http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 9 (5): 909-917, 2010
ISSN 1812-5638
© 2010 Asian Network for Scientific Information

A Modular Approach for Reasoning about Large-Scale Description Logic Knowledge-Base

Yuxin Mao
School of Computer and Information Engineering, Zhejiang Gongshang University,
Xuezheng Street No. 18, Hangzhou 310018, Zhejiang, People’s Republic of China

Abstract: In this study, we proposed a modular approach for description logic reasoning to meet the on-
demand and scalability requirement semantic-based systems. One typical use of description logic knowledge-
base is to support reasoning in semantic-based systems. However, including large description logic knowledge-
bases in their complete form in applications would imply unnecessarily huge storage and computational
requirement. Therefore, we go beyond the use of static description logic knowledge-base by reusing knowledge
dynamically. In particular, we refer to the context-specific contents from large-scale description logic
knowledge-bases as description logic modules. A tableau algorithm based on the description logic module
representation is given to support modular description logic reasoning. In order to solve the semi-deterministic
problem of modular reasomng, we propose an expansion reasoning algorithm for preserving consistency. We
also analyzed the time complexity of the modular reasomng algorithm under different conditions. The proposed
algorithm improved the performance of description logic reasoning by modulization, especially when the scale

of the knowledge-base is very large.

Key words: Modular reasoning, module, modularization, semantic web, tableau algorithm

INTRODUCTION

Recently, as a kind of knowledge representation
system, Description Logics (DLs) (Brachman and
Schmolze, 1985, Baader and Nutt, 2003) has become
popular, with the emergence of the semantic web
(Berners-Lee et al, 2001; llyas et al., 2004) and the
research efforts of ontologies (Gruber, 1993;
Van Heijst et al., 1997, Ding and Sun, 2009). Knowledge
representation systems based on DLs provide users with
various inference capabilities that deduce implicit
knowledge from the explicitly represented knowledge. The
study of suitable methods for solving the problems of
reasoning in DILs has been developed starting with severe
restrictions on the expressiveness of the language and on
the form of the knowledge base. The original algorithm
by Schmidt-Schau} and Smolka (1991) for ALC as well as
subsequent algorithms for more expressive DLs, could be
seen as speclalizations of the tableau calculus for
first-order predicate logic (Baader and Sattler, 2001).
Tableau algorithms have turned out to be quite useful.
They are complete and often of optimal complexity. The
tableau-based approach has been developed and used as
a mainstream solution to the reasoning problem in DLs.

However, including large-scale DI, knowledge-bases
in their complete form could incur an unnecessarily high
storage and maintenance cost to semantic-based
systems, especially when the capacity of a system 1s
limited (e.g., an embedded system). As the size of a DL

909

knowledge-base increases, the performance of the
associated semantic-based systems will be quickly
degraded as frequent search of knowledge 1s typically
required. Therefore, 1t 13 important and urgent to share
and reuse large-scale DI, knowledge-bases to support
semantic-based systems in a more efficient way.

By assuming that semantic-based systems typically
need not the complete DL knowledge-base but just a
portion of it, we propose to incorporate into systems the
capability of knowledge-base modularization In this
study, we propose a modular approach of dynamic
reasoming on large-scale DL knowledge-bases. We
introduce the concept of DI module as well as the module
cache for DI knowledge-base modularization. We present
several modular reasoning algorithms based on the
module representation. The proposed algorithm improves
the performance of DI reasoning by modulization,
especially when the scale of the knowledge-base is very
large.

DL KNOWLEDGE-BASE MODULARIZATION

Here, we illustrated how to represent and mampulate
modules formally based on the semantic structure of DL
knowledge-base.

Definition: Generally, a DL knowledge-base K 1s a pair
<T, A> where T and A are its TBox and Abox. The
TBox introduces the terminology like the vocabulary of an

Inform. Technol. J., 9(3): 909-917, 2010

application domain while the ABox contains assertions
about named individuals in terms of the vocabulary. The
activities of many semantic-based systems rely only on
localized formation and knowledge as most
applications have their specific contexts that they focus
on (Ghidini and Giunchiglia, 2001). Our conjecture is that
the activiies of semantic-based systems need only
specific aspects of a large-scale DL knowledge-base.
The implication is that there is a need to provide
semantic-based systems with the ability to modularize a
large-scale DL knowledge-base according to
requirements. Taking mto account the locality of
knowledge reference, we propose to represent those
context-specific contents from a large-scale DL
knowledge-base as DL modules (Mao et al., 2008). We
give a formal defimtion of DL module to facilitate the
discussion in the sequel as follows:

Definition 1 (DL Module): Givena DL knowledge-base
K = <T, A>, a DL module (or module for short), M, is
represented as a tuple <M, M,, M,, M,>, where M,c T, M,
c A, M, = {DL concept ¢}, where ¥¢,eT.

M, 1s a reference to the DL knowledge-base K, which
1s also called the source of module. M, contains some
concepts from K and is called the concept set of the
module. Given M, one can populate a corresponding
module by searching the DL knowledge-base K for related
concepts and storing them as M, and M, <M, M, > 1s
called the knowledge set of the module and denctes a
local knowledge-base. Note that M, is a set of individuals
from the ABox of the source DL knowledge-base, which
makes the module be complete from the pomt of DL
knowledge-base.

Given a DL module M = <M_, M,, M_, M,>, it has the
following features:

Completeness: Although M is a module from the
source DI knowledge-base, it has a relatively
complete local DL knowledge-base <M, M, >
Connectivity: The concepts in M, are connected. To
a concept ¢, in M, there is a relation between ¢ and
¢, where ¢; is another concept in M,

Module manipulation: In order to facilitate manipulating
modules from large-scale DI knowledge-bases, we also
define a set of basic module operations as
(Table 1):

We can mampulate modules from a large-scale DL
knowledge-base efficiently with these operations. In a
knowledge reuse framework, the operations can be packed
as services, which are invoked by other semantic-based
systems.

follows

910

Table 1: The Operations for Manipulating Modules.

Operator Input Output
Extract A DL knowledge-base K A module M
A concept setD
Store A module M A boolean value ret
A module repository R
Compare A DL knowledge-base K A degree of discrepancy diff
Two modules
Retrieve A concept set D A module M
A module repository R
Merge A DL knowledge-base K A module M

Two modules

Cache-based knowledge reuse: Compared with DL
module, DL knowledge-base can be treated as static and
invariant resource to semantic-based systems. Changes
of DL knowledge-base require owner privilege and
domain experts’ mtervention, so it is unpractical to let
semantic-based systems directly modify and update
source DI knowledge-base. However, different systems
can have their local repositories of modules from DL
knowledge-base. Based on the moedule representation for
DL knowledge-base, we propose to orgamze the modules
of a semantic-based system 1n a local repository called
module cache for dynamic knowledge reuse.

Definition 2 (Module cache): Given a DL knowledge-base
K = <T, A>, a module cache, R, 1s represented as a triple
<I, M, cv>, where M is a module from K, T is the index of
M in R and cv 1s its cache value.

The concept of module cache draws mspiration from
the memory caching mechanism. First emerging from data
processing, caches work well because of a principle
known as locality of reference. A module cache refers to
a local repository for retrieved modules of DL
knowledge-base for future reuse. Taking modules as
cachable objects, module cache stores modules as cache
blocks for knowledge reuse.

Caching the modules from a large-scale DL
knowledge-base, which are frequently wused in
semantic-based systems, can improve the performance of
semantic-based activities. When we want to use DL
knowledge in applications, we first look for a module in a
module cache providing formal semantics rather than
accessing the source DL knowledge-base directly. For
example, when a semantic-based system lacks the
knowledge to perform a reasoning task, it needs to access
the related DL knowledge-base. If the system has ever
extracted the required modules and kept the most active
ones in its module cache, the overall speed for reasoning
1s then optimized.

MODULAR DL REASONING

Reasoning for large-scale dl knowledge-base: One
typical use of DI knowledge-base is to support reasoning

Inform. Technol. J., 9(3): 909-917, 2010

of semantic-based systems (Donini and Tenzerini, 1996).
Given a DI, knowledge-base K = <T, A>, there are four
major reasomng tasks (Baader and Nutt, 2003).

Satisfiability: A concept C is satisfiable with respect
to T if there exists a model T of T such that C' is
nonempty.

Subsumption: A concept C is subsumed by a
concept D with respect to T if C' = D' for every model
Tof T

Equivalence: Two concepts C and D are equivalent
with respect to T if C' = D'for every model I of T
Disjointness: Two concepts C and D are equivalent
withrespect to T if C'n D'= & for every model I of T

If, in addition to intersection, a DL system allows one
to form the negation of a description, one can reduce
other reasoning tasks to the satisfiability problem
(Smolka, 1988; Schaerf, 1994). Therefore, we only consider
the satisfiability problem and discuss the algorithm for
satisfiability in this study.

Given an ALC-concept description, the tableau
algorithm for satisfiability tries to construct a fimte
interpretation that satisfies the concept description. The
original approach by Schmidt-Schaul} and Smolka
(1991) and many other studies on tableau algorithm for
DLs, introduce the notion of a constraint system for this
purpose. A satisfiability algorithm for ALC 1s presented
as follows, based on the constraint systems
(Schmidt-Schaulp and Smolka, 1991) and the tableau
algorithm for ALCN proposed by Buchheit et al. (1993).
The transforming rules of the algorithm are shown in
Table 2.

(Given a concept description C;, we can construct an
initial constraint system S, Starting with S, we thus,

Table 2: The transforming niles of the satisfiability algorithm for ALC
Naime Ruile

S—n {x:C, x:C}us

ifx:C;nCyin 8,

and x:C, and x:C, are not both in S.
{xD}us

fx:CiuCyisin S,

neither x:C, nor x:Cy is in S,

and D=C, orD =C,.

¥Crul

fx¥YRCinS,

<%, y>Risin S,

and v:C is not in 8.

{<xy=R yv:C}us

fx:3RCisin S,

¥ is a new variable,

and there is no z s.t. both <x, z»:R and z:C in S.
{s:C}us

ifvxx:Cisin S,

sisin S,

and s:Cis notin S.

S —u

REed

S =4

S —=¥x

911

obtain a set of complete constraint systems {3,, 3,, ..., S;}
after a finite number of rule applications. A constraint
system S is called complete iff none of the transformation
rules applies to it. Consistency of a set of complete
constraint systems can be decided by looking for obvious
contradictions, called clashes.

Definition 3 (Clash): A constraint system 3, contains a
clash iff it has one of the following forms:

fxit

{x:A, x:—A}, where A 1s a concept name.

ix<nR} v {<x y>R |l<icntl} o fy 2y [1< i< j<
n+l1}, where, R is a role name

Any constraint system contaimng a clash 1s
obviously unsatisfiable. If all constraint systems derived
from S, are umsatisfiable, then C, 1s umsatisfiable.
Otherwise, if there is a S, containing no clash, it is
possible to construct a model and C; 15 satisfiable
(Buchheit et al., 1993).

Although, we are able to solve the reasoring problem
of DLs by using the tableau algorithms, there is a gap
between the reasoning services needed by large-scale
DL knowledge-bases and those provided by the
current systems. As a popular method for DL reasoning,
tableau algorithm has a reasonable space complexity
but with a lugh time complexity. Indeed, the algorithms
based on tree-automata, which are used to prove
EXPTIME-completeness, require exponential time even in
simple cases. Domm and Massacei (2000} present a
tableau calculus for checking the satisfiability of a
concept with respect to a ALC-TBox with general axioms
and transform it into the first simple tableau-based
decision procedure working in single exponential time.
The time complexity of the algorithm 1s O(27), for a
suitable constant ¢>1, where n 15 the size of the iput
concept and the TBox. To a large-scale DI knowledge-
base (e.g., a large-scale domain ontology), the size of the
TBox 1s very large (n>10000). In that case, the cost of
reasoning will be too high for real-life applications.

Therefore, how to implement efficient reasoning
service for a large-scale DL knowledge-base 15 still a
difficult issue to semantic-based systems. The knowledge
imvolved m DL modules can be reused to support
reasoning tasks above. In this study, we try to optimize
the reasoning process by DL knowledge-base
modularization.

Modular reasoning algorithm: In a system with the
modularization mechanism, we can perform a DL
reasoning task based on a module cache. The modules in
a module cache are used as the local knowledge-bases for

Inform. Technol. J., 9(3): 909-917, 2010

reasoning. We propose a modular DI, reasoning
algorithm based on the module representation. As
mentioned before, we mainly consider the satisfiability
problem in this study. Therefore, we try to solve the
reasoming task of checking concept satisfiability in
this algorithm. The reasoning Algorithm 1 15 shown as
follows:

Algorithm 1: DL reasoning algorithm based on module cache

Input: a concept description D, a module cache R and a DL knowledge-base
K

Output: a boolean value ret.

convert D into NNF

M+ retrieve(D, R)

if M =null then

Jfeannot find a related module and perform complete DL reasoning
ret+~DLReasoning (D, K)
return ref

end il

/iperform modular DL reasoning

ret+~DLReasoning(D, M)

return ret

We illustrate the procedure of the algorithm as
follows:
Step 1: Convert a concept description D into negation
normal form (NNF)

Retrieve a matching module M from the module
cache

Use DL reasoning algorithm to perform
reasomng for D with the module M as the
knowledge-base. The function DLReasomng
refers to the process of DL reasoning by using a
tableau algorithm

If no modules can be selected as the knowledge-

Step 2:

Step 3:

Step 4:
bases for reasoning, perform a complete
reasoning based on the sowce DI knowledge-
base

Step 4: Return the result of the reasoning

In fact, the process of reasoning based on module is
almost the same as that of DL knowledge-base. The only
difference 1s the scale of the reasoning knowledge-base.
As the size of a module 1s far less than that of a
large-scale DL knowledge-base, the complexity of the
modular reasomng is also restricted to an acceptable
extent. Therefore we decrease the complexity of DL
reasoning by modularization.

To realize the function DLReasoning in Algorithm 1,
we present a modular tableau algorithm for DL reasoning.
The table algorithm is based on the algorithm mentioned
earlier and tries to check the satisfiability of a concept
description.

912

Algorithm 2: Modular tableau algorithm for DI reasoning
Input: a concept description D, a module M =<M,, M, M, M.
Qutput: a reasoning result ret.

convert D into NNF
construct an initial constraint system +based on D and <M,, M
repeat
/fapply the transforming rules in Table 2 to reduce the system
apply transformation rules to a constraint system
generate new constraint systems
until no more rules are applicable // finish reduction
ffevaluate whether or not each branch is terminated by a clash
il every constraint systemn leads to a clash then
ret + false //there are no satisfiable models
else
ret + true //there exists a satisfiable model
end il
return ret

We illustrate the procedure of the algorithm as follows:

Step 1: Convert the concept description D into negation
normal form (NNF)

Step 2: Construct an imitial constraint system S based on
D and the knowledge-base <M, M,> of M

Step 3: Apply the transforming rules in Table 2 to S and
reduce it to generate new constraint systems;

Step 4: Tf no more transforming rules are applicable to
the constraint systems, terminate the reduction

Step 5: If every constraint system in the resulted set

contains a clash, it means that D is unsatisfiable.
Otherwise, D 1s satisfiable

If we take a module as the knowledge-base for DL
reasoning, then the process of modular tableau reasoning
15 almost the same as that of a DL knowledge-base. For
example, there is a DL knowledge-base K,,, which
contains domain knowledge about Traditional Chinese
Medicine (TCM). K., is a large-scale DL knowledge-base.
The basic concepts and roles for this example are shown
in Table 3.

In TCM, Chinese Materia Medica contains the natural
medicinal materials used in TCM practice such as plants,
amimals and minerals, alse known as herbal medicine.
Formula of herbal medicine defines the basic notions and
the theory of prescription. Here, glycyrrhiza, sargassum,

Table 3: Some basic concepts and roles as well as their meanings

Name Semantics Meaning

D Concept Chinese materia medica

F Concept Formmula of herbal medicine

R Role Containg cormponents

D, Concept Legume

D, Concept Gulfiveed

F, Concept Fonmulas that contain gly cyrrhiza

F, Concept Formulas that contain sargassum

F. Concept Formulas that contal.n glycymrhiza and angell.ca

Fy Concept Formulas that contain sargassum and tangerine peel

Inform. Technol. J., 9(3): 909-917, 2010

angelica and tangerine peel are all herbal medicines.
Glycyrrhiza 1s an individual of legume and sargassum 1s an
individual of gulfweed. Therefore, we have the following
axioms in K,

FcvRD (1)
Fz (3RD,nF) (2)
Fo(3RD, N) (3)

F.cF,)
F,cF, (5)
D,cD (6)
D,cD N

According to the basic theory of TCM formula,
glycyrthiza and sargassum cannot be used as
components i the same formula. Therefore, we have the
following axiom in K,

FnFco (8)

A module cache is used to store DI modules
extracted from K., Assume there are three modules
M, = <{Fy, F,, D, D}, M,, 0, K€M, = <{F, F, F,
M, o, K =M, = <{F, D}, M,, o, K> mn the cache. M,
contains Eq. 1-3, 8. M, contains Eq. 2-5, 8. M,; contains
Eq. 1-7.

When a user forms a DL concept F__=F_nF,, in order
to represent a new kind of formula, it raises the problem of
checking whether the concept description I, =F, n I is
satisfiable or not. We can use the modular reasoming
algorithm to solve the problem.

With Algorithm 1, we first refer to the module cache
and get the module M, for modular reasoning. We
assume F . 1s satisfiable and then it has one mdividual
f at least. Therefore, we have an initial knowledge-base
KB={M,u{F, nF.z}, {F nF.(Hi} for reasoning. We
can simplify some axioms in KB as follows:

~F,u (3R.D,n F) (9)
~Fu(3R.D, 1 F) (10)
~F,u F, (11)
~F,u F, (12)
~F, L —F, (13)

913

fF,_nF,
Vx:-Fu @RD,AF)
¥x:oF,u @RD, F)
yx:F UF,
¥xF, uF,
¥x:oF uF,

S-n

£F, NfF,
£:-F, u(IR.D,nF)
f:=F, u(3R.D,MF)
f:oF UF,
f-F,uF,
f-F,uF,

S~u

| fF,, fF, |

| £, |

S-u

| |
| clash |

| f:-F

clash

| £,

Fig. 1: Example of checking concept satisfiability by using
the modular tableau algorithm

[ctasn clash |

Then, we can construct an initial constraint system
and perform reasoning according to Algorithm 2. The
reduction process 1s shown m Fig. 1.

When the reduction 1s finished, we find that all
branches are terminated with a clash and it means that
every constraint system contams a clash. Therefore, the
concept is unsatisfiable and the corresponding formula is
a valid one in TCM.

Expansion reasoning: As a module from DL knowledge-
base, a module only contains a small portion of
knowledge of the complete knowledge-base. Therefore,
the knowledge mvolved in a module 1s partial compared
with its source DL knowledge-base. Assume that the
TBox of a DL knowledge-base contains the following
knowledge {C U D,~ CvR.D, EnF}. We extract a module
M from the DL knowledge-base including the following
knowledge {Cu D, R.D}. Given a concept description
CnD for checking satisfiability, we first perform modular
reasoning based on the knowledge of M and get a

Inform. Technol. J., 9(3): 909-917, 2010

positive answer. However, when we perform reasoning
based on the souwrce DL knowledge-base, we just get a
clash (—C and C) and the result is negative. Therefore, the
result of modular reasoning 1s inconsistent with that of
complete DL reasoning,.

Tt is trivial to prove that modular reasoning based on
module cache is semi-deterministic compared with DI
reasoning. In order to keep consistent with the DL
reasoning, we should improve Algorithm 1 further. We
perform expansion reasomng when we get a positive
result by modular reasoning. We propose an expansion
reasoming algorithm for this purpose.

Algorithm 3: Expansion reasoning algerithm

Input: a concept description D, a module M, a module cache R and a DL
knowledge-base K.

Output: a boolean value ret.

ret + DLReasoning(D, M)
get a set of constraint systerns T
if ret =false then
/fthe result of modular reasoning is negative and retumn directly
return ref
else
/ithe result of modular reasoning is positive
ret+Tfalse
ffexpand each non-conflict branch
lor each constraint system 8, without clash in T
/perform expansion reasoning based on the module cache
get the concept description D, of S;

while true
M, < retrieve(D;, R)
il M; = null then
br eak
endifl
ret; + DLReasoning(D;, M)
il ret; = true then
ret + true
br eak
end il
end loop
il ret = true then
break
end il
end loop
il ret =false then
/ithe result of expansion reasoning is negative and retum directly
return ret
else
/fthe result of expansion reasoning is positive and perform expansion
reasoning based the whole DL knowledge-base
ret+DTLReasoning(D, K)
return ref
end il
end il

We illustrate the procedure of expansion reasoning as
follows:

Step 1: To the conflict branches of modular reasomng, it
is no need to expand it anymore

Step 2: To each non-conflict branch, retrieve a matching
module from the module cache (Fig. 2)
Step 3: Perform moedular reasomng based on the module

Here, step 2 and 3 are performed recursively until no
matching modules can be selected.

Step 4: When all the expansion reasoming processes are
terminated with conflict, terminate the overall
reasoning process. Otherwise, expand the
reasomng to the whole source DL knowledge-
base

Step 5: Return the final result

If we replace the mput concept description
Fome=F,. nF, with 9R.—D 1 F,, then the reduction process
is different. We get the module M, from the module cache
for modular reasoning. The reduction process is shown in
Fig. 3.

We get a constraint system without a clash after
reduction. It means that IR —DrF_, is satisfiable with
respect to M, Then we have to perform expansion
reasoning according to Algorithm 3. We get the module
M, from the module cache according to the final
constraint system and perform modular reasoning. The
reduction process is shown in Fig. 4.

When the reduction 1s fimished, we find that all
branches are terminated with a clash and it means that
every constraint system contains a clash. Therefore, the
concept is unsatisfiable and this result is consistent with
that of K.

Although, the modular reasoning algorithm 1s
semi-deterministic and we have to expand to the whole DI,
knowledge-base in the worst case, the modular reasoning
algorithm does improve the performance of reasoning by
modulization in some aspects. We will analyze the
performance of the reasoning algorithm in detail later.

PQ®

[Constraint system
Termination without

conflict
Termination with

[clash] conflict

@ DLmodule

Fig. 2: The modular

reasoming for the
reasoning algorithm

eXpansion

Inform. Technol. J., 9(3): 909-917, 2010

3R -Dnf,,
f:-F(GR.D, NF)
£-Fu@ERD,AF}
£:F,u-F, f:oF, L-F,)
f:-F, LF,
S5-I
L3R -D
i
S-u
fSR.DIF
5-u
| | fiE, || fiF, |
I [[_clesh |f s
L% |[£F |
|
S-u
L_fF || fF |
| |s-n
| clash | f:3R.D,
f:F
8-3
<fd>R
d-D
F

Fig. 3: Example of the expansion reasoning (a)

Final constraint system
f-FuvR.D
S-u
fi-F fivR.D
S-¥
clash | d:D |

clash
Fig. 4: Example of the expansion reasoning (b)
COMPLEXITY ANALYSIS

Given an ALC knowledge-base K = <T, A>and a DL
module M = <M_ M, M,, K=, the time complexity of the
tableau algorithm with K 15 O(2%), where n = n,+n,, n, 1s
the size of the mput concept and n, 15 the size of T. The
time complexity of the modular tableau algorithm
(Algorithm 2) with M is O(2%), where m =n, +n,, n, is the
size of M, We can analyze the time complexity of the
modular reasoning under two different conditions:

915

If the result of modular reasoning is negative, the
result 1s consistent with that of complete DL
reasomng. We terminate the reasoning
immediately. Tn this case, the time complexity for
modular reasoning 18 O(27). As the size of M, 13 much
smaller than the size of T, it means n, << n, and O(2™)
<< O2™). The time complexity of modular
reasoning is much lower than that of DL reasoning in
this case

If the result of modular reasoming is positive, the
result 1s semi-determimistic. In order to keep
consistent with the result of complete DL reasoning,

can

we have to perform expansion reasoning. As the
expansion procedure 1s linear, the time complexity 1s:

where, n, 1s the size of the knowledge set of the ith module
inthe module cache for expansion reasoning. In the worst
case, we have to expand the reasoning to the whole
source DL knowledge-base and the time complexity 1s just
O(2°) in that case.

Inform. Technol. J., 9(3): 909-917, 2010

In summary, although the modular reasoning is
semi-determimstic, the modular reasoning algorithm could
decrease the complexity of reasoning for large-scale DL
knowledge-base to some extent. This is mainly because
that we reduce the problem space for reasoning by
modularization.

DISCUSSION

There have been a number of on-going efforts in
modular DL reasoning. Compared with owr work, the
related works to our approach can be broken down mto
the following categories: DL knowledge-base or ontology
modularity and Modular DL reasoning,.

The idea of extracting a subset of a large-scale DL
knowledge-base or ontology 1s referred to by many
different names: views, segments, modules, packages,
partitions, etc. This research topic 15 mainly about
segmenting or extracting modules from large-scale
ontologies to satisfy application requirements. Noy and
Musen (2004) defined a portion of an ontology as an
ontology view and proposed an approach of specifymg
ontology views through traversal of concepts. Seidenberg
and Rector (2006) proposed some algorithms for extracting
relevant segments from large DI ontologies. They
mterpreted super-classes and quantified restriction as
links between classes. Grau et al. (2006) defined the
notation of locally correct and complete to capture the
featwre of ontology modularity. They presented an
algorithm for automatically identifying and extracting
modules from OWL-DL ontologies. Doran (2006) focused
on ontology modularisation for reuse. They wanted to
separate only part of an ontology, which was correct and
self contained and could be reused instead of the original
one. It can be concluded from the existing works that
reusing large-scale DL knowledge-base by modules can
improve the efficiency of semantic-based applications.
The DL module presented in this paper is similar with the
existing concepts. However, we propose a more formal
definition for DL modules that can be reused n a variety
of semantic-based applications.

Serafini et al. (2005) presented research on knowledge
representation and reasoning that support modularity,
scalability and distributed reasoming. They mdicated a
characterization of inferences using a cache-based
inplementation for local reasoners. Ding and Haarslev
(2006) presented a tableau caching technique for SHI to
unprove the performance of tableau-based DL reasoners.
Their results indicate a significant improvement in runtime
performance once caching 15 enabled Lm (2006)
presented a tableau algorithm for concept satisfiability
based on ontology modules. If the result is unsatisfiable,
the reasoning can be terminated; otherwise, it is still

916

doubtful and the reasoning should go on with the
souwrce ontology. Pan (2007) proposed a flexible
reasoning architecture for OWL DL and described the
prototype implementation of the reasoning architecture
based on the FaCT DL reasoner. DL reasoners like RACE
also caches concepts that have been reduced or
knowledge about unsatisfiablity for future reuse
(Horrocks and Schneider, 1999, Haarslev and Moller,
2000). Besides, some research efforts in distributed DLs
(Borgida and Serafini, 2002) were concerned with
tableau reasoning based on multiple ontology modules
(Bao et al, 2006). However, the modules are from
different knowledge-bases in that case. From the cases
before-menticned, it can be seen that we can improve DL
reasoning by modularity. To contrast with existing
research efforts, we propose a modular approach to
improve the performance of DI reasoning. We enable
semantic-based systems to reuse large-scale DL
knowledge-base dynamically by modularization. Owr
concern of modular reasoming focuses on reasoning
about a large-scale DL knowledge-base with a caching
mechamsm. We also consider the consistent problem
between DL modules and the sowrce DI knowledge-base
in this study.

CONCLUSION

To semantic-based systems, the ability of reusing
large-scale DL knowledge-bases is restricted by the
computing and storage capacity of system. In this study,
we present a modular approach for reusing large-scale DI,
knowledge-bases. We define the -context-specific
contents from large-scale DL knowledge-bases as
modules. We combine the caching mechanism with DL
knowledge-base reuse to form module cache.
Semantic-based systems are able to use module caches as
their local knowledge-bases to support semantic-based
activities like DL reasoming. We mamly present a modular
reasoming algorithm based on the module representation.
The algorithm 15 able to improve the performance of DL
reasoning, especially when the scale of the DL
knowledge-base is large. There is still much room for
improvement on the proposed approach. Future research
1ssues include (1) extending the algorithm to satisfy more
DL languages that are more complex than ALC and (2)
considering the situation where modules are from different
DL knowledge-bases to improve the algorithm.

ACEKNOWLEDGMENTS

This work 1s partially supported by a grant from
Educational Commission of Zhejiang Province
(No. Y200908082) and a Science and Technology Program
of ZJGSU (No. 1130KU110005).

Inform. Technol. J., 9(3): 909-917, 2010

REFERENCES

Baader, AF. and W. Nutt, 2003. Basic Description
Logics. In: The Description Logic Handbook:
Theory, Implementation and Applications,
Baader, F., D. Calvanese D. McGuimness, D. Nardi
and P. Patel-Schneider (Eds.). University Press,
New York, [SBN: 0521781760,

Baader, F. and U. Sattler, 2001. An overview of tableau
algorithms for description logics. Studia Logica,
69: 5-40.

Bao, 1., D. Caragea and V. Honavar, 2006. A tableau-based
federated reasoning algorithm for modular
ontologies. Proceedings of the IEEE/WIC/ACM
International Conference on Web Intelligence, Dec.
18-22, Hong Kong, China, pp: 404-410.

Berners-Lee, T., I. Hendler and O. Lassila, 2001. The
semantic web. Scienti?c Am., 284: 34-43.

Borgida, A. and L. Serafini, 2002. Distributed Description
Logics: Directed Domain Correspondences in
Federated Information Sources. In: On the Move
to Meaningful Internet Systems 2002: CooplS, DOA
and ODBASE. Meersman, R. and 7. Tari (Eds).
LNCS., 2519, Springer, Berlin/Heidelberg,
ISBN: 978-3-540-00106-5, pp: 36-53.

Brachman, R.J. and J.G. Schmolze, 1985, An overview of
the KL-ONE knowledge representation system.
Cognitive Sci., 9 171-216.

Buchheit, M., FM. Donimi and A. Schaerf, 1993.
Decidable reasoning in terminological knowledge
representation systems. J. Artificial Intell. Res.,
1: 109-138.

Ding, B. and .. Sun, 2009. Ontology-based model for
software resources interoperability. Inform. Technol.
], 8: 871-878.

Ding, Y. and V. Haarslev, 2006. Tableau caching for
description logics with inverse and transitive roles.
Proceedings of the International Workshop on
Description Logics. http://ftp.informatik. rwth-
aachen.de/Publications/CEUR-WS/Vol-
189/submission 7.pdf.

Donini, FM. and M. Lenzerini, 1996. Reasoning in
Description Logics: Principles of Knowledge
Representation. CSLI Publication, Stanford, CA.
USA., pp: 191-236.

Dommni, F.M. and F. Massacci, 2000. EXPTIME tableaux
for ALC. J. Artificial Intell., 124: 87-138.

Doran, P., 2006. Ontology reuse via ontology
modularisation. Proceedings of KnowledgeWeb PhD
Symposium, June 17, 2006. Budva, Montenegro.
http: //citeseerx.ist.psu.edu/viewdoc/download?doi
=10.1.1.83.9581 &rep=repl &type=pdf.

Ghidini, C. and F. Giunchiglia, 2001. Local models
semantics, or con-textual reasoning=locality+
compatibility. Artificial Intell., 127: 221-259.

917

Grau, B.C., B. Parsia and E. Sirin, 2006. Modularity and
web ontologies. Proceeding of the International
Conference on the Principles of Knowledge
Representation and Reasoning, (CPKPR'06), AAAT
Press, pp: 198-209.

Gruber, T., 1993. A translation approach to portable

ontology specification. Knowledge Acquisit,
5:199-220.

Haarslev, V. and R. Moller, 2000. Consistency testing:
The race experience. Proceedings of the

International Conference on Analytic Tableaux and
Related Methods, (ATRM’00), Springer-Verlag, TJSA |
pp: 57-61.

Horrocks, T. and P.F. Schneider, 1999. Optimizing
description logics subsumption. T. Logic Comput.,
9: 267-293.

Tlyas, Q.M., Y. Zongkai and M.A. Talib, 2004. A jowney
from knowledge: Knowledge
representation and reasoming on the web. Inform.
Technol. I., 3: 163-167.

Lin S., 2006. Research on the censtruction of modular
ontology. Ph.D. Thesis, Beyjing Umversity of Posts
and Telecommuircations, China.

Mao, Y., Z. Wu, W. Tian, X Jang and W.K. Cheung,
2008. Dynamic sub-ontology evolution for traditional
chinese medicine web ontology. J. Biomed. Inform.,
41: 790-805.

Noy, NF. and MA. Musen, 2004. Specifying
ontology views by Traversal. Lecture Notes
Comput. Sci., 3298: 713-725.

Pan, I.Z., 2007. A flexable ontology reasoning architecture
for the semantic web. IEEE Trans. Knowledge Data
Eng., 19: 246-260.

Schaerf, A., 1994. Reasoning with individuals in concept
languages. Data Knowledge Eng., 13: 141-176.

Schmidt-SchaulP, M. and G. Smolka, 1991. Attributive
concept descriptions with complements. Artificial
Intellig., 48: 1-26.

Seidenberg, J. and A. Rector, 2006. Web ontology
segmentation: Analysis, classification and use.
Proceedings of the International World Wide Web
Conference, TWWW’06), USA ., pp: 13-22.

Serafini, L., A. Borgida and A. Tamilin, 2005. Aspects of
distributed and modular ontology reasomng.
Proceedings of the 15th International Joint
Conference on Artificial Intelligence, (ITCAI’05),
Edinburgh, Scotland, pp: 570-575.

Smolka, G., 1988. A feature logic with subsorts. Technical
Report 33, TWBS, IBM Deutschland, Germany.

Van Heijst, G., A.T. Schreiber and B.J. Wielinga, 1997.
Using explicit ontologies in KBS development.
Int. I. Human Comput. Stud., 46: 183-292.

information to

	ITJ.pdf
	Page 1

