there is a node among them which
has connection with other nodes. Suppose there is no
back edge from Teaching staff to Course, then the
example query#5 still has a meaningful interpretation in
the ontology. In QuriOnto, we term it as a connection. So,
the connection will be (Course, Teaching staft), (Course,
Semester). Contrary to it, suppose the user enters example
query#4.

Scenario 3: When the mentioned classes have indirect
relations among them.

Course

Oiferedin

AN

emesier

IsAssingned To

(

leachingStaft

IsAssingned A

/

Fig. 4: Subgraph from the university ontology showing
the accessibility of all classes from Teaching staff
and Course

Inform. Technol. J., 9(1): 67-78, 2010

Student

Employvee

Enrolledin WarksFor

Department

Fig. 5: Subgraph from University ontology showing no
connection between student and employee

« Example query#6: Teaching staff, semester

Figure 4 shows that Teaching_Staff and Semester
have an indirect relation via course class. When Dijkstra
shortest path 1s applied it explores the intermediate nodes
on the path and corresponding relation triples are formed.
This 1s because the user i1s not familiar with the underline
ontology model, so QuriOnto explores the indirect
relations also. The situation contrary to it 1s explained for
query example#7,

« Example query#7: Student, employee

Neither there is a direct link between student and
employee, nor there is a class connecting them as shown
in Fig. 5. 5uch a query will be considered as meaningless
in QuriOnto as it does not find a path or a connection. A
connection 1s established
outgoing edges provide links for the classes.

These scenarios not only help QuriOnto to check
whether the query is meaningful, but it provides the edges
that are used to form the relation triples for the formal
query. In SemSearch, such condition is handled by
making combinations: out of which may be one is
successful.

if there is a node whose

. Case 2b: When the classes are subclasses of a
COmiImon CLE[F-LH-

« Example query#8: Associate professors
professors

and

A case when the mentioned classes have no link
between them can have a possible interpretation that the
user wants to see the instances of the classes. But in this
case it is necessary that the classes must have some
common semantic category. As currently, QuriOnto has
no semantic similarity measures, another technique is
used. In future. this technique can be combined with
semantic similarity procedure to make it more effective.
QuriOnto has two conditions for this case to save the
user from any misinterpretation of the results.

73

Condition#1: There must be a class that implies Is-A
relation with the mapped classes and the class must be
other than owl: Thing.

Condition#2: The mentioned classes have some common
concept word in their labels or they must possess
instances. Otherwise, the user has to enter the words
separately to see the individuals, as mentioned in case la.
After the relations between classes are determined,
the check_class_for_instance algorithm ensures that the
classes going to be used in the formal query must
possess instances. If a class having no individuals is
mentioned in the formal query, nothing is retuned by the
query engine. To overcome this problem, the main class
reference 1s replaced by subclasses which have instances.
Sometimes the user mentions the general class which
differs from the ontological arrangement e.g., the user
uses the term ‘teaching staff’ in the query which has
professors, associate professors, senior lecturers etc. as
subclasses categorizing individuals. QuriOnto checks if
the class has no direct instances, it 1s replaced by union
of all its subclasses that have individuals. For example, if
the class association triple i1s {7cl rdf:type :Teaching
staff} then it is replaced by the union of its subclasses
ie., [{7cl rdfype :Lecturer} union {7cl rdf:type
:AssistantProf} union {7¢l rdf:type :Professor} }

« Case 3: Individuals with classes
« Example query#9: Ph.D. students of Computer

Engineering

Individuals referred in the query are stored in the
query structure as individuals with their immediate parent
class, The find relation method is called after the
individuals are mapped to the parent classes as mentioned
in the Pseudo code.

« Case 4: Object property with classes and/or
individual

The find_Class_Relation helps in formulating the
relation triples with a property variable between the
classes. But if a property is mapped from the user query
term(s), it specializes the relation. In that case, the general
relation triple having a property variable in between is
replaced by the property resource. To ensure that the
object property is applied on the appropriate relation
triple, the related property statement are fetched from the
PO-C-C graph and the domain and range classes are
checked in the query structure. The matched general
property row 1s updated and object property row is
removed from the query structure.

Inform. Technol. J., 9(1): 67-78, 2010

» Case 5: Datatype property with other resources

Same procedure is applied for the datatype property
using the PD-C graph where only the domain may need
substitution with appropriate class variable on which the
property is defined.

SPARQL GENERATION

This phase 1s responsible for determining the select
variables and triples and filters for the where clause from
the query structure for the variable template. As all the
necessary information is computed by the pattern
processing phase, the SPARQL generation is straight
forward, as shown in SPARQL-Generation algorithm.

SPARQL-Generation algorithm

for each class resource
torm-class-triples:

tor each individual
Form-imdividwal-Dilier:

for each edge in FinalPath
| form-Ohbject-property-triples;
add-Select-vars-with-order; }

tor each datatype-property d
!
form-datatype-property-triples:
if operator associated with d
form-filter-expression;
append-in-Select-vars;
!

form each resource in Query struciure

|
form-label-triples;
add-select-vars;
i

substitute select variables, tnples and filters
Hin the query template

The illustrative example below explains the working
of both the query pattern processing and SPARQL
generation phases.

An illustrative example: Here, we explain the process by
taking a query that contains all ontological resources with
quantifier restrictions. Consider the user query 1s:

* Students computer engineering electronic
engineering enrolled in MS program age below 24,
GPa above or equal to 3

After query terms to resource mapping phase, the
following are the identified ontological resources for the
user query of Fig, 5:

Class: Student

Individuals: Computer engineering, Electronic

74

engineering, MS_program

Object property: Enrolledin

Datatype property: has Age, has GPA
Filter targets: <24, =3

The filter targets are stored with the respective

datatype properties.

Find class for individuals: Three individuals are found
in the query, “:Computer Eng.” and ‘:Electronic Eng.’

are mapped to class ‘Teaching Department’” and
“MS_program’ 1s mapped to “: Academic program’.
Find_class_relation: This function takes the three

classes as input and results the edges depicting the
relation between them. For this function, we use the
heuristic to start the search from the class which is
mentioned first in the query as it may provide the focus of
the query. In the above case, student class is found to
have relations with the two classes. The edges returned
are: (Student, Teaching department), (Student, Academic
program).

On returning from class relations, two property rows
are inserted in the Query structure with variables 7pl and
Tpl

pl 2l %2
7p2 %l %3

As there is an object property ‘enrolledIn’, the
Pattern_Processing method retrieves all the triples for
the property from the PO-C-C table, among which the
domain and range of the triple “Student enrolledIn
Academic program”™ is found in the Query structure. The
method retrieves the variables associated with *Student’
and ‘Academic program’ classes which are found to be 71l
and 713, so. the general property 7p2 is replaced by
‘enrolledIn’.

The entries in Query structure now contain:

:EnrolledIn 711 h3
pl hl %2

This method checks the domain classes for the
datatype variables, for example “:hasAge” and “:has GPA’
both has domain class “:Student”, which has variable Ml
assigned. For range of datatype new varables are
assigned per datatype property. so the triples formed are:

{:has Age 71l Md1)
[:has GPA M1 7d2}

Inform. Technol. J., 9(1): 67-78, 2010

Check_class_for_instance: Student class has no direct
instances. The method searches for subclasses with
instances. In the first iteration it searched BSstudent and
Graduate student. BSstudent got instances while
Graduate student is further divided into MSstudent and
Ph.Dstudent which have instances. So, the student class
is replaced by BSstudent, MSstudent and Ph.Dstudent.
Classes "Teaching department’ and °Academic program’
are not checked for instances as they are mapped from
individuals.

Form_class_triples: As the Query Structure contains
three main classes, three class association triples are
formed.

{ {71 a:BSstudent} union {711 a :MSstudent} union {71l
a :PhDstudent } }

{112 a Teaching department }

{3 a Academic program}

Form_individual_filters: As Computer engineering and
Electronic engineering belong to the same class Teaching
department, they are combined using OR operator in a
single filter.

Filter(M12= Computer engineering |l 7i2= Electronic
Engineering)
Filter("13 = :MSprogram)

Form_ObjectProperty_triples: The triples arrangement
from property rows are:

M1 :enrolledIn 3
Ml Mplhi2

Form_DataTypeProperty_triples:

11 thas Age 7dl
Nl :hasGPA 7d2

Form_filter_exprs:

Filter (7d1 < 20)
Filter (7d2 >=3)

Form_label_triples: Labels are created for each class
variable, object property, datatype property using
rdfs:label. For each specific property a variable is created
in select vars,

The class relation triples and object triples are used
to decide the arrangement of variables but the datatype
variables are placed in the last.

75

ELECT %l il 7pl %2 M2 ?lpol 73 7h3 21d1 ?d1 742 7d2 WHERE
[[[Tl apl:BS_student | union

(711 a pl:MSstudent} union {7il a pl:PhDstudent} | 7i2 a pl:Teaching
partment.

%3 a pl:AcademicProgram. filte n(7i2= pl:ComputerEngg 1| 7i2= pl
tronicEngg).

%il plienrolled_In %i3.%1 ?pl %i2. pl:has Age 7d1. il pl:has GPA M2
ilter (2d] > 20). filter (7d2 >= 3). Tl rdfs:label Til. 72 rdfs:label M12
rdfs:label ?0i3. 7pl rdfs:label ?lpl. pl:enrolled_In rdfs:label 7lpol.
1:has GPA rdfs:label T1d2, 71l pl:has Age rdfs:label 71d1. |

Fig. 6: Query generated by QuriOnto for the user query
mentioned earlier

1l Ml Mpl 12 7ha Mopl *h3 7h3 Md1 2d] 7d2 7d2

The final query submitted to the SPARQL query
engine by QuriOnto is shown in Fig. 6.

IMPLEMENTATION

For accessing the ontology and for SPARQL
execution, we used the Jena APl for RDF. As Jena 15 a
Java APL, we used Java to program our prototype. For the
design and testing of QuriOnto, we extended the
University ontology to incorporate courses, projects and
student data, using the Protégé GUIL The GATE
morphological analyzer is used in the shallow linguistic
processing phase.

RESULTS

We have tested present approach on two different
domain ontologies. The first ontology is extended from
the university ontology available as OWL test data
(http:/www.ifi.uzh.ch/ddis/research/ semweb/talking-to-
the-semantic-web/owl-test-data/), we call it extended
University Ontology, which consists of 34 classes, 89
individuals, 20 object properties and 9 datatype
properties. The second ontology we selected 1s the job
ontology constructed for the Mooney job data (Tang and
Mooney, 2001), used in the evaluation of many NLIs to
ontologies; consisting of § classes, 218 individuals,
7 object properties and 12 datatype properties. We have
not made any changes to the job ontology except for the
rdfs labels which are defined for each ontological
resource. While naming the labels, we use the resource
names and added some expansions for abbreviations.

We have prepared 56 questions for university
ontology out of which 18 guestions were separated
for testing and 38 were used during design. For the job

Inform. Technol. J., 9(1): 67-78, 2010

Table 2; Results obtained after running quenes with QuriOnto for o
different ontologies

Answer Answer
Total Answers nol Answer partally Answer
Ontology queries returned returned correct correct incorrect
University 18 14 4 13 (] 1
exlended
Job Bl 460 14 38 3 3

ontology, 60) questions were selected from the job queries
excluding the negation questions and duplicated
questions. So, after the noise removal phase, all questions
were distinct. Table 2 has shown the results when the
queries are submitted to our QuriOnto prototype.

DISCUSSION

More number of correct answers from the extended
unmiversity ontology i1s doe to the fact that we had
formulated the questions while designing the QuriOnto.
The questions did not pose any similarity failures. The
failure and ‘not answered™ cases were due to many
duplicate entries for ‘MS’ in the ontology e.g.,
MS_Program, MS, ME, MSstudent, all have the word
masters in the label. Due to strictness of maximum match
principle, the word ‘ms’ is always matched with ‘MS’,
without considering other options.

The queries that are failed to return correct answers
or partially correct answers are due to one of the fact that
keywords queries lack i understanding complex and
dependent linguistic structures. The not
returned’ is due to two reasons:

ANsWers

QuriOnto similarity scope is only limited to rdfs labels

* QuriOnto has heuristics and strict rules to eliminate
multiple options for user words, which can be
overcome by ranking

Without considering the partially correct answers,
the average precision of 0.87 of the two ontologies with
individual precisions of (092 and).82 for university and
Jjob ontology respectively shows that if the user words are
correctly mapped to ontological resources and correct
resources are selected then the QurOnto approach for the
generation of correct SPARQL queries is quite promising.

The i1dea of NLIs to ontologies is carry-forwarded
from NLIs to databases in which the users submit a
natural language query instead of a formal database query
to access the information. Some of the systems adapted
the techniques used in DB NLIs for NLIs to ontologies
(Minack er al., 2008; Zhou et al., 2007). One of the major
advantages that ontologies possess over databases is
that they have a lingwistically rich structure that makes
them more attractive for NLIs.

76

The NLIs to ontologies developed so far can be
distinguished from many points of views. One of the
major distinguishing features is the type of input they
accept. The first category i1s the one that accepts the
syntactic input and parse the user question to find out the
RDF statement matches for the question. Some systems
for this category are ONLI+ (Mithun et al., 2007) and
Panto (Wang er al., 2007).

ONLI+ (Mithun et al., 2007) has handled quantifiers
and number restrictions for syntactically correct
sentences while QuriOnto approach is for query
keywords, ONLI+ reported some sentences that were not
converted to formal query due to the incorrect parse
generated by Minipar. Present approach works in all
situations whether the user write correct sentences or
enter keywords with number restrictions and quantifier
restrictions.

PANTO is a remarkable system as it covers most of
the SPARQL functionalities for the user query with a
recall and precision of 86.12 and 89.17% for the job
ontology (Wang er al., 2007). The syntactic questions are
beneficial as they give extra information to understand
dependencies and other linguistic features. But on the
other side, parsing lengthy questions can be time
consuming and such type of input cannot be restricted for
search engines.

QuriOnto prototype introduced in this study is
based on the keyword input. The recent systems based
on keywords are SemSearch (Lei er al., 2006), Spark
(Zhou et al., 2007), QuestlO (Tablan er al., 2008;
Damljanovic er al., 2008), Q25emantic (Wang et al., 2008)
and an approach by Tran er al. (2007). SemSearch
(Lei et al., 2006) has introduced fixed templates of formal
query. The cases are discussed for two resources with a
suggestion of rules to combat more than two resource
cases. With the increasing length of user query, there will
be requirements for many templates out of which one will
be successful for the user query. QuriOnto has a variable
template and elements of which are computed by an
interpretation process based on the resources explored
from the user query. SemSearch (Lei ef al., 2006) restricts
the user to separate subject and other keywords with a
colon. QuriOnto has no input format restriction user
neither the user is required to give any additional
information regarding the terms used. Unlike SemSearch,
QuriOnto variable template also contains the provision for
filters to accommodate guantifier restriction from user
query.

QuestlO dealt with the unrestricted natural language
(Tablan et al., 2008; Damljanovic er al., 2008). Its main
focus is in determining the most appropriate relations
between the classes. QuestlO uses other closed category

Inform. Technol. J., 9(1): 67-78, 2010

language words to disambiguate among different
identified relations to find out the most appropriate one.
QuestlO has not discussed the situation in which a class
does not possess instances. QuestlO tries to find out a
property when there are two classes while QuriOnto
assumes a variable for property when missing or
sometimes no property is specilied as the user wants o
see the list of instances. It means QuriOnto template has
a more general structure to accommodate a lot of user
queries. QuriOnto considers intermediate classes to build
the link even if they are not mentioned in the user query.
Also quantifier restrictions are not handled in QuestlO.
Some complete graph based processing approaches
(Tran ef al., 2007; Zhou er al., 2007; Wang ef al., 2008) are
introduced. These approaches construct a graph for the
keywords mapped resources and then convert the graph
to the formal query. As constructing and manipulating the
complete graph for all resources is time consuming, Spark
has reported best performance for 2 to 6 keywords query.
Tran et al. (2007) places limit on the depth of the graph o
avold complexity, Q25emantic has presented a time
effective approach over the two by first trying to obtain
a subgraph for the mapped resources, apply a process to
compact it and then perform rest of the actions on that
compact graph (Wang er al., 2008). But Q2Semantic
accepts certain ontological resources i.e., classes and
literals from the user input for processing so the real
complexity 1s unknown until a solution incorporating all
options from the user query have been considered.
QuriOnto technique 15 a combination of both graph and
template. The graphs in QuriOnto are based on classes
and properties which are not as large as the whole
ontology graph and which do not change as frequently as
individuals and hiterals do. QuriOnto deals with all
ontological resources for any number of terms in the user
query. QuriOnto offers better coverage for SPARQL as
SPARQL filters are supported for guantifier restrictions.

CONCLUSION AND FUTURE WORK

In this study, we present an approach for converting
keyword queries to formal ontology queries that uses
property and relation graphs only with a variable template.
The property graphs reduce the RDF graph scope while
the variable template can accommodate any number of
concepts from the user query. The SPARQL coverage by
QuriOnto is more as compared to the existing keyword
based systems as it can handle quantifier restriction also.

The similarity issues of QuriOnto are currently limited
to the ontology terms and to the terms defined using rdfs
labels, The incorporation of semantic matching capability
before the terminology mapping phase can resultin an

77

increase in recall, The future work lies in discovering
similarity issues for both domain dependent ontology
terms and general linguistic terms for QuriOnto,

PANTO has shown handling of negation with
syntactic approach (Wang er al., 2007). Handling
negation and other linguistic features with keywords
input is a potential future work.

ACKNOWLEDGMENT

This research is supported by eScience Fund SFO704,
Ministry of Science Technology and
Malaysia.

Innovation,

REFERENCES

Damljanovic, D., V. Tablan and K. Bontcheva, 2008. A
text-based query ontologies.
Proceedings of the 6th International Language

interface to owl
Resources and Ewvaluation, May 2008, Marrakech,
Morocco, ELRA, pp: 1-8.

Kaufmann. E., A. Bernstein and R. Zumstein, 2006. Querix:
A natural language interface to query ontologies
based on clarification dialogs. Proceedings of the 5th
International Semantic Web Conference, November
2006, Springer, Athens, GA., pp: 980-981.

Kaufmann, E., A. Bernstein and L. Fischer, 2007.
Nlp-reduce: A naive but domain independent natural

querying

Proceedings of the 4th European Semantic Web

language interface for ontologies.
Conference, June 2007, Innsbruck, Austria, pp: 1-3.

Lei, Y., V. Uren and E. Motta, 2006. SemSearch: A Search
Engine for the Semantic Web. In: Managing
Knowledge in a World of Networks, Staab, 5. and V.
Svatek (Eds.). LNAI 4248, Springer Verlag, Berlin
Heidelberg, ISBN-13: 978-3-540-46363-4 pp: 238-245,

Minack, E.. W. Siberski, G. Zenz and X. Zhou, 2008.
SUITS4RDF: Incremental query construction for the
semantic web. Proceedings of the International
Semantic Web Conference (Posters and Demos),
2008. http:/fwww.13s.de/web/page25g.do?
kcondl2g.attl=1116.

Mithun, 5., L. Kosseim and V. Haarslev, 2007. Resolving
quantifier and number restriction to question OWL
ontologies. Proceedings of the 3rd International
Conference on Semantics, Knowledge and Grid,
Oct. 29-31, IEEE Computer Society, Washington, DC.,
pp: 218-223,

Prud, E. and A. Seaborne, 2006. SPARQL query language
for RDF. W3C Working Draft. http://www.w3.org/
TR2006/WD-rdf-spargl-query-20060220/.

Inform. Technol. J., 9(1): 67-78, 2010

Ramachandran, V.A. and 1. Krishnamurthi, 2009, NLION:
Natural language interface for querying ontologies.
Proceedings of the Bangalore Compute Conference,
Bangalore, India, ACM. http://doi.acm.org/10.1145/
1517303.1517322.

Tablan, V., D. Damljanovic and K. Bontcheva, 2008, A
Natural Language Query Interface o Structured
Information. In: The Semantic Web: Research and
Applications, LNCS, Bechhofer, 5. (Ed.). Springer,
Berlin/Heidelberg, pp: 361-375.

Tang, L.R. and R.J. Mooney, 2001. Using multiple clause
constructors in inductive logic programming for
semantic parsing. Proceedings of the 12th European
Conference on Machine Learning, (ECML’01),
Springer-Verlag, London, UK., pp: 466-477.

Tran, T., P. Cimiano, 5. Rudolph and R. Studer, 2007.
Ontology-Based Interpretation of Keywords for
Semantic Search. LNCS, Springer, Berlin/Heidelberg,
pp: 523-5306.

78

Wang, C., M. Xiong, Q. Zhou and Y. Yu, 2007. PANTO: A
portable natural language interface to ontologies.
Proceedings of the 4th European Conference on the
Semantic Web, (ECSW'07), Springer-Verlag, Berlin,
Heidelberg, pp: 473-487.

Wang, H., K. Zhang, Q. Liu, T. Tran and Y. Yu, 2008,
Qisemantic: A lightweight keyword interface to
semantic search. Proceedings of the European
Semantic Web Conference, (ESWC08), UK.,
pp: S84-598,

Zhou, QQ., C. Wang, M. Xiong, H. Wang and Y. Yu, 2007.
Spark: Adapting keyword query to semantic search.
Proceedings of the Semantic Web, LNCS, (SWL07),
Springer, Berlin/Heidelberg, pp: 694-707.

	ITJ.pdf
	Page 1

