http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 9 (4): 673-679, 2010
ISSN 1812-5638
© 2010 Asian Network for Scientific Information

A Dynamic and Secure Arabic Text Compression Technique Using
Bitwise Lempel-Ziv Algorithm

'A. Musa, *A. Al-Dmour, °F. Fraij, *O. Al-Khaleel and *M. Irshid
"Department of Computer Engineering,
“Department of Computer Information Systems,
*Department of Software Engineering, Al-Hussein Bin Talal University, P.O. Box 20, Ma’an 71111, Jordan
“Department of Computer Engineering,
*Department of Electrical Engineering, Jordan University of science and Technelogy, Irbid 22110, Jordan

Abstract: This study presented a new Arabic text compression technique in which an input file 1s preprocessed
to produce a new binary file. The preprocessing maps a codeword to each character based on its occurrences
in the input file. The binary file is then compressed using a bit-wise Lempel-Ziv algorithm. The new technique
has been implemented and examined using different files. The results showed that the new technique, using
extension-order of 8 or 4, achieves a compression ratio with the range of 4.25 to 4.7 bits/character, respectively.
The improvement in compression efficiency 1s due to the significant reduction in the number of symbols in the
generated binary file. Tt is noteworthy that embedded security on the compressed file is naturally acquired due
to the automatic generation of the private key via mapping.

Key words: Character mapping scheme, compression ratio, source encoding, source entropy, hamming weight

INTRODUCTION

The advancements in nformation and communication
technologies show a continuous demand to exchange
significant volumes of data. As a result, improving current
data compression techniques to drastically reduce such
volumes of exchanged data 1s ndispensable. It 1s also an
advantage to naturally place security on the data
exchanged without introducing extra overhead.

The efficiency of any compression technique can be
measured based on four metrics. These metrics are
(1) compression and de-compression speed, (2) the
amount of memory size that is consumed in the
compression and de-compression processes, (3) the ease
of implementing the techmque and (4) the compression
ratio, measwed i bits/character. Many researchers
in data compression aimed at improving the
aforementioned metrics.

In the early days, compression algorithms presented
i the literature tended to use small amount of
memory and CPU time (Elabdalla and Trshid, 2001,
Bell et al., 1990). Recently and due to the advancement in
VLSI technology both of these metrics become cheaper.
Therefore, nowadays, compression algorithms have
centered their attention on achieving better compression
ratios.

The Lempel Ziv algorithm and its variants, is an
algorithm for fixed-length, lossless data compression.
Origmally, the two algorithms proposed by Jacob Ziv and
Abraham Lempel m their landmark papers in 1977 and
1978. Lempel Ziv algorithms are used in variety of
applications such as gzip, GIF image compression and the
V.42 modem standard (Sayood, 2000, Zeeh, 2009). The LZ
algorithms can be used to compress plain text files
(Held and Marshall, 1991; Kida et «l., 1999). Naturally,
plain texts may be composed of characters or binary data.
According to this composition, these algorithms are
described as character-wise or bit-wise, respectively.

Prior to applying L7 algorithm, the original text can
be mapped into a binary equivalent counterpart that
produces sequences of O and 1 sec. This mapping aims at
improving the compression ration of the algorithms and
facilitating their hardware implementation. Mapping is
performed in two different ways either statically
(Musa and Irslnd, 2008) or dynamically (Musa et al.,
2008). Static mapping utilizes a predetermined
character-to-ASCTI table for all input files, i.e., the table is
file-independent. The dynamic mapping, however,
constructs such a table on-the-fly for each mnput file, 1.e.,
the table 1s file-dependent.

In dynamic mapping, the codeword assignment for
each character is determined based on the statistical

Corresponding Author: Ahmed Musa, Department of Computer Engineering, Al-Hussein Bin Talal University, P.O. Box 20,
Ma’an 71111, Jordan Tel: +962 (3) 217-9000 Fax: +962 (3) 217-050

Inform. Technol. J., 9(4): 673-679, 2010

analysis of an input text file. The analysis of the
frequency of English characters has been investigated
(Bell et al., 1990; JTaradat and Irshid, 2001 ; Powell, 2009).
However, finding such analysis for Arabic letters 1s
challenging (intellaren). Albeit Arabic text compression
has investigated (Jaradat et «l, 2006a;
Kanaan ef al., 2006), preprocessing the input Arabic Text
Files (ATFs) and manipulating them on bit-wise level have
not been introduced. This study introduces a new
compression technique to minimize the compression ratio
of AT using a bit-wise Lempel-Ziv (BWLZ) algorithm.
Moreover, this technique uses dynamic source mapping
scheme rather than the static one. This will provide a
private key tat will be used to place a high security on the
ATEF.

been

CHARACTER MAPPING SCHEMES

The abstraction model of the proposed Arabic
compression/de-compression technique based on the
dynamic mapping scheme is shown in Fig. 1. Figure 1
depicts that a statistical analysis of ATFs has performed

Although, ASCIT mapping scheme reduces the
overall time complexity of compression algorithms,
dynamic character mapping scheme is utilized in this
study. The reason for thus 1s that the compression ratio
will be decreased and therefore, the compression speed
will be lugher.

The corner stone in the analysis stage of ATF
resides in obtaining the mapping table. Tt is difficult to
find typical files, especially for Arabic language, that can
be used to evaluate the performance of compression
methods. For this reason, m this study, we randomly
select two famous Arabic text files, usssdiiiastxt and
el B i txt, to scrutimize the proposed algorithm
(intellaren). For the dynamic character mapping, each
source will be processed and a corresponding statistical
mapping table will result. Table 1 and 2 show the
frequency of occurrence of some Arabic characters
available in these files ordered in a descending order.

Table 1: Probability of some Arabic characters exist in psiadt gl et
along with its corresponding ASCII Code and dynamic assigned

code
using AT analyzer. In the light of this analysis, each Characters ASCTI Assigned
character available in the ATF is mapped into a fixed Characters pronunciation/name __ Probability code code
length Hamming weighted binary codeword. Thus, the AT I' i‘;'a;e 8'33? g ?%83??? ﬁﬁi ﬁ(l)
. . . = 5

encoder will assign a weighted codeword for each | Lam 0.0912 11100001 11111101
character. a Meem 0.0478 11100011 11111011

Mapping ATF can be accomplished usmg two 9 Waw 0.0449 11100110 11110111
different schemes.ASCH apd dynamic. In the ASCI . Beh 0,030 11001000 11111100
scheme, the mapping table is constructed based on the
ASCII code of each Arabic character (Wikipedia). Thus, I3 Ain 0.0255 11100110 11110110

: :) The 0.0217 11001010 11101110
T.he time used to construct such a .tal.Jle 1s saveq as there N Feh 0.0210 11011100 11011110
is no need to perform a pre statistical analysis on the
ATF. On the other hand: dynanuc mapplng scheme 1s CR Carriage return 0.0042 00001010 11001110
similar to the ASCII one except that different mapping Arabi ; L oo ooto10 Lie1100L

. P g rabic question marl 5
table 13 constructed that depends on the statistics of the k
input file. Hence, the dynamic scheme has the * Asterisk 0.0003 00101010 10111001
disadvantage of imposing extra time to dynamically ! Exclamation mark 0.000002 00100001 11100011
construct the mapping table.
Compression process De-compression process
| Compressed)
file
F Y
A 4
AT - Availsble Arsbic characters
» »| - Extension order (n)
analyzer - Binary representation length (L)
Header file

Fig. 1: The abstract model of compression and de-compression process based on mapping scheme

674

Inform. Technol. J., 9(4): 673-679, 2010

Table 2: Probability of some Arabic characters exist in _,, .l iiag.txt along
with its corresponding ASCII code and dynamic assigned code

Table 3: Swnmary of entropy computation based on the first-order binary
source for tested files

Characters ASRCT Assigned
Characters pronunciation/narne Probability code code
. Space 0.187 00100000 11111111
| Alef 0.094 11000111 11111110
] Lam 0.079 11100001 11111101
N Waw 0.041 11100110 11111011
- Meem 0.039 11100011 11110111
3 Reh 0.028 11001110 11111100
o Beh 0.024 11001000 11111010
& The 0.024 11001010 11110110
¢ Ain 0.023 11100110 11101110
& Feh 0.020 11011100 11011110
CR Carriage retum 0.0062 00001010 10101111
5 Arabic question mark 0.0005 00001010 11011001
* Asterisk 0.000002 00101010 10011101
: Arabic semicolon 0.000003 10111010 11100011

The mapping process is conducted using the
following rule: the character in the ATF with the largest
frequency of occurrence is replaced by a codeword with
the largest Hamming weight. For mstance, the codeword
of a Hamming weight of eight (i.e., all ones eight-bit binary
codeword) 1s assigned to the Arabic character that has
the largest frequency of occurrence in the given text. The
next most probable character in the ATF 1s assigned a
codeword with the Hamming weight equal to 7. This
assignment 18 repeated until the character with the rare
frequency of occurrence is assigned a codeword with a
mimmum Hamming weight. In general, codewords with a
Hamming weight of (N-k) are assigned to the characters as

follows:
N
k

where, N 1s the length of the assigned binary codeword
and k is ranged from 0 to N.

Table 1 and 2 show the ASCII code of each Arabic
character along with the dynamic one. One can observe

NI (N-K)!
Tk

(1)

that in the dynamic mapping scheme the code assigned to
each Arabic character varies from one file to another. For
instance, the code assigned to the ¢ {Ain) character in
el g i txt file 18 11110110 and in gussed fias Xt 18
11101110. This variation in the code assignment 1s due to
the difference in the frequency of occurrence of this
character in the mput files.

THE ENTROPY OF ARABIC TEXT FILE

The first step in constructing the mapping table 1s to
statistically analyze the input ATF and count the

675

Entropy (bits/symbol)

Source entropy H(S)
File name (bits/character) ASCII mapping Dynamic mapping
el i A1 EXE 4.41 7.98 5.03
sl i b 4.86 7.92 5.14

frequency of occurrence of each character in it. Based on
this statistical analysis the entropy of the original ATF is
given by:

H(s) = *ipx log; p; 2

where, M 1s the number of characters available in the ATF
and p; is the probability of occurrence of each one of
them.

According to the statistical analysis of ATFE,
available characters are sorted in descending order and
stored 1n a header file (Fig. 1). In addition, each character
is mapped into a umgue fixed-length weighted binary
code. Thus, an equivalent binary source that consists of
two symbols, zero and one, has obtained. The entropy of
the resulting binary source 1s:

H(B) = '[pulogzpu + p110g2p1] (3)

where, p, and p,=1- p, are the probability of symbols zero
and one mn the resulting binary file, respectively.

Assigning a codeword for each character using the
aforementioned rule will lead to a dynamic AT encoding
scheme. As a result, the difference between the first-order
entropy of the resulting binary sowce, H(B) given in
Eq. 1, multiplied by the length of the code, N and the
entropy of the original source, H(S) given in Eq. 2, will be
optimal. This means that the difference in entropy, AH,
between the original source and the nth-order extended
binary source, is less when the dynamic mapping scheme
15 used:

AH = H(S)-NxH(B) (4)

Now one can use Eq. 2 and 3 to compute the entropy
of syl Gaa it txt and sy) 4ias txt files. Table 3 shows the
entropy computation of these files. From the values
shown in these tables one can observe that the difference
in entropy between the original source and the
eighth-order extended binary one is less when the
dynamic mapping scheme is used. A further study on
reducing the entropy of text files based on file splitting
was performed by Jaradat et ol (2006b). This way of
splitting files can be also utilized in this study to improve
the compression technique metrics.

Inform. Technol. J., 9(4): 673-679, 2010

BITWISE LEMPEL-ZIV ALGORITHM

Here, the bitwise Lempel-Ziv (BWLZ) algorithms are
explained by a simple example. The example utilizes a
version of 1.7 algorithms, namely 1.Z-78, to mampulate the
nth-order extension of a binary source. Figure 2
graphically shows the example where the extension-order
15 2. It 13 worth mentiomng that this example 1s for
illustration purposes and does not show the advantages
of the algorithm. The advantages of the algorithm become
clear as the size of the mput stream increases.

The algorithim, mn the example, mampulates a binary
input stream, 11110011111111. The upcoming subsections
will illustrate in-depth the operation of L.Z-78 compression
algorithm and de-compression one on this mput stream.
The compression side of the algorithm condenses the
stream. Afterwards, the recipient receives the condensed
stream and the de-compression restores the original data.

Bitwise compression process: The compression process
starts by constructing a compression dictionary; a table

consists of two columns, namely an index and the binary
subsequence. This table is used as an intermediate step
to obtain the condensed version of the mput stream. The
dictionary 18 pre-filled by imtialization subsequences
(Reynar et al, 1999). The number of initialization
subsequences depends on the extension-order (n).

In the aforementioned example, as the extension-
order of 2 15 used, the first four rows in the dictionary are
filled with 00, 01, 10 and 11, respectively. The algorithm
reads the input stream in blocks of 2 bits. Tt checks
whether the read pattern has been previously seen in the
dictionary. If so, it proceeds and reads another block and
concatenates it with the one in hand and then performs
the check process on the new pattern once again.
Otherwise, the algorithm adds another binary
subsequence mn the next free row in the table. For
instance, in Fig. 2, the algorithm reads the first 2 bits,
namely 11, by checking the dictionary; the pattern 11 has
been already stored at the index 4. Therefore, the
algorithm proceeds and reads another 2 bits and
concatenates it with the one in hand. Therefore, the

Compression dictionary
Index Subsequence \
1. 00
2 o0l
3
10 'g
4, 11 g
g
Binary input stream 5. 1 11 //, >E
11 1100 11 11 11 1 6. 00 11 \— g
o
7. 11 11 11 N
Compressed input stream /
10 01 10 01 11 10 11 1
X /
\
De-compression dictionary
Index Subsequence
1 00 :g
E
2 01 k|
Prefilled > £
3. 10 dictignary g
4, 11 g
Restore original stream 5. 1 1
1 11 00 11 11 11 11 6. 00 1
7. 11 11 11

Fig. 2: Example of bitwise LZ-78 compression algorithm with extension-order 2

676

Inform. Technol. J., 9(4): 673-679, 2010

pattern becomes 1111. This pattern has not been
previously seen and thus, it will be added in the next
available index, namely 5. The process continues until the
entire input stream has been completely parsed.

When the input stream has totally parsed into
subsequences, the algorithm represents each
subsequence in the dictionary except the initialized ones
as a pair (numerical value, n-bit). This representation is
accomplished by splitting each subsequence into two
parts. The first part 1s the subsequence itself except the
least significant n-bit in it, namely sub-pattern. The
second part 13 the least sigmficant n-bit in the
subsequence (which is called innovative phrase). The
numerical value is the index of the sub-pattern in the
subsequence.

In the example, shown in Fig. 2, the pair (nmumerical
value, n-bit) of the subsequence of index 5, 1111, is
demonstrated. The subsequence 1s separated into a
sub-pattern, 11 and the innovative bits, 11. This
sub-pattern 1s identical to the bmary subsequence data
exists at slot fow in the dictionary. Therefore, we
assigned the pair (4, 11) to the subsequence.

Now the BWLZ-78 algorithm determines the primary
index. This index 1s the maximum numerical value in the
pair representation of each subsequence in the dictionary.
The primary mdex is crucial in determining the variable L.
This variable is the maximum number of bits needed to
represent the primary mdex. For instance, m the given
example, the primary index is five and thus L is equal to 3.

Finally, each of the resulting pair is represented by a
uniform block of L+n bits. The 1. bits are the binary
representation of the mumerical value (1.e., first coordinate)
in the pair. The n-bit(s) are the innovation bit(s) available
in the second coordinate in the same pair. For instance, in
Fig. 2, the pair (4, 11) 1s represented as 10011. In turn, the
compressed file 1s obtained by concatenating the binary
representation of all pairs.

Bitwise de-compression process: The de-compression
side of the algorithm accepts a condensed stream and
restores the original input one. The de-compression
process starts by extracting the mformation available in
the header file. The information includes the characters
available mn the original source sorted in descending
order, extension order (n) and the variable I. (Fig. 1).

Based on the extraction of the header file mformation,
the received stream is divided into equal blocks of fixed
size L+n. Thereafter, each block 1s converted back into
pairs (numerical value, n-bit). The first coordinate is the
decimal equivalent that corresponds to the first L bats.
This decimal value is the index of the root subsequence.
The second coordinate is the least sigmficant n-bit (i.e.,
innovation bit(s)).

677

The next step in the de-compression process is a
dictionary construction. Firstly, the dictionary 1s pre-filled
with the same initialization subsequences that are used in
the compression process. As was previously mentioned,
the extension-order (n) determines the number of
imtialization subsequences. The binary data m the next
free row in the dictionary results from concatenating the
root subsequence and the wmmovation bit(s). The
de-compression process continues until the last original
binary data in the compressed file retrieved back.

Figure 2 shows an example that illustrates the entire
de-compression process. In the example, the compressed
stream 1s divided into 5 bits blocks. Thereafter, each block
is converted into a pair format The corresponding pair
format to the block 10011 is (4, 11). Eventually, the binary
data mrow 5, 1111, 15 obtained by concatenating the root
subsequence at index 4, 11, with the innovation bits 11.

Finally, the equivalent binary file restores back. Now,
to retrieve the original ATF, the binary file is simply
divided into fixed-length codewords of eight bits each. In
turn, each eight-bit codeword is remapped into its
corresponding character in according with the header file
information.

SECURITY OF ARABIC COMPRESSED FILE

One of the characteristics of the proposed technique
15 that it naturally places embedded secwrity on the
compressed file. The security is based on auto-generation
of the mapping table, extension-order () and the length
of the binary encoded representation (I.). These
parameters collectively are stored in a header file shared
between the compression process and the
de-compression one. The header file forms a private key.
It 1s noteworthy that the frequency of occurrence for each
Arabic character depends solely on the input file, 1e, a
character may have different assigned codes depending
on its frequency in the mput file. For mstance, the
character “Meem” in Table 1 is assigned to the code
11111011. The same character in Table 2 13 assigned to the
code 11110111.

EXPERIMENTAL RESULTS AND DISCUSSION
To enswe the faithfulness of the proposed
compression techmque, two ATFs with different sizes has
randomly selected. The performance of the proposed
techmque is compared with the traditional LZ algorithms.
The comparison has been performed based on two
mapping schemes, ASCII and dynamic mapping scheme.
The compression ratio as well as the

compression/decompression speed at any extension order
(n) is measured. Figure 3 and 4 show the performance

Inform. Technol. J., 9(4): 673-679, 2010

8 CR_ASCI
o CR_dynamic

||

Extersion order (n)

Compression ratio (bit/character)

Fig. 3. Compression ratio (bits/character) versus the

extension order (1) of asnaad 3= 4 txt file

0 CR_ASCI
{0 CR_dynamic

Compression ratio (bit/character)

1 T 2 T 4 T 1
Extersion order (n)

Fig. 4: Compression ratio (bits/character) versus the
extension order (n) of (uy s s txt file

comparison of traditional Lempel-Ziv and the proposed
technique in terms of compression ratio for different
extension-orders (e.g., n =1, 2, 4 and 8).

In Fig. 3, it is easy to see that the adaptive
compression techmique outperforms the other
compression techniques that manipulate the generated
binary file based on using the conventional ASCTI code.
Furthermore, one can observe that the BWLZ-78
algorithm of the fourth-order extended binary source
(1., a source with 16 symbols) achieves a compression
ratio close to that of the conventional I.7-78 algorithm.

To scrutinize in-depth the performance of applying
BWLZ-78 algorithm on ATF, another file has been
manipulated. Thus file 1s entitled (uymli 4as txt with a size of
413 kB. The amount of compression displayed in Fig. 4
shows that the performance of the compression techmque
is consistent with that one of s gad G 3 txt (size of 765 kB)
file at any extension order (n).

CONCLUSIONS

The proposed technique can be utilized to reduce the
volume of Arabic data to be exchanged through medium

678

or stored on disk. The efficiency of the new technique
stems from the fact that it is file-dependent. As a result,
each file is condensed using its own character mapping
table. It 15 noteworthy that the construction of such a
table increases the overall time complexity of the
compression process. However, this slight increment in
time complexity will amortize by the efficiency that the
proposed techmque achieved. In addition, we do believe
that the advancements in technology will reduce the
impact of this complexity.

Moreover, the proposed technique increases the
security of the compressed file. This 1s achieved by using
the mapping table as a private key. In sum, the results
motivated the researchers to apply the proposed
algorithm to other data types such as voice and image.

REFERENCES

Bell, T.C, I1.G. Cleary and LH. Witten, 1990. Text
Compression. Prentice Hall, Englewood Chffs,
Reading, New Jersey.

Elabdalla, A.R. and M.I. Irshid, 2001. An efficient bitwise
Huffman coding techmque based on source
mapping. Comput. Electrical Eng., 27: 265-272.

Held, G. and T. Marshall, 1991. Data Compression. John
Wiley and Sons, New York.

Jaradat, A R. and M.I. Irshud, 2001. A simple binary run-
length compression teclmique for non-binary
sources based on source mapping. Active Passive
Electronic Components, 24: 211-221.

Jaradat, ARM., MI Irstud and T.T. Nassar, 2006a. A file
splitting techmque for reducing the entropy of text
files. Int. J. Inform. Technol., 3: 109-113.

Jaradat, ARM., MI Irshid and T.T. Nassar, 2006b.
Entropy reduction of Arabic text files. AsiaJ. Inform.
Technol., 5: 578-583.

Kanaan, G., R. Al-Shalabi and S. Ghwanmeh, 2006.
Efficient data compression scheme usmg dynamic
Huffman code applied Arabic language.
I. Comput. Sci., 2: 885-888.

Kida, T., M. Takeda, A. Shinchara and S. Arikawa, 1999.
Shift-And Approach to Pattern Matching in LZW
Compressed Text. In Combinatorial Pattern
Matching, Crochemore, M. and M. Paterson (Eds.).
LNCS. 1645, Springer-Verlag, Berlin, Heidelberg,
ISBN: 978-3-540-66278-5, pp: 1-13.

Musa, A. and M. Irshid, 2008. A modified text
compression technique based on Lempel-Ziv

o1

algorithm. Proceedings of the International
Conference on Information and Knowledge
Engineering, (ICTKE’08), Las Vegas, Nevada,
pp: 515-522.

Inform. Technol. J., 9(4): 673-679, 2010

Musa, A., A. Al-Dmour, O. Al-Khaleel and M. Irshid, Sayood, K., 2000. Introduction to Data Compression.

2008. An efficient text compression technique using 2nd Edn., Morgan Kaufmann, San Francisco, TUSA.,
Lempel-Ziv algorithm. Proceedings of the ISBN: 1558605584, pp: 636.

International Conference on Modeling and Zeeh, C., 2009, The Lempel Ziv algorithm.
Simulation Conference, Nov. 18-20, Petra-Tordan, http: /tuxtina. de/files/seminar/Tempel ZivReport. pdf.
pp: 72-76.

Powell, M., 2009. Evaluating lossless compression
methods. http://corpus.canterbury.ac.nz/research/
evaluate.pdf.

Reynar, I, F. Herz, J. Eisner and L. Ungar, 1999.
Lempel- Ziv data compression techmque utilizing a
dictionary pre-filled with frequent letter
combinations, words and/or phrases.
http: //www patentstorm.us/patents/ 5951623 html.

679

	ITJ.pdf
	Page 1

