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Abstract: This study mvestigated lead time can be decomposed into several components; each having a
crashing cost for the reduced lead time and the associated crashing expenses a fixed cost. If an item 1s out of
stock in an inventory system in which shortage is allowed, the supplier may offer a negotiable price discount
to the loyal, tolerant and obliged customers to pay off the inconvenience of backordering. On the other hand,
the purposed model in which the ordering cost is regarded as a decision variable and introduces the option of
mvesting in reducing the ordering cost parameter in the classical undiscounted EOQ system. This study
investigates the integrated inventory systems with the objective to simultaneously optimizing the ordering cost,
order quantity, lead time, backorder price discount and reorder point. Numerical example is included to illustrate

the procedures of the sinple and efficient algorithm. We take many parameters into account and help the

decision maker to take choice.

Key words: Ordering cost reduction, lead time, backorder price discount, order quantity, reorder point,

crashing cost

INTRODUCTION

Inventory management is mainly about specifying the
size and placement of stocked goods. Inventory
management 1s required at different locations within a
facility or within multiple locations of a supply network to
protect the regular and planned course of production
agamst the random disturbance of running out of
materials or goods. The scope of mventory management
also concerns the fine lines between replenishment lead
time, carrying costs of inventory, asset management,
inventory forecasting, inventory valuation, inventory
visibility, future inventory price forecasting, physical
inventory, available physical space for inventory, quality
management, replenishment, returns and defective goods
and demand forecasting. A JIT inventory system focuses
on finding ways to greatly reduce the setup costs so that
the optimal order quantity will be small. Such a system,
also seeks ways to reduce the lead time for the delivery of
an order, since this reduces the uncertamty about the
number of umts that will be needed wher, the delivery
occurs. Firms can shorten lead times by storing inventory
or having excess capacity. Liao and Shyu (1991) proposed
an inventory model with predetermined order quantity and
normally distributed demand with lead time being the only
variable to minimize the expected total cost. Ben-Daya and
Raouf (1994) presented more general models by including
both lead time and order quantity as decision variables.
Based on Ben-Daya and Raouf’s (1994) results, Moon and
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Choi (1997) pointed out that the inclusion of both the
service level constraint. Hariga and Ben-Daya (1999) also
extended the Ouyang et al. (1999) model by relaxing the
assumption of a given service and treated the reorder
point as a decision variable. Kim and Benton (1995)
established a relationship between lot size and lead time
and using iterative algorithm that determines lot size and
safety stock simultaneously and compare it against a more
conventional sequential approach. Hariga (2000) modified
Kim and Benton’s model (1995) by rectifying the
expression of the annual backorder cost and proposing
another relation for the revised lot size to generate a
smaller lot size than that of Kim and Benton (1995).

In traditional Economic Order Quantity (EOQ) models,
ordering cost is treated as a constant. However, in
practice, ordering cost can be reduced through Electronic
Data Interchange (EDI) technology. Hariga (2000)
extended the Hariga (1999) study by considering the
investment in setup time reduction and the relationship
between lead time, lot size and setup time. Porteus (1985)
developed an extension of the EOQ model in which setup
cost is viewed as a decision variable by introducing the
option of investing in reducing the setup cost parameter.
Billington (1987) presented an EOQ model with the setup
cost parameter replaced by a fimction of capital
investment and obtained closed form solutions for linear
and exponential (with technological bounds) relationships
between mvestment and setup costs. Trevino et al. (1993)
presented a setup time reduction cost function to find the
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optimal lot size and optimal percentage of setup time
reduction. Hong and Hayya (1993) considered the lot
sizing problem in Material Requirements Planning (MRP)
systems by assuming that setup cost can be reduced by
capital investment. Ouyang et al. (1999) extended Moon
and Choi’s (1998) model by considering the ordering cost
as a decision variable.

A stockout occurs whenever, insufficient stock exists
to fulfill a replenishment order. During the stockout
period, either all the demand is backordered, in which all
customers wait until their demand 1s satisfied, or all the
demand 1s lost. However, in many real inventory systems,
demand can be captive partially. For customers whose
needs are not crucial at that time can wait for the item to
be satisfied, while others cammot wait will fill their
demands from some other sources. The cost for a lost sale
ranges form profit loss on the sale to some generic loss of
good will. On the other hand, the backordering could
result in handling cost and expediting cost to reduce the
lead time. In order to compensate customers for the
inconvenience of waiting, the idleness of equipment, or
even lost production dwuring the stockout period, the
supplier may offer a variable price discount on the
stockout item depending on the seriousness of the
backorder condition. Thus, both the backorder price
discount and the lead time appear to be negotiable
(Pan and Hsiao, 2001) in such a way that the supplier may
cut down the present and future profit losses and the
customers may be able to get the item as soon as possible
to resume the production. Pan et al. (2004) studied the
mtegrated mventory systems with the objective to
simultaneously  optimizing the order quantity,
backordering and reorder point under variable lead time
and that the crashing cost of lead time related with
quantity. Lo et al. (2008) considered backorder price
discount and safety factor for decision variable. Lo (2007)
builds a decision support system to deal with the
integrated inventory model and help the decision maker to
make decisions. [jioul et al. (2006) used simulation to
analyze the dynamic behavior of ultmate critical time
orders with multiple priorities and results help them to
understand the dynamic behavior of orders with multiple
priorities.

This study considers an inventory system that
agrees to shortage and the total amount of stock out is a
combination of backorder and lost sale. It is assumed that
the vendor may offer a backorder price discount to the
patient buyer with exceptional orders during the shortage
period and the backorder ratio is proportion to the price
discount (Pan and Hsiao, 2001). Furthermore, it is
assumed that the inventory lead time is controllable and
the crashing cost can be represented as a function of
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reduced lead time. On the one hand, ordering cost
parameter replaced by a function of capital investment.
Since, the shortage cost 13 explicitly included, the reorder
point 1s also treated as a decision variable in this study.

NOTATIONS AND ASSUMPTIONS

The notations used m the study are lListed as
following:

L = The length of lead time (decision variable)

Q= Order quantity (decision variable)

T, = Backorder price discount offered by the supplier
per unit (decision variable)

k= Safety factor (decision varable)

r = The reorder pomnt

T, = The gross marginal profit per wnit

D = Average demand year '

A = Ordering cost per order (decision variable)

A, = Orginal ordering cost

I(A) = Capital investment required to achieve ordering
cost A, D<A <A

6 = Fractional opportumity cost of capital

8 = Percentage decrease in ordering cost A per dollar
increase in investment I(A)

h = Inventory helding cost per unit year '

The average demand rate in units day™
= The backorder ratio
The upper bound of the backorder ratio

The following assumptions are made on the models
1n the study:

Lead time is deterministic and lead time demand X
has finite mean uL and varianced,’ = ¢°L

The reorder point r = pL. + ko, where k is the safety
factor

Inventory 18  continuously  reviewed  and
replenishments are made whenever the inventory
level falls to the reorder pomtr

The lead time consists of n mutually independent
components. The ith component has a normal
duration U, and a minimum duration w,1=1, 2, .., n,
with a crashing cost per unit time a. These a/'s are
arranged such that a, < a, < ... < a,. The lead times
are crashed one component at a time starting with the
one of least a; and so on

Let, L, be the length of lead time with component
1,2, ..., 1 crashed to their mimmum values and L1 can
be expressed as L, = Y U - ELI(UJ -u,). Thus, the

=171
lead time crashing cost R(L) per replenishment cycle
1s given by:
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R(L) = (Lrl_L) + E:la](Uj _Uj) > forL e (L1 > Li—l)

*  The backorder ratio P 1s variable and 1s in proportion
to the price discount offered by the supplier per unit
. thus, § = Pymx,/my, for0 < PBy< 1,0 < m<m,
(Pan and Hsiao, 2001)

* The capital mvestment, I(A) for reducig the
ordering cost 1s a logarithmic function of the ordering
cost A (Porteus, 1985), that is:

I(A) = uln[ﬁ] for 0 <A = A0, where, o = l
A &
A MODEL WITH NORMALLY DISTRIBUTED
DEMAND

The lead time demand X is assumed to be normally
distributed with mean pl. and standard deviation oL .
While shortage is allowed, the expected inventory
shortage at the end of a cycle is given by B(r) = o 4L P{k),
where, ¥(k) = dk)-k[1-®(k)] and ¢, ® are the standard
normal distribution and cumulative distribution function,
respectively (Ravindran et al., 1987). For backorder ratio
B, the expected number of backorders per cycle is BB(r),
the expected demand lost per cycle is (1-p)B(r) and the
annual stockout cost is D/Q[ B, + T, (1-P)[B(r) (Pan and
Hsiao, 2001). Therefore, the expected net inventory level
at the end of a cycle 15 (r-pL + (1-B)B(r)) and at the
beginning of the cycle is (Q + r-pl. + (1-B)B(r)).
Consequently, the expected annual cost comprising of
ordering cost, holding cost, stockout cost and lead time
crashing cost can be represented by:

EAC{Q.m,.r,.L)

_£+h{Q+r uL + - B)B(r)} —[mp+ 7y

Q (H
i-1

{1-pBO+— { i )+ aJ ]
=1

Substituting r = ul. + ko, into Eq. 1, we have:

EAC(QTEXkL)—?Jrh[**kUJ_} Hl L }a[ﬁ—“niwﬂ ﬁnTﬁxH

i-1
oL (k) + %{al L -L)+ Ea] (1 —uJ):|

=l

Le (L1= Li-l) (2)

As previously stated, the ordering cost A is a
decision variable and the problem under study seeks to
minimize the sum of the capital investment cost on the
reduction of A and the inventory costs by optimizing over

Q, m, k, L and A constrained by O < A < A, The objective
was to minimize the following expected annual cost:

EAC(Q,m,,k,AL)

_Baln[‘:DJ Aé’ [ +kcJ_:| H ﬂuﬂxl Q{ﬁ”nzmn ﬁnnxﬂ

oLF (k) +%{ai(Ll_1L)+
Le @ Ly (3

Subjectto  0<A <A
Taking partial derivatives of EAC(Q, 7., k, A, L) with
respect to Q, m,, k, A and L, respectively, we get:

L
2

N ¢ 2 ¢ @
oL k) - — {a L - L)+2a(U }
EACQR KAL) _ By
om, T, (3)
EF—S%X -6, }cv’f‘}’(k)
Q TED
JEACQm kALY | JO-
ak ©)
H1 Bop 1y } _[B_onz 1y~ Boty Hx .0 - Dk
Ty Q
EACQn kKAL) __6a D 7
A A

and

EACQm kAL 1 0 B ] DIB 2,
oL 2 m, ] Qlm T

S
(8)

oL (k) + %hkoL% _b

Setting Eq. 5 to zero and solving for m,, it follows
that:

_hQ 7 (%)

T
D 2
Setting Eq. 7 to zero and solving for A, it follows that:

A B0Q (10)

Solving for Q by setting Eq. 4 to zero and
substituting Eq. 9 and 10 into Eq. 4, we obtain:
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(o)’ + 2Dh[1 - %GL%‘P(I‘:)}X
oo+ ’

{ﬁu [1—%}01}”‘{’(1{) +a,(L, -Ly+ iaj(U] - u]):|(1 1)

Q =
h[l - ﬂcL/VZ‘P(k)}
2D

0

Setting Hq. 6 to zero and substituting Eq. 9 into 6 to
solve for k, then:

h

{h[lwﬁ_u]g{ﬁ_u(h_(z)gwu&)ﬂ (12)
D 2 Q| 4m, D 4

k) =1-

Tt can be verified from Eq. 11 that hQ/D<m, so that,
the relationshup @(k)=0.5 holds for nonnegative safety
factor k. Therefore, the value of n,derived in Eqg. 9 will
automatically satisfy the requirement that it 1s between 0
and m, in assumption Eq. 6.

For fixed values of Q, m_ kand A, EAC(Q, .k A, L)
is concave in Le(L,, L, ), since:

EACQmkAL) 1 hkoL—% 1
aL* 4 4 3 (13)
{h[l - B—Oﬂ:x}r R[B—Oﬂ:i + 1y — BTty HGL_Z‘-P(L{) <0
g Q

Ty

For fixed Le(L,, L, ), the values of m_, A, Q and k can
be obtained from Eq. 9, 10, 11 and 12 theoretically. Denote
these values by ", 7.", k' and A", In addition, for fixed
Le(l,, L,,), the determinant of Hessian matrix for EAC(Q,
T, k, A, L) is positive definite at (', 71,7, k', A" as shown
in Appendix.

The following algorithm can be used to find the
optimal values of the order quantity, backorder discount,
reorder point, ordering cost and lead time.

Step 1: For1=0,1,2, ..., n

*  Setk, = 0(unplies A(k,,) = 0.39894)

¢ Substitute Ak, ) into Eg. 11 to evaluate Q;,

¢ Use Q, to determine @(k,) from Eq. 12, then find kin
from @(k,) by checking the normal table. Letk, =k,

¢+ Repeat (i) and (iii) until no change occurs in the
values of Q and k. Denote these resulting solutions

by Q;and k;

Step 2: Use Q and Eq. 10 to compute the A;and Compare
A and A,

¢ If Aj<A,, then the solution found in step 1 is optimal
for given L. Denote the solution by . Q, k. and A,

o If Az A, then for this given T, take A, = A, and the
corresponding Q, can be obtained by substituting A,
into Eq. 10 and then solving Eq. 11 and 12 iteratively
until convergence (the solution procedure 1s similar
to that given in step 1)

Step 3: Use Q and Eq. 9 to compute the backorder price
discount ;.

Step 4: Use Eq. 3 to compute the expected total annual
cost EAC(Q,, m,, k, A, L.

Step 5: Set EAC(Q, 7., K, A", L")= Min{ EAC(Q,, 1., k,
ALL),1=0,1,2,...,n}.

Step 6: (Q", ., k", A", L") is a set of optimal solutions.

Numerical example: Suppose, an item has the following
characteristics: A, = $200 per order, D = 600 units year ',
h = $20 per unit per year, m, = 3150 per unit, o = 7
units/week. For ordering cost reduction, take 6 = 0.1 per
dollar per year and ¢ = 5,800. Assurue that the lead time
demand follows a normal distribution. Apply the
proposed algorithm to solve the problem for the upper
bound of the backorder ratio B, = 0.95, 0.80, 0.65, 0.50,0.35
and 0.20 and the lead time has three components as
shown in Table 1 (Pan and Hsiao, 2001).

Apply the proposed algorithm to solve the problem
for the upper bound of the backorder ratio 3, = 0.95, 0.80,
0.65, 0.50, 0.35 and 0.20, respectively. The resulting
optimal solutions are summarized in Table 2.

For example B, = 0.95, the optimal order quantity
{Q" = 84), the optimal backorder price discount (8, =76.41),
the optimal safety factor (k' =1.97), the optimal ordering
cost (A" = 70.4), the optimal lead time (L = 4) and the
correspending total cost (EAC(Q", ,”, k', L") = 2760.94).
It 13 mteresting to observe that the upper bound of
backorder ratio B, increases, the optimal lead time, the
optimal backorder price discount and the optimal order
quantity remain unchanged. As the upper bound of
backorder ratio P, increases, the cost of lost sales
becomes smaller and the motivation for reorder point
diminishes. As the upper bound of backorder ratio [,
increases, the ordering cost is allowed higher.

Table 3 shows the optimal solutions with the
standard deviation equals = 2, 4, 8, 20 for B, = 0.5
respectively. If the demand standard deviation increases
while all the other parameters remain unchanged, the
expected cash cost tends to mcrease as illustrated in
Table 3. Therefore, the lead time should be reduced. The

Table 1: Tead time data of the exarmples

Lead time component i 1 2 3

Normal duration T, (days) 20.0 20,0 16.0
Minimum duration t; (days) 6.0 6.0 9.0
Unit fixed crashing cost a; ($ day™!) 0.4 1.2 5.0
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Table 2: The solution result of [ = 0.95, 0.80, 0.65, 0.50, 0.35 and 0.20 (I, . in weeks)

By i 0 1 2 3
L 8 3] 4 3
0.95 Q 72 75 84 101
Ty 76.21 76.41 76.41 76.69
k 2.4 2.02 1.97 1.89
A 70.04 7255 81.53 97.86
EAC{Q, Tk, A, L) 2865.43 2783.74 #2760.04 2900.08
0.80 Q 72 75 84 101
T, 76.21 76.40 76.40 76.69
k 2.06 2.04 1.99 1.92
A 69.94 T2.46 81.47 97.80
EAC(Q, ,, k, A, L) 2872.57 2789.95 *2766.11 2904.69
0.65 Q 72 75 84 101
Ty 76.20 76.40 76.40 76.69
k 2.08 2.06 2.01 1.94
A 69.85 72.39 81.41 97.75
EAC(Q, Tk, A, L) 2879.33 2795.84 #2771.00 2909.04
0.50 Q 72 75 84 101
T, 76.20 76.40 76.40 76.68
k 2.10 2.08 2.03 1.96
A 69.76 7231 81.35 97.70
EAC(Q, ,, k, A, L) 2885.76 2801.43 *#2775.64 2913.18
0.35 Q 72 75 84 101
Ty 76.20 76.40 76.40 76.68
k 211 210 2.05 1.98
A 69.68 72.24 81.30 97.66
EAC{Q, Tk, A, L) 2891.87 2806.76 #2780.06 2017.11
0.20 Q 72 75 84 101
T, 76.20 76.40 76.40 76.68
k 2.13 212 2.07 1.99
A 69.60 7218 81.25 97.62
EAC(Q, m,, k, A, L) 2897.71 2811.84 *2784.28 2920.86
*An optimal expected annual cost.
Table 3: The optimal solution result of o =2, 4, 8 and 20 for B, = 0.5 in example (L, L in weeks)
a 2 4 8 20
L 8.00 6.00 4.00 3.00
Q 75.00 70.00 85.00 114.00
T, 76.03 76.34 76.42 76.90
k 216 211 2.03 1.90
A 59.92 67.47 B82.55 110.41
EAC(Q, m. k, A, L) 2183.11 2440.30 2871.63 3954.37
Table 4: Summary of the results for example (I in weeks)
The proposed model Loet al. (2008) (A = 200)
Saving cost
Bu Q i K A L' FACEN) o - K L EAC()(2)  BAC((2)-EAC()(1)
0.95 8 T0.41 1.97 81.53 4 2760.94 121 77.018 1.82 4 2932.15 171.21
0.80 84 76.40 1.99 81.47 4 2766.11 121 77.0171 1.84 4 2937.62 171.51
0.65 8 76.40 2.01 81.41 4 2771.00 121 77.0164 1.86 4 2942.81 171.81
0.50 84 76.40 2.03 81.35 4 2775.64 121 77.0157 1.88 4 2947.72 172.08
0.35 8 76.40 2.05 81.30 4 2780.06 121 77.0150 1.90 4 2952.40 172.34
0.20 84 76.40 2.07 81.25 4 2784.28 121 77.0144 1.92 4 2956.85 172,57
data also show that lead time tends to be shortened as the CONCLUSIONS

standard deviation increases for a given ;.

Compare the proposed model with Lo et al. (2008)
model, the resulting optimal solutions are summarized in
Table 4. Also, included in Table 4 are the results obtained
from the associated model by setting A fixed at 200, along
with the corresponding saving on the total expected
annual cost of the proposed model over that of Lo et al.
(2008) model. Tt is interesting to observe that the saving
increases as §, decreases.
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Lead time reduction has been one of the favorite
topics for both investigators and managers. Under
probabilistic demand, inventory shortage is inevitable. In
order to make up for the incommoding and even the
losses of royal and uncomplaiming customers, the supplier
may offer a backorder price discount to secure orders
during the shortage period. This study proposed that
tripartite the lead time, the backorder price discount and
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ordering cost to be negotiable and the lead time crashing
cost to be represented as a function of among the order
quantity, safety factor, ordering cost and lead time. In the
study, the inventory model studied normally distributed
demand with the objective to sunultaneously optimizing
the order quantity, lead time, backorder price discount,
ordering cost and reorder point. Numerical results show
that as the upper bound of the backorder ratio P,
increases, the order quantity, lead time, backorder price
discount stays almost fixed and the expected average
mventory cost tends to decreases when all the other
parameters remain unaltered. Tf the standard deviation
increases, the lead time tends to be shortened. When
shortage occurs, the backorder discount offered to the
customers is the sum of half of the writ marginal profit and
the unit holding cost of the item during a replenishment
cycle.

APPENDIX

The Hessian matrix H of EAC (Q, w, k, A, L) fora
given value of L. can be shown as:

P*EAC(e) ]
00QDA
@'EAC(e)

[’EAC(s) #°EAC(s) 9°EAC(e)
aQ? oQar, 2Qdk
*EAC(e) 9'EAC(e) O*EAC(e)
| omoQ o’ o, ok om 0A (14)
@'EAC(e) 3'EAC(s) #'EAC(s) 8°EAC(®)
akaqy akar, ak? koA
@'EAC(e) 3'EAC(s) #'EAC(s) 8°EAC(®)
| BA8Q DA, Ak aA*

Where,

EAC{s) =EAC(Q,7_k,AL)
PEACQ.m, .k, AL) 24D m{su S }

o Q¥ Qlm (15)
VL D 3
oNL¥0) + | Ly ~1)+ 2, (U, u))
j=l
aZEAC(Qsﬁx 5k>A>L) ZDBU 1 6
= o LK) (16)
*EAC(Q,m, kA L) B DBy 2
akg_{h{l ﬂuﬂ:x +Q ﬂuﬂ:x+nm By, cwrf&b(k)
(17
FEACQr, k.AL) 0o (18)
A A
PEAC(Q 7, kALY _¥EACQR,kAL)_ D[2h
o om, am,8Q B ?{711 b joLvty

(19

'EAC(Q,m, kA L)
o, ok

FEAC(Q.;, k, ALY
x o, -

- hﬁ_oz[ﬁnxﬁu}
T, Ql m

PEAC(Q,m, k,AL) _ ?EACQ,m, .k, AL)
aQk kaQ

oL {l- DK (20)

—{Emhng Bonx}oﬁ(pcp(k)) (21)
Qi m,

PEACQ, T, kA L) _ FEACQ.m, kALY _ D (22)

3QoA 3A9Q Q?
FEACQm, kAL)_ PEACQn kALY (23)
koA aAdk
and
FEACQm kA L) _FEACQrT KAL) (24

dAdT, h om 9A

Next, we’ll evaluate the principal minor of H at poit
(Q", ", X', A"). The first principal minor of H is:

24D W[E
H,|= = = . + BD
|- 222, 2 [% % - }

oL (k) + %{ai (Lii-L)+ Xa(Uu,- uj)} >0

Since, from Eq. & that 7" = hQ"/2D + 7,/2, the second
principal minor of H is:

% * it
Hy|= wx {A* + {3,(1',71 -L)+ Y (U; - ”j)}}
QU'm =
BDD2 o’ L¥ (k")
Q™

(26)
@-B)=0

Consequently, after substituting 7, from Eq. 9 and
®(k" from Eq. 12, the third principal minor of H is:

2 oM il PR
‘sz‘ = {%{A*-;—[a)@kl -Ly+ zl:a](UJ —uJ)i”»+%(4_gﬂ)}
=

x{h{l Bo o+ }+ {ﬁﬂﬂ; + 1, — ByT ch’fq,(k*)
TEU Q TEEI

Iz, FO R }cﬁpz(k)} Dl oL
" A . i-1
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{h[l By }r [Bun +1, - BT chﬂb(k)
I, Q'
RLLE mxh[lﬁumjmmu

Dic’L
+ =

Where, F(k') = (4-Bo)d( k)P (k")-2B, (1-0(k))*

{1{25\}[
B ew

For ¥ k' € [0, «) and O < B, £1, F(k") is positive.
Hence, we have |H,;|> 0.

Consequently, after substituting 7." from Eq. 9 and
A’ from Eq. 10, the fourth principal minor of H is:

2

cJE\P(k*)xP_“U (h_q)z +7, —&)}x Fik) (27)
4 nD 4
—BU] +BU(4—sU)} ca-boy

:

_2
1- k")

2B, Dol Wik’
H,|= Taom
0

kel

LRDTLE D
R e
i"L VDK < F”““ Q) fml- B“)}xF(k*)

[ D
Q
Therefore, from Eq. 25-28, it follows that the Hessian

matrix H is positive define at (Q", ", k', A").

{A+2{ai(Li1 -L)y+ iaj(Uj —uj)ﬂx
Bu *2

R A
I]

By

T

Bmzﬂo\/fq»(k*)

(4-Bx h{lﬁﬂm; }xo\/fq)(k*)
Ty

o

nPe

T

2,
TEEI

+ =

R X —SDH FLl-Dkys0 (28
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