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Abstract: In this study, several versions of Strength Pareto Evolutionary Algorithm (SPEA, SPEAZ2 and
SPEA2+) are adopted and improved for voltage/reactive power control and simultaneously loss reduction in
Optimal Reactive Power Flow (ORPF) of power systems. The purpose of ORPF 1s to provide a solution that
minimizes real power loss and improves voltage profile by determimng generator voltages, reactive power
support of shunt capacitors and tap changing transformers. To enhance the algonitium’s exploiting capability,
several problem-specific Local Search Strategies (1.SSs) are incorporated to formulate three improved versions
of SPEA (ISPEA, ISPEA? and ISPEAZ+). A comparative study between original SPEAs and improved SPEAs
is also performed for ORPF on standard New England 39-bus test system. Pareto fronts and outer solutions
achieved are compared and their nondominated sets are also analyzed using C measure. Experimental results
validated the effectiveness of SPEA2+ and also demonstrated the further performance improvement in ISPEA2+
with LS5Ss. ISPEAZ2+ was found to be one of the efficient potential candidates in solving power system
multiobjective optimization problems.
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INTRODUCTION

For multiple conflicting objectives that represent
various competing performance measwres in real-world
engneering problems, improvement to an optimal solution
in one objective may only be reached by degradation in
other objectives. It implies that no single optimal seolution
exists, but rather a set of candidate solutions
characterized by tradeoffs in their objectives. Such
solutions are said to be Pareto-optimal and their
corresponding objective vectors comprise a Pareto front
characterized by varying tradeoffs.

To find a set of representative Pareto optimal
solutions in a single run, Multi-Objective Evolutionary
Algorithms (MOEAS), a class of stochastic optimization
techniques that simulate biological evolution to solve
multi-objective problems, have been proposed. After the
first studies in the mid-1980s (Schaffer, 1985), MOEAs
became an important research topic with significant
progress, e.g., Niched Pareto Genetic Algorithm (NPGA)
by Hom et al. (1994), Strength Pareto Evolutionary
Algorithm  (SPEA) by Zitzler and Thiele (1999),
multiobjective genetic algorittim by Deb (1999) and
Nondominated Sorting Genetic Algorithm (NSGA) by
Deb et al. (2002) etc.

Many MOEAs have been successfully applied to
solve optimization problems in power system operations.
Optimal Reactive Power Flow (ORPF) 15 one of these
optimization problems that have been studied extensively.
ORPF can obtain the best performance of reactive-power
support to promote economy and security of the power
system operation (Benzargua et al., 2006, Chettih et af.,
2008). Many techniques has been used in multiobjective
ORPF, such as e-constraint method by Yuanlin (1996)
fuzzy set theory by Venkatesh et al. (2001) normalization
method by Yousefi et al. (2004) weighted-sum method by
Zhang and Ren (2004), projection-based method by
Chen and Ke (2004) etc. The MOEA-based ORPF 1s
proposed by Abido and Bakhashwain (2005). Tt uses
SPEA, an efficient MOEA that 1s proposed by Zitzler and
Thiele (1999), to solve multiobjective ORPF considering
the objectives of voltage deviation and real power loss.
According to owr experiment, however, SPEA suffer from
excessively slow convergence speed, especially m the
early stage of the search process. As discussed by
Zitzler et al. (2001) in the situation that the current
generation does not dominate each other, very little
information can be obtained from the partial order defined
by the dominance relation. Besides, SPEA may lose outer
solutions by clustering techmique.
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TImproved versions of SPEA, named SPEA2 and
SPEA2+, are presented by Zitzler et el (2001) and
Mifa et al. (2004), respectively, to eliminate the potential
weaknesses of SPEA. In SPEA2, an improved fitness
assignment scheme 1s used to allocate strength value to
each individual in both main population and elitist
archive. A nearest neighbor density estimation technique
is used to promote solution diversity. For SPEA2+,
neighborhood crossover and mating
proposed and two archive populations that hold diverse
solutions in the objective space and variable space,
respectively, are maintained. In this study, a
comparison study of SPEA, SPEA2 and SPEA2+, is
presented for ORPF on New England 39-bus system.
In order to assess the performance of the algorithms,
C measure by Zitzler et al. (2003) 15 employed for
comparing of Pareto fronts achieved by these three
SPEAs.

It is demonstrated in some recent works (Joshua
and David, 20035) that the combination of Local Search
Strategies (1.SSs) and Evolutionary Algorithms (EAs) can
combine the global search ability of EAs (Wang et al.,
2009) with the local refinements advantage from T.SS,
greatly increasing the convergence speed. SPEA, SPEA2
and SPEA2+ are combined with L.SSs and therefore three
corresponding improved algorithms, ISPEA, ISPEA?2 and
ISPEA2+, are proposed for better convergence speed.
problem-specific  LSSs, shunt
compensator manipulation LSS, generator voltage
mampulation L3S, tap manipulation LSS, max-min LSS,
swap LSS, etc. (Iba, 1994; Bakirtzis et al,, 2002) are
incorporated into SPEA, SPEA2 and SPEA2+ for better
exploiting capability.

selection are

Several such as

PROBLEM FORMULATION

The goal of ORPF is to optimize the steady state
performance of power systems m terms of one or more
objective functions by optimally setting the reactive
power facilites (generators, shunt capacitors
transformers), while mamtaming the system voltages
within limits. ORPF can be formulated as:

and
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where, in Eq. 1, f,.. N. Gy, and 0; represent,
respectively, the real power loss; the number of
transmission lines, the conductance of line k that
comnects bus 1 to bus j; 1s the voltage phase difference
between bus 1 and bus j. In Eq. 2, f;, 1s the total voltage
deviation; N 1s the bus munber of the power system;
V., V= V™ are the desired voltage magnitude, the upper
limit voltage magnitude and the lower limit voltage
magnitude at bus i, respectively.

Minimization of system loss: Equation 1 represents the
system loss objective. This objective is to minimize the
power energy loss of power transmission lines. The real
power loss on each individual line is calculated and the
system loss 1s calculated by a sumnmation as

Minimization of voltage deviation: Equation 2 represents
the voltage deviation objective. This objective is to
minimize the voltage deviations from desired voltage
magnitudes to improve voltage profile of the whole
system. Tt can be calculated by

Power balance constraints: Equation 3 and 4 represent
power balance constraints that represent real and reactive
power balance at each bus, where P, and Q; are reactive
and active power injections at bus 1 and G; and B; 1s the
transfer conductance and susceptance between bus 1 and
bus j respectively. The equality constraints in Eq. 3 and 4
are nonlinear equations that can be solved using
NewtonBRaphson method.

Dependent variable constraint: For secure operation,

dependent variables are restricted in boundaries.
These include the constraints of voltages at load buses
and reactive power injection at generator buses as

inEq. 5 and 6, where, Ny, represent the number of PQ
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buses, Q. Q& and Q3 denote reactive power
generation of generator at bus i and its lower and upper
limits, respectively.

Control variable constraint: To optimize the two
objectives in Eq. 1 and 2, reactive power facilities are used
to adjust the reactive power flow of the network. Control
variables of ORPF mclude voltages of generators, reactive
power generation of capacitors and tap ratios of
transformers:

Vo = [V, Vo2 Vo o, ]

G.HNg

Qc = [Q;,p QE,E"'QE,NC 1

T, = [T, T Tow, ]

where, V,, Q, and T are vectors composed of generator
voltages, shunt capacitors and transformer tap ratios
respectively, N N, and N are the number of generators,
shunt capacitor compensations and transformers,
respectively. Control variables are restricted in lower and
upper boundaries due to the capacity of the equipments
as in Eq. 7-9, where, V57, Vii', Qu°, T and T
are minimum and maximum limits of the corresponding
variables.

Equation 1-9 represent multiobjective ORPF
considering two conflicting objectives. Tt is inherently a
mixed-integer nonlinear programming problem involving
multiple objective functions, nonhnear constraints and
both continuous variables and discrete variables.

Ak
i o

STRENGTH PARETO
EVOLUTIONARY ALGORITHM

For multiple objectives, Pareto concept serves as the
basis for fitness assignment of SPEAs, which can be
defined as follows.

Dominate: A solution x, 1s said to dominate x, (denoted
by x,<x,) if and only if:

Vie {L,2.m}: f(x)=f(x;)
Jje {1,2..m} :fj(xl) <fJ (x,)

Usually, the Pareto concepts are defined with respect
to the entire control variable space. For SPEAs, however,
these concepts are often restricted in a particular set, i.e.,
S=ix,1=1.n}.

Nondominated solutions: A solution x 1s said to be a
nondominated solution of set S, if xS and there 1s no
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solution x'cS for which x' dominates x. A set P contains all
these nondominated solutions is the nondominated set of
S, which may be denoted by P = Dom(S).

Pareto front: PF = {v | v = [{,(x), L,(x) YT, (x)]", xcP} is said
to be Pareto front of set S.

If we replace S with populations in
evolutionary techniques, e.g., population at generation
k, 8% = §x® i =1.n%%, then P¥ and PF¥ can be called
nondominated set and Pareto front at generation k,
respectively.

Regarding the tasks of preventing premature
convergence and providing decision maker with well
distributed solutions, Pareto-based fitness assignment for
multiobjective optimization is proposed. Tt explicitly uses
Pareto relations to determine the fitness of each individual
solution as by Zitzler et al. (2000). Pareto-based fitness
assignment scheme of SPEA, SPEAZ and SPEAZ2+ are
introduced briefly.

Fitness assignment of SPEA: Zitzler and Thiele (1999)
presented SPEA as a potential algorithm for multi-
objective optimization. This elitist algorithm stores all the
nondominated solutions discovered so far beginning from
the initial population in an external population. Let T* be
the external population at generation k and then a
strength value s,* is set to each individual x* in T* by:

)
w_ b

= i=1,2.n%
Pon®yl T

with

(10)

™ = |{x [x¥ < x st xMeT® xe S“"}‘
T = Dom(s(k) J T(k—l))

where, n% denotes the size of T%, ¥ is the number of
individuals in S* that dominated by x® in T%. Then, the
fitness can be computed by:

£9 =1+

by

Ui
xye T axy-xy

&)
S]

(1)

The fitness of each individual in SPEA is the sum of
the strengths of all external solutions by which it is
dominated. The best individual will have the lowest
fitness. In addition, A upper limit on the size of T* is set
and a truncation method based on clustering is adopted
when T¥ is oversized.

Fitness assignment of SPEA2: SPEA2 presented by
Zitzler et al. (2001) is an improved version of SPEA.
It allocates strength value s,* to solutions both in T®V
and S®.
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Then, the fitness can be computed as:

£ = p® ¢ &0

xJET(k—IJUSth
Ty

(12)

where, D,¥ is another density-estimation metric. It equals
the inverse of the distance to the k-th nearest neighbor.
After calculation of Eq. 12, T¥ is filled with n® best
solutions of T®Y and S%.

Fitness assignment of SPEA2+: SPEA2+ proposed by
Mifa et al. (2004) allocates fitness m the same way with
SPEAZ. The modification 1s that it mcorporates new
crossover and mating selection scheme and uses two
external populations, T% and W* to store solutions that
are diverse in objective space and variable space,
respectively.

According to the scheme of fitness assignment, the
procedures of SPEA, SPEA2 and SPEA2+ at generation k
are demonstrated in Fig. 1. SPEA combines S*" and T*"
and then generate S* by evelving process. T¥ is selected
by filtering process and then enters the next generation
together with S*. For SPEA2, T*" will go through
evolving process alone to obtain S®. T®” and 8% are
filtered and T* is generated.

Evolving: Generate new papulation by
reproduction crossover and mutation

Filtering: Choose superior solutions
1o fill the new population and discard

h %
Main population |Evelving

L
External pupuln’non Filtering

The kih-1 the rest
. . The kth+1
generation The kth generation gencration
s(l)
—>
SPEA ___ o™
SPFEA2 - LT
™
SPEA2+ ———1 >
h
-
w*

Fig. 1. Procedure of SPEA, SPEA2 and SPEA2+ at
generation k
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In SPEA2+, three populations are evolving
simultaneously. The new population S is generated from
T%" Next, filtering process combines S, T®" and W™,
then chooses superior solutions to form the new external

population T* and W,
IMPROVEMENT OF SPEA FOR ORPF

For ORPF, reactive power and voltage 1s closed
related in the system power flow. According to our
experiments, the problem-specific Local Search Strategies
(LS3s) can increase the convergence speed of MOEAs
(NSGA, NSGA-II, etc.). Here, we use LSSs to unprove
SPEAs. For Control-Bus 1.3S and Voltage-Correction 1SS,
interested readers can refer to Tha (1994).

Controller-random L8S: As shown in Fig. 2, one
controller is selected randomly and its tap position is
added or dropped for one step (AX)) if it = s a transformer
or a capacitor. For generator, one random value change 1s
added to the generator voltage.

Swap-random LSS: Two same type control variables are
chosen randomly and their control value are swapped as
shown in Fig. 3.

Max-min L.SS: One control variable is selected randomly
and its output is promoted or reduced to maximum or
minimum as demonstrated in Fig. 4.

By incorporating 1.5Ss, improved SPEA (ISPEA),
improved SPEAZ (ISPEAZ) and improved SPEA2+
(ISPEA2+), are formulated, as demonstrated n Fig. 5.

X

X,

|—"L“1

| XA, |

o

X,

Fig. 2: Controller-random T.SS

X,

Fig. 4: Max-min I.SS
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b sl S“‘) T®
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Fig. 5: Procedure of ISPEA, ISPEA2 and ISPEA2+ at
generation k

Compared with Fig. 1, an extra L3Ss procedure 1s
invoked for local refinement after evolving process. The
new population, S*, can be promoted for better quality
with LSSs in Fig. 5 and the optimal solutions can be
located more accurately. After LSSs procedure, in SPEA,
T® is selected by filtering process and then enters the
next generation together with $¥. For SPEA2, T*" and 5*
are filtered and T¥ is generated. In SPEA2+, filtering
process combines S T®Y and W% then chooses
superior solutions for external population T® and W¥.

Weighted scalar fitness function method by JToshua
and David (2005) is adopted for comparison of
nondommated solutions generated by LSSs. For a
selected solution that enters T.SSs process as in Fig. 5, all
the problem-specific 1.SSs are applied sequentially and
several new individuals can be produced. Then a weight
vector is randomly generated for fitness calculation. For
all the new generated solutions, the one with the best
fitness will be accepted.

IMPLEMENTATION OF SPEA FOR ORPF

In the evolving process of SPEAs, genetic operators
such as coding, crossover and mutation operators are
used to generate new solutions. In coding operator,
real-coding scheme is used to deal with continuous
search space. A control variable is represented by a real
number within its lower limit and upper limit. A blend
crossover operator and normally distributed mutation
operator is employed for real-coding scheme. Tn SPEA2+
and ISPEA2+, neighborhood crossover 1s also used.
Based on these genetic operators, the flow chart of the
algorithms is shown in Fig. 6 with 5 steps.

¢+ Step 1: Tnput the data of electric power systems;
calculate the admittance matrix; randomly generate
mutial population; configure algorithm parameters; set
k=1

Initialization: Input system data; set parameters;
randomly generate population; setk=1

!

Calculate objectives by Eq. 1 and 2; indentify
constraint violation in Eq. 5 and 6
v

| Assign fitness to all the soluations by Eq. 11 and 12|

Neighborhood crossover (for SPEA2+ and ISPEA2+),
blend crossover operator, normally distributed mutation
k=k+l |

Local search strategies: apply all the L8Ss to new
solutions (for ISPEA, ISPEA2 and ISPEA2+

¥

Choose superior soluation for the next
generation as in Fig. 1 and 5

Fig. 6: Flow chart of SPEAs for ORPF

s Step 2: A load flow calculation as in Eq. 3 and 4 is
performed for each solution and then Eq. 1 and 2 1is
calculated to obtain real power loss and voltage
deviation

s  Step 3: Based on the objective value calculated in
step 2, assign fitness according to Eq. 11 and 12 to
each solution in the population

» Step 4 Blend crossover operator and normally
distributed mutation operator is adopted to generator
new solutions; neighborhood crossover is used for
SPEA2+ and [SPEA2+

*+  Step 5: For SPEA, SPEA2 and SPEAZ+, go to next
step, for ISPEA, ISPEAZ and ISPEA2+, the
problem-specific LSSs are mvoked and performed on
all the new solutions for local refinements

»  Step 6: According to the filter process in Fig. 1 and
5, choose the superior solutions for the next
generation

o Step 7: Check whether the maximum iteration
quantity 1s reached. If not, k = k + 1 and go to the
step 2

CASE STUDY

New England 39-bus system is used as a test system
here, as shown in Fig. 7. The detailed system data are
listed in Tain et al. (2009).

Comparison of nondominated solutions: The population
size and generation number are set to 100. Figure 8 shows
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Fig. 8: Pareto fronts with SPEAs

the plots of PF""™ achieved by six SPEAs. Pareto front in
the objective space achieved by SPEAs provide the
tradeoff information of the two objectives, system loss
and voltage deviation. System operator can directly
choose the optimal solution according to system states
and corresponding protocols. The worst performance is
provided by SPEA since, its Pareto front is narrowed
down in a smaller region than the others.

Comparison of outer solutions: Outer solutions are the
solutions with lowest real power loss or lowest voltage
deviation 1 Pareto front as defined by Zitzler et al. (2001).
These solutions represent the extreme points of the
trade-off and can evaluate the diversity
characteristics of the Pareto-optimal solutions. Totally
100 trials are performed. For the objective of real power
loss, 100 outer solutions can be obtained at generation k
for each algorithm. Convergence curves that represent
average value are depicted in Fig. 9. Figure 10 provides
the information for voltage deviation.

surface
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54

——SPEA
——SPEA2
SPEA2+
i TSPEA
—ISPEA2
=== [SPEA2H

£ 103s (MW)

42

i 1 1 1
10 20 0

Generations k

Fig. 9: Convergence of outer solutions for real power loss
objective

—“—SPEA
——SPEA2
“““ SPEA2+
.
—ISPEA2
TTISPEAZY

fv]j (pl.l)

i
60
Generations k

20 40 80 100

Fig. 10: Convergence of outer solutions for voltage
deviation objective

The efficiency of SPEA, SPEA2 and SPEA2+ mcrease
orderly, so does their improved versions, [ISPEA, ISPEA2
and SPEA2+. The modifications proposed in SPEA2 and
SPEA2+ are proved to be effective to ehminate the
disadvantages of SPEA. SPEA converge much slower
than SPEA2 and SPEA2+, especially in the early stage.
Even its improved version, ISPEA, is less competitive
than the original SPEA2 and SPEA2+.

It can be observed that SPEAs with LSSs
outperform the original SPEAs. As shown in Fig. 9 and 10,
the curves of SPEA, SPEA2 and SPEA2+ converge slower
than their corresponding improved versions, ISPEA,
ISPEA2 and ISPEA2+, respectively. It mmplies that the
incorporation of LSSs promote the search ability and
convergence speed.

The best performances are provided by SPEA2+ and
ISPEA2+. SPEA2+ performs well compared with other
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Fig. 11: Box plots based on the C measure. Each rectangle contains ten box plots representing the distribution of the
C values for a certain ordered pair of algorithms; the ten box plots relate to generation 10, 20, 30...100. The scale
is 0 at the bottom and 1 at the top per rectangle. Each rectangle refers to algorithm A associated with the
corresponding row and algorithm B associated with the corresponding column and gives the fraction of B

covered by A (C(A, B))

algorithms and it is improved further by the problem-
specific 1.SSs. TSPEA2+ is preferable among all the
algorithms.

Comparison by C Measure: Outer solutions only
invelve two individuals of the population during
optimizing. C measwre mn Zitzler et @l. (2003) 1s adopted to
compare whole Pareto fronts. For two solution sets, C
measure can be computed by

[{be Q;Jac @ a<bl

C(QI’QE): |Q |

C(Q,, Q,) represents the proportion of solutions in set ,
that are dominated by any solution in set ;. The direct
comparison of SPEAs based on the C measwre is depicted
m Fig. 11 by box plot, a classic data analyzing tool used to
visualize the distribution of samples. A box plot consists
of a box summarizing 50% of the data. The upper and
lower ends of the box are the upper and lower quartiles,
while, a thick line within the box encodes the median.
Appendages summarize the spread and shape of the
distribution. Tn 100 trials, S, i= 10, 20, 30... 100 for any two
of SPEAs are compared. We may focus on the median of
100 trials here. Table 1 lists the median of final Cina
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Table 1: Median of C measure at the final generation

SPEA o ®o 10% 0% 0%
73.3% SPEA2 10% 40% 13.3% 0%
96.7% 63.3% SPEA2+ 73.3% 40% 8.2%
70% 13.3% 4.7% ISPEA 6.7% 0%
86.7% 46.7% 19.2% 53.3% ISPEA2Z 8%
10020 83.3% 62% 90% 60% ISPEA2+

similar arrangement as in Fig. 11. The observations in
Fig. 11 and Table 1 are largely in agreement with those of
Fig. 9 and 10, despite the fact that the method of
measurement 13 quite different.

The SPEA is proved to be a less efficient algorithm,
especially in the early stage of the evolving, when up to
100% of 1its solutions are covered by the other algorithms
at the 20th generation. ISPEA is also less efficient
compared with ISPEA2 and ISPEA2+53.3 and 90%
solutions of ISPEA is covered by ISPEAZ2 and ISPEA2+,
respectively, while it only dominate 6.7 and 0% solution
of them.

The improved SPEAs outperformed original SPEAs.
ISPEA covers 70% of SPEA’s solutions, which only
covers 10% solutions of ISPEA. ISPEA?2 covers 46.7%
solutions of SPEA2, but only 13.3% of its solution i1s
covered by SPEA2.
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Tt is observed that SPEA2+ and ISPEA2+ clearly
outperform other SPEAs. Among these two algorithms,
ISPEAZ+ 15 preferable since, only 8.2% of its population
1s covered by SPEA2+, while it covers 62% population of
SPEAZ+, at the 100th generation.

CONCLUSION

This paper studies three versions of Strength Pareto
Evolutionary Algorithm (SPEA, SPEA2 and SPEA2+) for
ORPF and also proposes three corresponding improved
SPEAs (ISPEA, ISPEAZ and [SPEA2+) by mcorporating
several problem-specific Local Search Strategies (L.SSs).
Based on the case study on New England 39-bus system,
SPEAZ+ has demonstrated its high efficiency for ORPF
and 1ts convergence speed 1s improved further by LSSs in
ISPEA2+. ISPEA2+ can search for Pareto fronts much
faster and has provided the best performance on the test
system. Its application on an energy control center of
large-scale systems should be investigated for future
works.
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