http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan




Information Technology Journal 9 (5): 849-863, 2010
ISSN 1812-5638
© 2010 Asian Network for Scientific Information

Management of the Reconfigurable Protocol Stack
Based on SDL for Networked Control Systems

Chen Hui, Zhou Chunjie, Huang Xiongfeng, Qing Yuanging and Shi Yufeng
Department of Science and Technology, Huazhong University of Science and Technology,
1037 Luoyu Road, Wuhan, Hubei-430074, China

Abstract: This study presented an integrated management framework for the implementation of reconfigurable
protocol stack in Networked Control Systems (NCSs). Reconfiguration is a vital capability to cope with protocol
heterogeneity and envirenmental variations and growing attention has been focused on run-time automated
management of complex functional entities of communication protocol stacks. Around the discussions on
protocol reconfiguration, there is still lacking of a systemic method for NCSs, especially ignoring the
performance verification and evaluation for the stack code replacement. Therefore, mn this study, a high level
modeling language-Specification and Description Language (SDL) was used to formalize the protocol stack.
During the reconfiguration procedure, the formal specification was evaluated through running on a set of SDL
performance models. And optimization operations would update the inefficient protocol stack till performance
constraints are satisfied. Then, a binary coding rule was proposed to construct a design space for exploring
reconfiguration parts of the formal protocol specification and generating the protocol configuration file.
Besides, the standard ELF (Executable and Linkable Format) file was employed to support the runtime code
loading avoeiding unexpected linking overheads. The experiment showed that the management framework was
efficiency for promoting the reconfiguration capability in communications of NCS with critical real time
guaranteed.
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INTRODUCTION

A networked control system is a distributed control
architecture where sensors, actuators and controllers are
interconnected through real time network. The
commumnication protocol stack that directly affects the
perceived network Quality of Service (QoS) plays a critical
role in determining the system performance. However, the
lacking of umfied commumication protocel standard
leads to the problem of communication environment
heterogeneity (Kolla et al., 2003). Besides, the availability
of communication resources may change unexpectedly,
due to changes in network user demands, or disturbances
in the network environments such as the loss of a link
(Xia et al, 2004). Consequently, the network QoS
becomes unexpectedly changeable and may not be able to
provide the required QoS level to some control tasks as
needed. In particular, critical tasks are required to
maintaining the QoS level in any case, such as maximun
bound delay bound (Cheng et al., 2007); otherwise the
result could be catastrophic.

To cope with this challenge, there has been an
increasing attention on developing protocol stack with
reconfiguration capability to provide the flexibility in such
heterogeneous and changeable environment. Traditional
monolithic protocel stacks are static in nature (An et al.,
2006). It potentially hinders the networking of products
from different manufactures or standards, let alone the
adaptability to environment variations. The concept of
dynamic configuration of protocol stack 1s introduced by
Muhugusa et al. (1995), which 1s an environment that lets
applications dynamically mix and match protocol
fimctionality according to their requirements and network
availability. Bridges et el (2007) proposed separated
micro-protocol modules to support a framework for
constructing  configurable protocol and
Min et «l (2008) discussed the dynamic code
reconfiguration mechanism in operating systems of

services.

wireless sensor network with focus on minimizing energy
consuniption. Niamanesh and Jalili (2009) proposed a
DRAPS architecture supporting the peer synchronous
reconfiguration that i1s concerning the consensus of
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protocol  stack between two communication peers
when reconfiguration happens on one side. However,
few discussions have been given on the real time
communication 1n NCSs. Moreover, most of
reconfiguration approaches pre-compute the possible
configurations, store them in a share space and at runtime
do a simple table lookup to decide the next configuration.
Due to the heterogeneous problem m NCS3s,
communication protocol configurations and control
applications are too many to be pre-compute.

Furthermore, the functional correctness and the
performance satisfaction are still lack studied in the
existing dynamic reconfiguration architectures. Prior to
the protocol implementation and system deployment, it is
not possible to completely debug the logic holes and
foresee the situation of services in the future. The SDL
technique that provides unambiguous descriptions of the
protocol fimctionality and the commumcation rules are
needed in the protocol design phase as well as in the
runtime reconfiguration phase. The SDL techmique has
been advanced for many years. The TAU SDL tool
(Telelogic Inc., 2000) provided an mexpensive but reliable
way of verifying protocols under development in advance
of implementation and fnal agreement. Chan and
Bochmann (2003) created an SDL framework that allowed
users to reuse and to add SIP services to the core
protocol. Yang et al. (2005) pointed out the lack of precise
functional descripton i the traditional network
simulators and presented a methodology of SDL-based
network performance simulation. Fischer et al. (2005)
presented an automated code generation that enabled the
flexible connection of various communication protocols.
Hannikainen et al. (2000) presented the automatic SDI.-to-
C code generation problem for an embedded target
platform. Tabri et al. (2008) studied the formal validation of
a new protocol for the load balancing approach using SDL
pattern. Tt was a load balancing approach to improve QoS
and to provide an adaptation between application and
available physical resources of network. These researches
have covered different aspect of SDL applications
respectively in the development of protocol stacks. SDL
could be served as the foundation for the design and
management of protocol stack for NCSs. Nowadays,
demands for an mtegrated management framework
become more and more urgent, which comprises
processes of evaluating, optimizing, determimng and
loading the new protocol stack configuration.

This study, our main contribution 1s to extend the
formal technique SDI. to automate and optimize the
protocol stack reconfiguration procedure, mcluding the
aspects of performance self-evaluation, configuration
self-optimization and automated code generation
Considering the real-time and dynamic characteristics, we
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firstly propose the reconfigurable protocol stack of NCS
by given its SDI. description models. Then, a set of
enviromment and structure models are provided as the
performance constramts for the runming of formal protocol
models. Such a pure-SDI. based performance estimation
approach is severed as the foundation to support the
automated evaluation and optinization procedure.
Besides, m order to optimize the code generation
procedure, a binary design space is defined to coding and
exploring the formal description space for the SDI parser.
On recewving the protocol configuration file, formatted
with the standard ELF file (T ool Interface Standards (TIS)
Committee, 1995), a self-switching scheme is presented in
the code composer to reduce the impact of code
reconfiguration operations. The code reconfiguration
operations, such as assembling, linking and swapping, are
scheduled by utilizing the system idle time without
interrupting  tasks of reconfiguration independence.
Finally, as a case study, a scheduling reconfiguration
scenario for CAN system i1s taken to demonstrate the
efficiency of our management framework for the proposed
protocol stack.

SDL SPECIFICATION AND MANAGEMENT
INFRASTRUCTURE

Reconfigurable protocol stack of NCS: In contemporary
industry, networking system and enviromment are
complicated, changeable and even unpredictable. Present
research 1s focused on protocol stack reconfiguration for
nodes of NCS. It 1s an environment that enables different
applications could dynamically adjust the configuration
of each layer, mixing or matching protocol fimetion blocks
in accordance with control demands and network
availability. Tt adopts strict layered working mode (Fig. 1).
According to the reconfiguration implementation
emphasis, the protocol stack is structured into 3 layers:
the Application (APP) layer with various objects, the
Network Transmission Layer (NTL) with software
reconfiguration end the Commumication Lk Layer (CLL)
with hardware reconfiguration.

APP layer on the top: The APP layer is the interface
between the protocol stack and users to collect the node
information and interprets the user tasks. Tt provides high
reliable data services for the applications on the user
layer. Meanwhile, all the application data calling for the
services of NTL are divided into two queues: the periodic
and the non-periodic. Besides, if the nuniber of nodes is
changed, the node management block will reassign the
node address and update this mformation for the
scheduling scheme of NTL. If the system structure or
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Fig. 1: Architecture for the reconfigurable protocol stack of NCS

application object 1s modified, the system model and
the node model will be constructed to re-initialize
platform resources, which are requuwed by the
configuration mode of CLL.

NTL. on the middle: The NTL is the key of software
reconfiguration composing of three parts: the transport
channels, the scheduling scheme and the routing scheme.
The transport channels are implemented for periodic,
sudden and non-real time data in NCS, therein, the
non-real time part deals with the seamless integration to
general file transfer and monitoring services (such as FTP
or FTTP) and the real time part concentrated on time
critical networking and controlling services to coordinate
with the real time scheduling scheme. The scheduling
scheme 15 mmplemented to control the data flow between
APP and NTL tlrough the scheduling table and the
transmission trigger signals. Based on the non-periodic
transmission declarations or measured QoS level, the
scheduling scheme could proactively reconfigure the
scheduling parameters, such as bandwidth per task, the
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polled sequence for slave nodes and the length of a time
slice. On the other hand, after the transmission is
triggered, the routing scheme could provide end to end
data link service with QoS guaranteed for the scheduling
scheme. It means the reconfiguration of routing paths
among nodes (formed as a routing table) when an
equipment join in To ow best knowledge or leave.
Therefore, all periodic and non-periodic tasks from APP
layer could be scheduled with the assumption that the
transmission delay for each routing path is bounded into
a certain range.

CLL on the bottom: The CLL comprises the Physical
Layer (PHY) and the Data Link Layer (DLL). In common,
the functionalities of PHY and DLL are integrated in a
special-purpose chip, such as the MCP2510 for CAN and
the DM9000 for Ethernet, named commumecation
controller. Thus, different from the NTL, the CLL is the
key of hardware reconfiguration that is concerning the
appropriate parameter configuration on the hardware chip.
The CLL could provide a reliable point to pomt physical
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Fig. 2: SDL based description for the reconfigurable protocol stack of NCS

link for the routing scheme of NTL. Operation mode and
fault mode are two basic operation mode of CLL. Once
contlict or link loss happemng, the sending or receiving
vector of communication controller will record it. Then,
based on the type of error, the PDUJ Analyzer starts the
Interrupt Manager to switch the working mode of MAC
controller, from the normal operation to the fault mode.
After executing operations like rollback, step out or reset,
the CLL will be back to the normal mode.

Formalized specification with SDL: As shown m Fig. 2,
the SDL description for the reconfigurable protocol stack

of NCS is specified, which is structured with distributed
processes of each layer. Tt could be grouped with layers
of APP, NTL and CTL. The layer-to-layer interface is
detailed through the interaction messages between two
processes. Tt is the minimum functional set for the design
of real time protocol stacks of NCS, unlike the style of OSI
reference model. For nstance, when the standard TCP
protocol 1s used as the implementation of process non-
real time channel, it is required to provide the signals
interfacing with process storeforward, MSG _timer and
data_process. An overview of our SDL working model 15
described as followed.

852



Inform. Technol. J., 9(3): 849-863, 2010

Firstly, the initialization of whole protocol stack is
triggered before the beginning of communication or
recalled after node reseting. A process Initialization on
the top APP 1s implemented as a user interface to convey
the configuration parameters to three processes on the
bottom CLI: CPU Iniialization, PHY Initialization and
MAC Imtialization. The ready signal from the process
gather 1s used to activate the process PDU analyzer,
which is to manage the normal mode and the fault mode of
CLL. Mode switching could be control by two signals:
one 1s fault M3G due to link errors; the other is
conflict MSG due to the simultaneous sending request.
In the fault mode, the process fault processing would
prevent the next following messages entering the sending
buffer, then, check the error type and renew the link
status. The process conflict processing would assign a
period of backoff time to the low priority message before
its resending. After fault correcting or waiting a backoff
time, the CLL will be back to normal mode: the message
sending process TX or recelving process RX.

After that, when the CLL is in the normal sending and
receiving processes, it could provide a reliable peer-to-
peer link service for the processes of routing protocol
m NTL, which i1s comsists of three processes:
storeforward, route Iut and route cal. Considering
dynamic non-periodic traffics, the routing table may not
complete. The destination address should be checked first
when the message entering the routing block. If the
process route lut reports that the destination does not
exist, the process route cal is activated to calculate the
shortest (lowest cost) routing path. Then, the route lut
could be continued and generated an address valid signal
to the process storeforward, forwarding messages to CLL
directly if the destination 1s in the same network segment,
or conveying messages to next hop node according to the
table generated by the process route_cal.

Besides, scheduling scheme is another important
function of NTL. The process MSG timer is the
calculation of transmission time, which 1s shared by two
chamnel processes, Real Time (RT) chammel and Non-Real
Time (NRT) channel. Once the time has expired, the
outdate message will be discarded and inform the
application layer that there 1s no time left for the
retransmission. The key to control message transmission
is the scheduling scheme that maintains the time table for
each sending message with QoS variations and changes
of application objects. It relied on the management of the
micro duration that distributed 1  the process
syn_scheduling and asyn scheudling, where the former
is the sorting algorithm for periedic traffic, while the
latter 15 the arrangement of the polling sequence for
non-pericdic  declaration. The process scheduling EC
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configures the time length of syn scheduling and
asyn_scheduling in each macro cycle, which is defined as
the updating period for the scheduling table. The
scheduling results update the scheduling table and
control the message flow from APP to NTL through the
process SCH_trigger, which implements the hybrid time-
triggered and event-triggered mechanism.

Fmally, the processes of APP layer are working on
the conflict-avoidance end-to-end transmission services
provided by the transfer control in NTL. The process
Node management works independently to provide the
basic address information of scheduling and routing
scheme in NTL. In the communication NCS, there exists
three deterministic data types. The process periodic_tasks
1s the message queuing service to deal with the periodic
field sampling data; while the process non_periodic_tasks
is the queuing of the emergency data and the monitoring
configuration data. The complement of sending process
1n all nodes (1.e., queue n the periodic tasks are empty)
would generate a periodic task FIN signal to start the
sending and receiving process in the process
non_periodic_tasks. On the data receiving way, all the
received data are checked in the process del tasks with
the critena defined in the user layer. If an error occurs, the
re-transmission service will be issued before deadline. If
a non-periodic declaration occwurs, the information of
occurrence intervals, source and important level will be
formed as the DCL_MSG signal and then, be sent to NTL
and  process  non periodic tasks.  During  the
asynchronous phase determined by the process TM, a
non-periodic message will be sent out once receiving its
token, repeating till all the declared message are received,
called the polling way. Then, the non-periodic queue
space 1s released, a non-pericdic_task FIN signal is sent
to the process periodic_tasks and a new macro begins.

Dynamic reconfiguration management framework:
Based on the proposed reconfigurable protocol stack, the
integrated management framework 1s the key to bridge the
gap between the SDL formal space and the executable
code space. The framework offers flexibility to build a
protocol stack of dynamically loaded code components
that provide system performance guaranteed transmission
services for the heterogeneous and changeable
environment. As shown in Fig. 3, the SDL based dynamic
management framework implements code reconfiguration
on the target protocol stack from fowr phases:
performance evaluation, description optimization, SDL
parser and code composer. Reconfiguration of the
protocol stack (in nodes of NCS) is triggered by
momtoring  the environment or system structure
changes. The network status momitor will mvoke the
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reconfiguration process for the new code to adapt with
the new communication environment. If the recquired code
version has already existed, the reconfiguration process
1s executed 1n a static way that the new version 1s directly
downloaded into the object physical address. Otherwise,
the dynamic reconfiguration process is triggered, which
15 divided mto two phase: the first i1s the performance
estimation and optimization phase; the second 1s the code
generation and implementation phase.

During the first phase, the performance evaluation
component gives estimation results on basis of the
formalized architecture and envirorment models. These
models represent the system constraints that affect the
execution of protocol stack SDI specification, such as
computation ability, resource availability and transmission
delay. Comparing with the system requirements, the
performance evaluation results could determine the object
SDI. models whether need to be optimized or not. If
performance constraints are not satisfied, the description
optimization component will fetch a new SDL process
instance from the protocol stack library to replace the old
one and enhance the related protocol functionality. The
procedures of evaluation and optimization will be
executed m a cyclic mamer tll the protocol stack
specification meets system requirements.

As for the following second phase, the SDIL
specification that meets system constraints 1s converted
to the design space by a rule of binary coding. The
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converted binary design space provides a support for the
automated code generation in the SDL parser. The SDI.
parser reads the C code files from the SDL Specification
and the protocol variation mformation from the design
space and generates a set of individual configuration files
(defined as the ELF format) for each declared
reconfiguration target space. The code generation 1s
automated with the help of the Telelogic TAU SDL suite.
Then, these configuration files are packeted and
physically transported over the network. Considering the
code implantation on the target space, the Composer
implements the self-switching scheme to manage the
runtime swapping the old stack code with the new one
by maintaining two link-list data structures a
memory ID counter. On receiving messages of
configuration file, the composer stores each file segment
in the flash address where actual reconfiguration takes
place and invokes the new protocol functionalities during
a set of specific idle tume slices, which are scheduled with
the guarantee that the normal operation mode would not
be interrupted.

and

PERFORMANCE AND OPTIMIZATION OF
SDL SPECIFICATION

Performance evaluation: The performance evaluation is
to identify satisfactory configurations of the system. In
our inplementation, the self-evaluation mechamsm is
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based on modeling the architectre and environment
constraints for the runming of protocol objects with the
same SDIL method. The runtime performance evaluation is
unplemented with interactions among three type models:
the application model, the architecture model and the
environment model. Our evaluation objects, the
application models, are instances of the SDIL protocol
stack specification, representing a set of protocol
functionalities of a single node. Architecture models are
constructed as the nmmng environment to represent the
extra implementation-dependent information on the
resource requirements of the SDL processes governing
the protocol, as well as information on the underlying
machinery. To stimulate the application model and the
architecture model, the environment model is to generate
different types of traffic load on each node and give the
performance testing report simultanecusly.

Architecture model: The architecture model can be
divided into two types of sub-models reflecting platform-
dependent constraints: the node constraints-processor
model and the network constraints-connection model.

Processor model: It mamly contamns three parameters-
processing speeds, buffers of input and output and OS
scheduling strategies. The processing speed of CPU 15 of
obvious influence on the execution time for each protocol
entity, which may be used to vary the computing power
on different rmunning platforms. The buffers are, of course,
key elements in the context of asynchronous
commumcation. The buffers of input and output are
assumed to be of type no-wait-send, which means
calculating  the behavior delays of messages
adding/removing in queues and assigning enough space
without taking mto account memory consumptions. Here,
the OS scheduling strategies are defined as the type of
deterministic and shared, 1.e., communication activities of
reconfigurable protocol stack are processed under a
deterministic conflict-free scheduling principle and
reconfiguration activities shared the 1dle bandwidths with
commumecation tasks.

Connection model: Tt mainly contains three parameters-
degree of parallelism, system structure, channel delay and
packet loss rates. Parallelism in the execution of
the protocol functions is to represent the capability of
serializing actions by rumning all  protocol stacks
(1.e., application models) on a munber of nodes. The
system structure determines the execution sequence of
the message exchanging activities among nodes. The
channel delay and the packet loss rates are the reflection
of point-to-point events that impediments the data flow in
the protocol stack.
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Environment model: The environment model is consisted
of three sub-models for controlling the evaluation course:
the traffic load generator, the performance monitor and the
test manager. According to different types of application
objects, the traffic load can be varying on each node.
Flexibility and robustness can be evaluated through
testing with different configuration on the load generator.
Within a specific architecture, the performance of the
protocol stack is evaluated under different assumed
generation rates of periodic and non-periodic messages.
During the course of performance evaluation, the
performance monitor gives runtime prediction reports and
the test manager is to support varying the testing
conditions or stimulus for different evaluation objects.

Evaluation methodology: To evaluate the network
performance, we should first construct the corresponding
simulation platform with SDL tools. We have defined
block types to specify the basic behavior and data of the
network elements such as nodes and links. The
modification of particular specifications (e.g., parameters
configuration) of each network element can be easily
accomplished by inheriting and redefining the basic block
type when the simulation scenarios are built. Note that in
the final simulation platform, we should create a specific
program component to snap and process the desired
simulation data from the SDT. process Monitor. As shown
in Fig. 4, a point-to-point evaluation scenario 1s deployed,
where the node block is a complete protocol stack model
and other design-independence blocks represent system
constraints or variations. The evaluation result is write
into a log file with the self-defined evaluation object, for
example delay result.txt.

Description optimization: The description optimization 1s
the process of reconstructing a new SDL description
when the performance was not satisfied The formalized
SDL specification 1s described by a set of extended state
machines to control the data flow and a number of precise
procedures associated with protocol behaviors. Here, our
description optimization is focused on procedures, which
could be optimized by composing different process
instances in sequence and concurrent manner.

Sequential composition is deployed in a static way
that supports minor optimization in the SDL process.
Such a composition contains choice elements for the
enumeration of protocol possible execution
procedures, which the choice condition is set by the
external performance prediction signals. When the
protocol performance is detected to be inefficiency,
a guard behavior 1s used for describing preconditions
that prefix the execution of new processes and a
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Fig. 4: A SDL-based performance evaluation scenario (2 nodes, point to point performance)

disabling behavior 1s used for reestablishing the
output signals

Concurrent  composition a plug-and-play
approach where the SDL processes for replacement
are designed off-line and deployed dynamically.
Concurrent means there is a replaceable process
running and verified off system and based on this
analysis and the specified performance aspects
(performence requirements, resource requirements of
the specification, available resources, etc.), the most
appropriate implementation process is selected for
the different parts of the SDL specification

suits

Therefore,
composition, process is the basic element for protocol
optimization. The management framework only need the
mformation of which process has been modified m the
optimization, instead of what extent of modification has
been made on it.

no matter sequential or concurrent

CODE GENERATION AND IMPLEMENTATION
OF SDL SPECIFICATION

SDL parser: In owr management framework, the SDL
parser 1s responsible for goverming the code generation

856

course and generating the protocol configuration file.
Determining the new configuration is a searching problem
in the SDIL formal space. The exploration of the formal
space 1s a challenging problem since it must be performed
within stringent time bounds and resowrce constraints.
Moreover, to compile the whole protocol stack as a single
file for the code reconfiguration in the target space is
normally considered as a high cost way and is not
suitable for being transferred through network. Thus,
exploring the SDI. protocol stack specification and
extracting the functional inefficiency parts are big
challenges for optinizing the dynamic code
reconfiguration process. In this section, the design space
exploration and generation of configuration file are
discussed.

Design space exploration: Design space exploration
involves: coding the formal file system and finding the
files that are need to be reconfigured. As shown in Fig. 5,
all the processes of the whole protocol stack file system
can be further organized mto a tree structure with three
degree depth. The root is the whole protocol stack system
and the leaf represents the process. Models on each
degree of the tree structure are assigned by a set of 3 bit
binary codes except for the root node and based on this
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Fig. 5: Mapping the SDL space with the symbolic design space

rule, a unique combination code can be easily obtained for
leaf node-SDIL process model, such as 000000000 for the
Imtialization process. For each code, the 3*nbit (n=1,2,3)
are used to denote whether the corresponding models are
modified during description optimization. If some
modification happens, these special bits will be set to 1.
For construing a reduced symbolic design space, the
coding process 1s conducted by the rule that the former
process model only searches its latter relationship on
ascending order. The relationship between two SDIL
processes 1s denoted by the symbol <>, which can be
extended to <s[d]: singal list> depended on the signal
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direction and content. We can quickly locate the change
parts of the file system by comparing new design space
with the old one. Alternatively, the configuration parts
can also be located by the special bits on the pre-order
code, following, by partially comparison on their
post-order code, other related files can be found out.

Generation of the configuration file: The protocol
configuration file is generated from the reconfiguration
parts of formal specifications and designed for alleviating
the burden of transmitting reconfiguration tasks on
network and loading code into the target space. It 1s
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composed of three elements: interaction, message and
structre. Comparing with the design space that deals
with the reconfiguration problem in pure logical aspects
of platform-independent, the configuration file 1s focus on
providing the platform-dependent information for
implementing code linking and executing, called physical
reconfiguration. Such a platform-dependent description
file could be formatted as the standard HEX or ELF, where
the former is normally widely applied for the applications
on OS-free platforms while the latter is the most prevalent
exchanging file format for UNIX based platforms.

The mapping principles to interpret physical
configuration file with logical design space can be
described as: are represented through
composing and extracting lines with the same binary code,
messages are the signal lists between the two SDL
process codes of each line and structwres information can
be allocate to specific corresponding SDI. descriptions by
the unique binary codes. In this way, the reconfiguration
mnformation denoted in the design space will be mapped
into the modification of addressing or composition
information in the configuration file, such as the segment
construction of ELF (content of segment .data, .text and
elf head).

In order to get instances of configuration file, the
related C codes that denoting the reconfiguration parts of
protocol stack have to be generated. Supporting by the
Telelogic TAU SDL suite, there are two modes for
automated generating code, namely light integration and
tight integration. Here, tight integration that supports
independent execution on the SDL process level 1s the
better choose, for reasons that an operating system 1s
used for dynamic interpreting and leading ELF files and
the processes distributed i the formal space are expected
to work in the multiple-thread concurrent execution
manner.

interactions

Code composer: Once the protocol configuration files
arriving at the target space, the code composer is the
governor for embedding the new code. The code
composer can acted in a static or dynamic reconfiguration
manner. In this section, our emphasis is on the dynamic
reconfiguration to complete the working flow of the whole
SDL based management framework. The key to the
composer implementation is to make a self-switching
scheme for the scheduling of code loading operations,
such as assembling, linking and swapping.

Self-switching scheme: Communications between nodes
of NCS are governed by a specific network scheduling
scheme 1n our reconfigurable protocol stack. Besides, it 1s
comimon that there exists an amount of other application
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tasks which are executed in a parallel mode by the
scheduler of embedded operation system (O3, or kemel)
on the node platform, called task scheduling. Code
loading operations on the target space 18 involving both
network scheduling and task scheduling process. Either
receiving a packet of configuration file, or sending a
message of file resending request due to the packet loss,
both these commumication activities are dealt with as non-
periodic tasks in the proposed protocol stack. And the
linking and swapping operations of code loading is taken
as application tasks being inserted into the scheduling
queue of OS kemnel and pended for its time slice.
Generally, in our implementation, in order to guarantee
that the communication activities of the reconfiguration
independence functionalities are not being interfered, the
commurnication tasks of reconfigurable protocol stack are
taken as a whole scheduling object for the OS scheduler
with the highest priority. In this way, the tasks related to
the new code reconfiguration can only be scheduled in
the idle time slice of protocel stack. Once the performance
of protocol stack is detected to be inefficiency, the
protocol stack will allocate time resources for code
loading operations and switch itself to the new
communication state through retrieving the time resources
with executions of new code loading. Tn our previous
work, the online Genetic Algonthm (GA) based
reconfigurable scheduling for NCS are discussed. Here, all
the code loading operations are considered as controller
tasks that are scheduled between the message sending
and receiving tasks in this GA-based methodology
(Chen et al., 2009).

Code loading operations:

Assembling operation: the configuration file has to
be segmented into different packets if the target
space and the model space are not m the same
machine, due to the limited packet size. In this case,
the target space should assemble these file segments
according to the information of ELF head file before
linking to the actual physical space

Linking operation: the new declared data and
functions are two main objects of linking operations.
They are included in the segments of .data and .text
of ELF file separately. When a new configuration file,
1e. ELF file, 1s generated. The address and size
information of the actual target space is empty to the
related .data and .text segment. On parsing the .rela
segments of ELF, the actual available address in the
target space can be extracted to renew .data and .text
segment. According to the ELF standard, each .rela
18 corresponding with a specific segment, such as the
relatext to .text segment
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+  Swapping operation: existing operation systems have
provided APT functions for loading the ELF file to
complete the swapping operations, which 13 to
replace the inefficiency process with the new code.
For example, the SOS operating system (Han et al.,
2005) provides swapping operation functions
for registermg the new code module and
releasing the wunused memory space, such as
loader handler(), handler loader is on node() and
handle fetcher done()

CASE STUDY

Here, we give a practical scenario to illustrate the
application of our proposed management framework for
the reconfigurable protocols stack in NCS. Our system
test-bed consists of six ARM-Linux slave devices and a
Windows XP master station. Such a hero-type hardware
test bed overcomes the limited computing capability on
the embedded system. Thus, complicated procedures,
such as the interfacing with users, the design space
exploration, the SDI specification evaluation, optimization
and parser, could be implemented in the master node. Our
experiment result 1s OS constrained, with the help of code
locating and leading function provided by ELF file and
ARM-Limx system. The slave system (ARM-Linux) is

performed as a network status reporter and responser to
commands or configuration files from the master.

Specifically, the practical experiment test-bed 18
mapped mto the SDL performance evaluation architecture
(Fig. 6). We assume following running conditions: a
CAN-based reconfigurable protocol stack employed an
FTT-CAN scheme (Pedreiras and Almeida, 2002) to
guarantee continued real-time operation under dynamic
commurication requirements. An extended 29-bit CAN
frame format is adopted and the baud rate of the CAN
network is 500 Kb sec™'. The number of online slave
nodes 1s 5 and the sixth slave node will enter the channel
as a burst periodic traffic to the scheduling scheme. The
data for maintaining the address table
management {(a SDL process) 1s characterized with the
non-periodic non-real time traffic. The mitial configuration
for the synchronous scheduling algorithm (in process
syn_scheudling of SDI. specification) is Rate-Monotonic
(RM) and an alternate Earliest Deadline First (EDF)
algorithm 1s stored in the protocol library. Therefore, the
performance of one process reconfiguration under the
proposed management framework could be tested.

In Fig.7, the process syn_scheudling 1s implemented
1n the protocol stack of master node to sort the periodic
tasks (generated in slaves) for the synchronous phase.
After the performance evaluation process starts, this

in node
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Fig. 6: Performance testing scenario for CAN system
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Fig. 7: SDL description of the process syn_scheudling (in master node)

Table 1: Periodic tasks of slave nodes

Task No. (D, P, O, C, 8rc, Dest)
A2l (2,2,0.5,0.3,2,1)
A2 (2,2,1,0.3,2,1)

A23 (2,2.1.5,0.3,2,1)
A3l (3,3,0.5,0.3,3,1)
A32 (3.3.1,0.3,3,1)

Al (4,4,1.5,0.24,1)
AS (5,5.0.6,0.2,5,1)
A6 (6,6.2,0.2,6,1)

A7 (6,6.3,0.1,7,1)

process will gather periodic transmission requirements
from slaves at rmtime. Each requirement is a six-tuple
structure data: SMx = (D, P, O, C, Sre, Dest), representing
the basic information that Deadline, Period, Initial
Position, Processing Delay, Address and
Destination  Address.  Inputting  periodic  task
requiremnents, the scheduling algorithm EDF can generate
a scheduling queue to complete the synchronous part of
TM. The EDF algorithm is implemented by a call for C
function, which can be of RM algorithm. During the
performance evaluation, periodic traffics of slaves are
governed by the receiving TM from master node.

Source

In our scenario, the master node is numbered as Al
and the followmg A1 (I = 2,3, ..., 7) 13 to denote the
slaves. Thus the periodic tasks m each slave can be
assumed as in Table 1, where the deadline D of each task
is equal to its sampling period P, a multiple of the Element
Cycle (EC). Figure 8 and 9 snapshot the scheduling result
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due to RM algorithm and EDF algorithm separately. The
red dot denctes the interval of a message issued, the
white dot indicates this message is delayed in the EC and
the black block represents the Processing Tine of task. In
Fig. 8, the message A21, A22, A23, are scheduled inits EC
before their deadlines by the RM algorithm, A31 is also
scheduled after one EC delay. However, due to fixed
priority mechanism of RM algorithm, the low priority tasks
A32, A4, AS are unable to be scheduled in its EC before
their deadlines. Comparing with RM, EDF algorithm would
adjust the priority of tasks that have the earlier deadlines
and could be completed in the idle time belonged to high
priority tasks. Figure 9 shows that the messages can all be
scheduled by EDF before their deadlines, even when task
A7 (of the 6th slave node) was inserted at the beginning
of 3rd EC (according to the Imtial Position of A7). In all,
the evaluation results in ow management framework
shows that the implementation of EDF scheduling on
CAN allows higher channel utilization factors than the
original RM scheduling on FTT-CAN.

Mapping with the optimization on the process
syn_scheduling, its related symbol i the design space 15
formatted as 001001110. The 3rd bit 1 indicates that a
single process reconfiguration happened and there 1s no
need to compile its related processes, since blocks for
protocol layers are stable (the 6th and 9th bit are remain
0). To generate the C file, the Target Expert provided by
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the Telelogic TAU suite 15 defined as #ifdef
<ARM THUMB=> construct in the ml _meth file. Then,
the code is compiled to be the configuration file with the
standard arm-elf-gce cross-compiler, distributed as the
non-periedic and non-real time tasks on network and
dynamic executed on slave processors ARM S3C2440.
Thus, reconfiguration execution time is measured between
the Start signal of enabling the Target Expert (indicating
the start of the reconfiguration execution) and the Stop
signal of loading mechamsm (indicating the end of the
reconfiguration execution). It can be calculated following
the Eq. 1, which consists of three parts: the code
generation time, the code distribution time and the code
loading time. They are determined by various issues such
as size of sowrce file (.pr file), efficiency of compiler,
congestion status of network and processor capability.

T (D

reconfiguartion = Tgeneration +Td1smbunun + Tluad.ing

The system clock accuracy m the measwrement was
10 m sec. The measured time results are swnmarized in
Table 2. In our testing scenario, a single network segment
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Table 2: Time cost for the reconfiguration of one process (unit: millisecond)

Time cost
Measuremnent Generation  Distribution  Toading Total
Min/Max value  2760/3280  760/790 1360/1380 4880/5450
Average value 3114 b 1370 5259

consists of 7 nodes, the execution time of code generation
and loading process is notable 85% of the total execution
time for reconfiguration. These two processes are
executed offline (i.e., computed in an independent
computing ut) without having impact on commurncation
activities of the old protocol stack during reconfiguration
execution peried. The distribution the new code 1s
scheduled as the non-periodic non-real time traffic with
assigming a fixed time slice m each macro scheduling
cycle. In this way, the impact on the real-time traffic could
be controlled on a low level Thus, though the
transmission delay is very small, the average value
1370 msec for the distribution time 1s caused by the
postponed sending in each scheduling cycle. Similarly,
when communicating with a heterogeneous protocol, 1.g.,
Ethemet, all processes of CLL layer in related nodes have
to be replaced with Ethemnet. Because the size of SDL
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Table 3: Time cost for the reconfiguration of one layer (unit: millisecond)

Time cost
Measurement. Generation Distribution Loading Total
Min/Max value 21960/25280 6220/6490  9920/11040 39100/48070
Average value 23104 0375 11000 44269

description file for CLL layer 1s related to a number of
processes, the time cost of reconfiguration is nearly 8
times than the one process reconfiguration (Table 3).

CONCLUSIONS AND FUTURE WORK

The dramatic growth of networked control system
confronts designers with serious difficulties of distributed
infrastructure complexity and commumication environment
heterogeneity. It has motivated the call for reconfigurable
protocol stack that can adapt to the environment changes.
In this study, an integrated management framework was
presented for the implementation of reconfigurable
protocol stack in NCSs. Benefiting from SDL, modification
and refinement on the protocol stack design could be
carried out without worrying the incompatibility between
the nitial design and the final implementation. Within the
management framework, a binary symbol space was
designed for exploring the SDT. specification files and the
pure SDIL  performance evaluation approach was
unplemented. They both performed as a seamless way
when mntegrating with the SDL specification and served as
the foundation for the optimized code execution on the
target space. A SDL process reconfiguration experiment
showed that the management framework can work
well to meet the new tasks transmission requirements
added in.

Large scale and complex network 1s another big
challenge for the protocol stack design in NCS. In the
future, taking the methodology proposed here, we will go
further study on the optimizing the SDI. implementation
through intelligent algorithms, for instance, applying the
genetic algorithm to speed up the rerouting procedure
when the network scale covering hundred nodes.
Additionally, a rich library of SDL performance models
needs to be implemented for more network testing
scenario, especially the mesh topology model that can
simulated the dynamic convergence and nondeterministic
behaviors in complex network.
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