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Abstract: The domain decomposition scheme is a high efficient and useful method which is widely used in the
field of the fimite difference parallel computing on parabolic equation. The natural method of parallel solution
of the partial differential equation is to divide the solution area mto several sub-regions and then independently
calculate the problem of each sub-region. To solve the two-dimensional heat equation on parallel computers,
we present new domain decomposition algorithms wherein the space domain is divided into two independent
sub-regions along with x-axis or divided mto four independent sub-regions along with the x-axis and y-axis. The
values of the interface points between sub-domains are calculated by Du Fort-Frankel scheme. The values of
the interior points are solved by the fully implicit scheme.
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INTRODUCTION

In recent years, with the need of great scale scientific
computing and the maturity of parallel computing
environments, domain decomposition method (Quarteroni
and Valli, 1999, Dawson and Dupont, 1992; Marini
Quarteroni, 1988; Mathew et al, 1998) has been an
effective approach to solve partial differential equations
numerically. There are a lot of good work in this field:
Dawson et al. (1991), Wan et ai. (2002), who made domain
decomposition algorithm of the explicit-implicit scheme to
let cut D? times over than the classical explicit scheme on
the restriction of the stability and the convergence that
is M/h*<D*/2  but the accuracy achieved o(At+h* +IT%)
The i1dea in Zhang (1998) 1s almost
Dawson et al. (1991), however, the former used explicit
scheme of Rodrigue and Wolitzer on the interface point.
The stability condition is At/h*<2; the error is o{At+h?).
Peaceman and Rachford (1993) and Zhou and Yuan (1999)
proposed the parallel difference format for parabolic
equation with the error o(At/h"”+h**). The reference
Zhang and Shen (2002) used the Saul’yev asymmetric
difference scheme which is adopt the stride step H to use
i the mterface pont, furthermore, constructed a new
domain decomposition algorithm and give a prior error
estimate o{At+h® +H®) which is in circumstances of two
sub-regions and the stable condition is At/h*<D* . In

same with

order to improve the accuracy of the interface point, the
reference Du et al. (2001) considered the multi-step explicit
scheme and the one-step high-level explicit scheme.

Domain decomposition algorithm for one-dimensional
heat equation: Zuo and Yuan (2003) proposed a new
domain decomposition algorithm for one-dimensional heat
equation by using Du Fort-Frankel scheme at the interface
pomnts and the fully inplicit scheme at the interior points.

Firstly problem of solving the one-dimensional heat
equation 1s considered:

a%t_afu (=0 XSO, te O.T]
ux,0y=u"(x), xe (0,1 (1)
u{0,ty=u(l,t)=0,te {0,T]

where, u°(x) 18 a given function.

For simplicity, at first we divide domain (0, 1) into
only two sub-domains (0, X)and (X, 1). Suppose N, M,
D are positive mtegers. Let h=1/Nandx, = 1,1=0, ..., N.
Take 1T =at=T/M and t" = nat, with the assumption
that X = x>0 for integer K. A related parameter is H = Dh
and H<min( X 1-X)

We will refer to points (x, t') as boundary points if
1=0orN, orif n = 0. Sunilarly, we refered to them as
interface points if x = X and n>0. Otherwise, they are
interior points.
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We defined a function u(x, t) at mesh point (x;, t%). Let
u® =ux, t"). Also we defined two difference operators:

u—ut 2

n-1 _

0, U7 = % (2)
et gt et 3

ai hu? — i+l h12 i-1 ( )

The one-dimensional finite difference domain

decomposition algorithm designed in Zuo and Yuan
(2003) is as follows:

Algorithm 1
U = u" at boundary points:
U -Ur UL, -0+ Ui+ U,

27 H*
at interface points, n=1,2, .. M

=0 4

n+l n n+l n+l n+l
U -ur UL -0 AU

=0
T h?
at interior points, n=0,1, 2, ., M
UFSUL UL 2R U,

T I3

at interface pomts, n=0

where, U” is the numerical solution of the exact solution
of the problem (1). Algorithm 1 can be shown that the
computation from time level n-1 to n 1s at first to solve the
mterface pomts by using Du Fort-Frankel scheme and
then to solve the interior points on the two sub-domains
(0, Xy and (X, 1) independently. For the solution U of
Algorithm 1 it holds that:

Theorem 1: The truncation error of Algorithm 1 1s:
1, T
o{t+H*+ ﬁ)

Tt is generally required to limit the step site T and h,
wher,

1:—)0,1—>0
H

in the calculation to achieve the accuracy O(At+h®),

Theorem 2: Algorithm 1 is absolutely stable.

In this study, new domain decomposition algorithms
are presented for the two-dimensional heat equation
based on Algorithm 1 in Zuo and Yuan (2003). The
algorithms are unconditional stable and their truncation

eITors are:
12
o(t+H*+ F)

New algorithms for the two-dimensional heat equation:
Consider the following two-dimensional heat conduction
equation, u(x, v, t)is a solution of the heat equation on
£ =(0,1)x(0, 1). Specifically, u satisfies:

fu 9% ou
E_§_?:0’ (x,v)e Q, te(0,1)
ux v, =u"x,y), xyel &)

ulx,y,t)=0,(x,y)e 0Q.

We start a simple two-domain scheme. Take:
Q ={xyeQ:x<x}, Q,={xy)ec:X<x} (6)

Let y, = jh, j = 0, .., N. In analogy with the one-
dimensional case we will call a pomnts (x, y, t") as
boundary points if n= 0 or if %, ¥;)€ 82 Such a point with
%, = X will be an interface point if it is not a boundary
pomnt. The remaining pomts (x;, v, t*) are in (£2,08,)<(0, T]
and are intericr points. The values U?,; will approximate
uZ = ulx, ¥t let uf=u(x,t*). Defined the difference

operators:

u. . —u
Byl = N
! ’ T
R N R
2 no_ Y ij i1, (8)
ax,hul] - hz
-1 a1, a1
3 Upg — 20 FUT (9
ay wlij = I

We extended the one-dimensional parabolic equation
to two-dimensional one. At interface pomts we use the
improved Du Fort-Frankel scheme; at mterior points we
use the full-implicit scheme. The algorithm 1s as follows:

Algorithm 2:

o _,on
Ul =uf,

at boundary points
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n+l n-1 n n+l n-1 n n+ n-1 n
Ui,? ’Ui, H»D g (U),+ U ) +U, D,j _ Ui,]+1 - (UJ + U),j ) + Ui,]—l -0
2t H* h?
at interface points, n=1, 2, ..., M
n+l n n+ n+1 n+l n+l n+l n+l
UI,J _U:,, 7U|+1,_2U Ux—lJ 7U: J+1_2U U” 1 -0
T h? h?
at interior points, n=0,1,2, ---, M
Ut -uy B Ui, —2UL+ U B U, - 20+ U “a
T H2 h2
at interface points, n = 0
(10)
Algorithm 3:
U7, =u;; at boundary points
n+l n-1 n+ n-1 n n+l n-1 n
U.,T _UU _ ,+1]_(U T U )+U. Li _ U),J+D _(U),: +U.,] ) +U|,,7D -0
27 h? H*
at interface points (x ,y,,t")= (x1,§,t"), n=12,--M
n+l n-1 n+l n-1 n+ n-1
UiD -0 Ul —(UI +USH +UL, UL, — (U5 + U+ U7 0
2t H® b’
at interface points (xg,¥;,t") = (x,¥,t"), n=1,2,--- M
n+l n n+ n+ n+ n+l n+ n+
U;; —UL17U1+11—2U Ul_LJiUU_‘_l—ZU +Uu—1:0
T h* h*
at interior points, n=0,1,2,--- M
n+l n n n n
U -Un UL -2UL UL U - 205U o
T h2 H*
at interface points (x,, ¥, ,t™) = (x,,¥,t"),n =0
n+l n n n n
U -UL ULy, —2UR UL, UR, —2UR + U7, o
T H2 h*
at inferface points (xy,¥,,t") = (x,y,,t"),n=0
(11)
Algorithm 4:
U7, =u]; at boundary points
n+ n-1 n n+ n-1 n n+l n-1
UJ _UX,J 7U:+DJ _(U: U )+U: -D,j 7Ul,j+D _(U,,+ U )+UU D -0
2T H* "
at interface points (x,,¥x, 1) = (X, %,1), (K, ¥, 8) = (%, 7,1
D£i=N-D,D<j<N-D,p=1,2, -, M
U UN U, (U UR) SN, U, (U U UL,
2r h? H
at interface points (x,,¥,.t") = (x,,¥,t"),0<i<D, N-D<i<N,n=12,--- M
Uf:'q - Uf:]_l _ U,nm] - (UMI + Un_l) + U, Dj _ .,+1 (UMI +U“_l) + U)] 1_
2r H h*
at interface point (Xy,y,,t") = (; ¥;t"),0<j<D, N-D<j<N,n=12,--M
UR-Un UR -2l UMy URL -20pt Ul _
T h® h?
at interior points n=0,12,--- M
U U U, U U UL Ul (R U A o
2r H H
at interface poits (.. 1) = (X, 3.1, (K.Y, 17 = (K. ,,1%)
D<£i=N-D, D<j<N-D,n=0
U -U UL, U AU UL, U - (U U AU, —o
2T h? H*
at interface points (x;,y,.t") = (x1,§,t") 0<i<D, N-D<i<N,n=0
U -uy U, —(U LU+ UL Ui (U +UY UL —o
2T H* h*
at interface points (x;,y;,t") = (;,yj,t"), 0<j<D, N-D<j<N,n=0
(12)
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Stability and truncation error analysis of the new
algorithms: In order to verify the stability of the
Algorithm 2, 3 and 4, we developd the following lemmas:

Lemma 1: (I, 2004) if b and ¢ are real numbers and x,, x,
are the roots of x*-bx-c = 0,then we have [x|<1,i=1, 2 if
and only if |b|<1-2<2.

Here, we only discuss the stability and error of
Algorithm 4.

Theorem 3: Algorithm 4 1s unconditional stable.

We only examine the difference scheme at mterface
points, the formula at interface points of Eq. 12 can be
deformed into:

v
2(D + DT)UM
H*

AP+ 2T .
T)U '+ 72(U1,_|+1 +UIL)

(UWD s UL

(13)
1-

Transform it into its equivalent two-level difference
equations:

)[]—nd
i

i

D4+ DT
U+l - Vi

1+ 2D +Dt
iiN

2t
+ E UI;‘J+1 + U;‘,J_1)

( gt

nel _
Y=

(14)

Let U= (U, V)" and make U, = V"¢"""™" {0 substitute the
above formula, then:

1+2(D*+ DA 0 el gh(iah _ 0 1-2(D" + DA yrg(h
0 1 1 0
" 2 0 g iDE 220 i hg sl
0 0 0 0
T 0 gttty it | 0 ngili+kingioh
0 0 0 0

8hcosaDh 1-2(D*+ DA

= Vnem(_‘+k)h
1 0
(15)
8.cosoDh  1-2(D° + DA
V| 1+ 2(DF + DA 1+ 2(DF 1 D VT (1e)
1 0
the growth matrix 1s:
8hcosaDh  1-2(D° +DA
Gltky=| 1+2D +n 1+ 2(D* + D (17)
1 0

the characteristic equation of G(t, k) is:
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,  8AcosaDh

2
oo m_l—Z(D +DA
1+ 2(D* + DA

= (18)
1+2(D* + DA

0

by Lemma 1, the characteristic roots of G(7, k) satisfy
the following condition:

‘ 8hcosaDh
1+2(D° +DA

401+DY |
1+2(D* +Dx

b] = =1-c<2 (19

<]
|

Tt is able to get the growth matrix |G| <1, thus proving
that the algorithm is unconditionally stable.

Similar as the proof of Theorem 3, the Algorithms 2
and 3 are unconditionally stable.

Theorem 4: The truncation error of Algorithm 4 is:
), T
o{t+H" + ﬁ)

Proof: Here, we analysis the truncation error of Eq. 12 at

point (i, j, n)
UL U Uk~ (U + U + Ul U — (U3 + U D+ UL
21 H* H*
ur +raU‘n‘j+0(rz)—(U“ - in’JJro('cg))
o T S
2%
aur zgur 5 gur ou?
Ul +H—H JHE e +H——3"J +o{H") -[U}, +1—2 + o(z7)]
i ox 2 ox 6 ox i ot
HZ
n aUn Hz aZUn H3 aEUn
UR g o+ UR —H S T T T ot
B [0 p ()] + U, T (H™)
HZ
aur. el P eul our.
IEIS i L e B e Y T L O S BN,
. dy 2 ' 6 By . &
HZ
dut our  mHlo'ur. wlo'ur
AU o+ U —H I T ot
(U1, = 5 o+ U, Bt 5 ST o
_ =
o U UL oy soi) o) = o + B+
=—l— Lto@ty+o(H)+ o(—)=oft+ H +—
& FYE ay? = o’
(20)

Similar as Algorithm 4, the truncation errors of
Algorithm 2 and 3 are:

Table 1: The numerical results when h = 0.05, At=0.0001, r= 0.4

2
o(t+H? + %)

1t 18 generally required to limit the step site T and h, when
=0, (t/H)-0, in the calculation to achieve the accuracy
O(At+hd).

RESULTS

Let u’(x, y) = sin(nx)sin(ny) in the two-dimensional
heat Eq. 5. Then the exact solution of Eq. 5 1s:

u(x, y,t) = exp(—2m ) sin(rmx)sin{my)

InTable 1-6, N =20,D =2, t = 0.5, x = 0.5 absolute
error 1 denoctes the absolute error between exact solution
and Algorithm 1, absolute error 2 denotes the absolute
error between exact solution and Algorithm 2, absolute
error 3 denotes the absolute error between exact solution
and Algorithm 3, absolute error 4 denotes the absolute
error between exact solution and Algorithm 4.

Table 1 and 2 show the comparisons of the
calculation results between Algorithm 2 and 1 when the
grid ratior 1s 0.4 and 8, respectively for two dimensional
heat equation. From the numerical results we conclude
that: if the value r<2, the degrees of accuracy between
two methods are comparable. While when the value 12,
the numerical solution of the Algorithm 1 begins to show
the obvious instability. Algorithm 2 maintains the
unconditional stability without degrading the overall
approximation order.

Table 3 and 4 show the comparisons of the
calculation results between Algorithm 3 and Algorithms
1 when the grid ratio r is 0.4 and 8 respectively for two-
dimensional heat equation. From the numerical results we
conclude that: if the value r<2, the degrees of accuracy
between two methods are comparable. While when the
value 12, the numerical solution of the Algorithm 1
begins to show the obvious mstability. Algorithm 3 not
only mamtams the unconditional stability, but also does
not decrease the overall approximation order.

N Exact solution Algorithm 1 Absolute error 1 Algorithm 2 Absolute error 2
0.1 1.5983e-05 1.8040e-05 2.0564e-06 2.1304e-05 5.3213e-06
0.3 4.1845e-05 4.7229¢-05 5.3838e-06 5.0783e-05 8.9378e-06
0.5 5.1723e-05 5.8378e-05 6.6548e-06 6.1546e-05 9.7916e-06
Table 2: The numerical results when h = 0.05, At=0.0002, =8

v Exact solution Algorithm 1 Absolute error 1 Algorithm 2 Absolute error 2
0.1 1.5983e-05 Overflow Overflow 3.6547e-05 2.0564e-05
0.3 4.1845e-05 Overflow Overflow 9.5683e-05 5.3838e-05
0.5 5.1723e-05 Overflow Overflow 1.1827e-04 6.6548e-05
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Table 3: The numerical results when h = 0.05, At =0.0001, r=0.4

i Exact solution Algorithim 1 Absolute error 1 Algorithm 3 Absolute error 3
0.1 1.5983e-05 1.8040e-05 2.0564e-06 2.0349¢-05 4.3658e-06
0.3 4.1845e-05 4.7229¢-05 5.3838e-06 4.999%¢-05 8.1546e-06
0.5 5.1723e-058 5.8378e-05 6.6548e-06 6.1056e-05 9.3325e-06
Table 4: The numerical results when h = 0.05, At=0.0002, r=8

¥ Exact solution Algorithm 1 Absolute error 1 Algorithm 3 Absolute error 3
0.1 1.5983e-05 Overflow Overflow 3.1309e-05 1.5326e-05
0.3 4.1845e-05 Overflow Overflow 9.2853e-05 5.1008e-05
0.5 5.1723e-05 Overflow Overflow 1.1619e-04 6.4467e-05
Table 5: The numerical results when h = 0.05, At=0.0001, r=0.4

i Exact solution Algorithim 1 Absolute error 1 Algorithm 4 Absolute error 4
0.1 1.5983e-05 1.8040e-05 2.0564e-06 1.8738e-05 2.7549¢-06
0.3 4.1845e-05 4.7229¢-05 5.3838e-06 4.9729¢-05 7.8841e-06
0.5 5.1723e-05 5.8378e-05 6.6548e-06 6.0462e-05 8.7392e-06
Table 6: The numerical results when h = 0.05, At=0.0002, r=8

i Exact solution Algorithim 1 Absolute error 1 Algorithm 4 Absolute error 4
0.1 1.5983e-05 Overflow Overflow 2.5857e-05 9.8743e-06
0.3 4.1845e-05 Overflow Overflow 7.770%9¢-05 3.5861e-05
0.5 5.1723e-05 Overflow Overflow 1.0527e-04 5.354%-05

0.0 g0

Fig. 1: The exact solution whenh = 0.01, At = 0.01,
v =0.01

The Table 5 and 6 show the comparisons of the
calculation results between Algorithm 4 and Algorithm 1
when the grid ratio r is 0.4 and &, respectively for two
dimensional heat equation. Based on the numerical
results, the following conclusions are drawn: if the value
r<2, the degrees of accuracy between two methods are
comparable. When the value r>2, the numerical solution
of the Algorithm 1 begins to show the obvious instability.
Algorithm 4 maintains both the unconditional stability
and the overall approximation order.

The real solution and approximate solution obtained
from Algorithm 2 are shown in Fig. 1 and 2, respectively.
The experimental results are obtained under the following
conditions: his 0.01; Atis 0.01; yis 0.01.

From Fig. 1 and 2, we find that the approximate
solution of Algorithm 2 13 comparable with the exact
solution of Algorithm 1. The truncation
Algorithm 2 1s:

error of

0.0 0.0

Fig. 2: The approximate solution when

At=001,y=0.01

h = 001,

2
o(t+H? + %)

Moreover, this algorithm is absolute stable. This
verifies the superiority of our algorithm.

CONCLUSION

In this study, we developd a novel domain
decomposition method with better stability and
calculation accuracy, while we obtamn the stability
condition and the maximum norm error estimates.

In the two-dimensional case, through integrating the
interface, we use Du Fort-Frankel scheme to establish a
series of domain decomposition methods. Those
methods improve the stability condition when compared
to the other methods which are proposed in the previous
study.
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Analysis results show that appropriately integrating
the interface, particularly, the use of Du Fort-Frankel
scheme can realize the domain decomposition, meanwhile,
can greatly improve the stability conditions of the
algorithm without decreasing the overall approximation
order of the algorithm.
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