http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 9 (5): 956-961, 2010
ISSN 1812-5638
© 2010 Asian Network for Scientific Information

Research on Cube-based Boolean Operation in Cellular Semantic Feature Modeling Systein

'Li-Tuan Sun, 'Ying-Hao Jin and “Da-Song Sun
'College of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
*Computer Center, Harbin University of Science and Technology, Harbin, China

Abstract: In order to improve the speed and performance of Boolean operation, we propeose a Cube-based
algorithm for the rapid Boolean operation. And this algorithm creates Cubes for all triangles of the feature
entities, takes intersecting detection rapidly by the sufficiency principle of feature interaction, defines the inside
and outside of triangles by the values of Cube’s vertexes instead of the normal lines used in traditional methods
and builds a new entity by classified spaces of Cubes. This algorithm can increase the speed and performance
of computing and avoid the errors about holes in the new entity. Through the experiments on computer, it has
been validated that this new algorithm is more adaptable and practicable.

Key words: Cube, Boolean operation, cellular model, semantic feature, feature modeling

INTRODUCTION

Boolean operation is one of the basic problems in
computer-aided design, computational geometry and
computer graphics (Schneider and Eberly, 2004).
Although, the concept of Boolean operation was
proposed a long time ago and is widely used in a variety
of fields as a main way, its algorithms have defects
(Rivero and Feito, 2000) and limitations (Kaibo et al.,
2006).

In modem CAD and CATD systems, some algorithms
of Boolean operations request that the objects of Boolean
operation are the same type (Liang and Caiming, 2006),
some are inaccurate (Peng et al., 2005), because they
build a new entity by taking an approximation or
classification (Mantyla, 1986) and some are complexity
and mefficient (Tomas, 1997) especially in complex models
(Hongjun et al., 2003).

This study mainly discusses the Cube-based Boolean
operations in HUST-CAID, a cellular semantic feature
modeling system developed by Research Institute of
Computer Applied Techniques of Harbin University of
Science and Technology. This algorithm can not only
mcrease the speed of Boolean operations, but alse
overcome defects mentioned above.

CELLULAR SEMANTIC FEATURE
MODELING STYTEM

Featwe modeling is increasingly being used for
modeling products (Bidarra and Bronsvoort, 2000). One of
its main advantages over conventional geometric

modeling is the ability to associate fimctional and
engineering information to shape information in a product
model. Semantic feature modeling is a declarative feature
modeling approach. This means that, in contrast to many
current approaches, feature specification and model
maintenance are clearly separated All properties of
features, including their geometric parameters and
validity conditions, are declared by means of constraints.
The main advantage of declarative modeling is the
freedom in the type of constraints that can be specified
and therefore in the way a model can be edited and
maintamed.

The Cellular model 15 a non-manifold representation
of the feature model geometry, integrating the
contributions from all features in the Feature dependency
graph. The Cellular model represents a part’s geometry as
a connected set of volumetric quasi-disjoint cells, in such
a way that each one either lies entirely inside a shape
extent or entirely outside it. The cells represent the point
sets of the shape extents of all features in the model. Each
shape extent 1s, thus, represented in the Cellular model by
a connected subset of cells. Furthermore, the cellular
decomposition is interaction driven, ie., for any two
overlapping shape extents, some of their cells lie in both
shape extents (and are called interaction cells), whereas
the remaining cells lie in either of them. As a consequence
of this, two cells can never volumetrically overlap. They
may, however, be adjacent, in which case there 1s an
interior face of the Cellular model separating them. Such
a face can be regarded as having two sides, designated as
partner cell faces. A face that lies on the boundary of the
Cellular Model has only one cell face (one side), that of

Corresponding Author: Ying-Hao Jin, College of Computer Science and Technology,
Harbin University of Science and Technology, Harbin, 150080, China

Inform. Technol. J., 9(3): 956-961, 2010

| User 1 | | User 2

| View 1 | | View 2 |

Cellular model

Data model

Fig. 1: Structure of HUST-CAID

the only cell it bounds. In either case, a cell face always
bounds one and only one cell. Each shape face is, thus,
represented by a connected set of cell faces.

HUST-CAID 1s a semantic feature modeling system
which bases on the cellular model. Tt has a structure of
three layers as shown in Fig. 1, the bottom layer is a data
model which keeps all the mformation and relations of
features designed by users; the middle layer 1s a cellular
model which manages all kinds of elements, shapes and
faces of features; and the top layer is a set of views which
can provide various information for users in every
modeling stage. In the three layers, only the top layer
faces users directly and it can get services from the other
two layers directly or indirectly. This hierarchical structure
can not only keep all the benefits of the semantic feature
modeling system, but also make the feature modification
not depend on the history trees of modeling by using the
Feature Dependent Graph (FD@G). Therefore, the
CAD/CAID system which uses the cellular model can
maintain the semantics of features more effectively and
easily during the process of modeling.

MC-BASED BOOLEAN OPERATION

Cubes of entities: Cube is a virtual box swrounding every
feature element, which i1s similar to the Cubes of MC
algorithm (Lorensen and Cline, 1987). It can simplify the
computing complexity of intersection detection and define
the inside and outside face of triangles by its eight
vertexes.

To improve the performance of modeling system,
Cubes are built automatically for each feature entity.
And it is invisible for users. The cube’s volume space is
determined by the point set of cells which include all the
elements of features in the product model and its vertexes
can be represented to an ordered pair like (V, B).

957

M Vertex on entity (B = 0)

QO Vertex outside entity (B = 1)

@ Vertex inside entity (B = 2)
<4— Normal line of vertex of triangle

Fig. 2: Cube’s Vertexes of a triangle

If R 15 a point set of the element of feature entities
and Rx, Ry, Rz presents value sets of the projections of R
on abscissa, ordinate and vertical axes in the world
coordinate system respectively, then x, = min{ x; | x,;cRx },
x; = max{x [x€Rx }, y, =min{y, | yeRy }, y, = max{ y; |
vERy}, 7y =min{ z| zeRz}, z, =max { z | z€Rz }, then the
set of V are as follow: V,(X,y,,Z,), V(X,,¥ 1,700, V(X LYZ)
VilXoy22) V(XYL 22 Vi(Xe ¥ 2., Vs (XY 2. 22), Vs (X2, Z0).

It 1s very easy to prove that a triangle’s vertexes are
must on the edges or faces of its cube, whatever its size
and direction are.

The parameter B is an integer variables and its value
can be 1 when the vertex is outside the surface of the
triangle, 2 when the vertex is inside or O when the vertex
is on the edge or surface of Cube. Thus system will know
which side 1s out and which 1s in by the values of Cube’s
vertexes instead of the normal line of the triangle’s
vertexes (Fig. 2). This method can reduce the computing
complexity and computing time greatly.

Detection of intersection: One of the greatest advantages
of Cubes 1s that all their axes are orthogoenal or parallel
with the world coordinate system’s axes, which can make
the intersecting detection between any two Cubes of
triangles in feature entities become very simple. And the
only work for the intersecting detection between two
Cubes is calculating whether any vertex of one Cube is
inside the other one.

And the Intersection of Cubes 1s an essential
condition of the triangle intersection, 1e., when the
triangle intersection happens, the Cube intersection must
happen too, otherwise maybe. Thus it can be concluded
that if there 1s no Cube intersection there will be no
triangle intersection. So, the new triangle mtersection

Inform. Technol. J., 9(3): 956-961, 2010

N\
Fig. 3: The intersected triangles

consists of two steps with the detection of Cube
intersection and the traditional detection of triangle
intersection. If there is no Cube intersection, pass triangle
detection over directly.

Triangulations of entities: If A and B are two entities
relating to the Boolean operation, TA is a set of triangles
i A which may mntersect with triangles in B and TBis a
set of triangles in B which may intersect with triangles in
A These triangles’ ID will be stored in a linked list as the
same order in entities.

To any triangle ta, in TA, there 1s a set P, in which all
the triangles in TB may intersect with it. And P; must meet
the following conditions:

P e TB
PP U UPi-UPa= TB

If all the triangles in P, don’t intersect with ta, then
delete ta; from TA (because ta, isn’t on the cross section),
otherwise record all the intersecting points in ta, into a
linked list L which shared by A and B. When ta, has been
processed, ta 1s deleted from TA and another triangle will
be chosen automatically to calculate like ta until TA is
empty. It 1s easy to understand that whichever operation
(intersection, union or subtraction) it is, if the intersection
face of two entities 1s the same, the linked list L must be
the same too (because 1. is a cyclic list). Since, the
intersecting pomts are on both intersected triangles which
belong to A and B respectively, they both belong to A
and B too. Thus the last results of L from TA are the same
from TB, which makes the procession of Boolean
operation become easier.

In Fig. 3, M and N are two intersection points of the
triangle ¢ and B and the former is on an edge of and
inside of ¢, while the latter is on an edge of & and inside
of B. The segment MN is the intersection line of ¢ and J3,
which is part of the whole outline of two entities’
mntersecting section. Therefore we can get the intersection
line by connecting all the segments like MN.

958

Intersecting point

Intersecting line
Intersecting point

Fig. 4: The divided triangle

Obviously, in the cellular model, the outline of the
intersecting entities’ cross section is a closed polygonal
line. All of the outline’s vertexes are the intersecting
points which are inside the triangles of entities and can be
calculated easily by the intersection check of TA or TB
(In HUST-CAID, the system chooses the smaller one
automatically for a higher speed). Therefore, the Boolean
operation can be completed easily by simple computation
of points in the cellular model instead of the triangle
computation which 1s very complex m old algorithms. And
this improvement can enhance the performance of
modeling systems based on features largely. Although,
the procession referred above is for two triangles, it can
be applied directly on the condition of one-to-many or
many-to-many triangles intersection too.

The next work after the mtersecting detection is to
triangulate the intersected triangles, which is crucial in the
Boolean operation. In order to avoid errors such as
ambiguity swfaces and holes, which may occur in
traditional algorithm, modeling systems must triangulate
every triangle by using the linked list I. which is built in
the process of intersecting detection. Here, are the steps:

Step 1: Find all the intersecting points which are inside a
triangle and the intersected triangles from T. and
then compute the intersecting line. If there 15 not
any intersecting point in the triangle, i.e., this
triangle 1s divided entirely by another one,
connect the two points directly which are inside
the mtersected triangles, as shown m Fig 4.
Otherwise connect all points according to the
order in L

Triangulate the triangles. The intersecting lines
divide the triangle into two parts which belong to
different entities and should be triangulated at
the same time. If the two parts are both triangles,
there is nothing to do, see a and b in Fig. 5a-f.
Otherwise, triangulate the part(s) which 1s (are)
not the triangle, see ¢, d, e and f in Fig. 5

Repeat step 1 and 2, until all the triangles have
been processed in TA (or TB)

Step 2:

Step 3:

Inform. Technol. J., 9(3): 956-961, 2010

(b)

) (d)
) 7
] 7
>/ \ I .
e))

Fig. 5: (a-f) Triangulations of intersected triangles. a, ¢
and e are the original triangles and b, d and f are
the triangulated triangles

(

(

Classification of spaces and building of entity: The last
work of Boolean operation is to build a new entity. For
different operation, the new entity may need different
triangles, e.g., the intersected part will be remained in the
intersection operation or be deleted in the union or
subtraction operation. As mentioned earlier, 1f the
triangles mtersect, their Cubes must intersect too. And
the Cubes divide the volunie space of triangles into three
parts: SA belonging to entity A, SB belonging to B and
SAB shared by both A and B. SA and SB can be
determined easily how to process: SA and SB should be
remained in union operation and be deleted in intersection
operation. And SA should be remained and SB deleted in
the operation of A-B; SA should be deleted and SB
remained in the operation of B-A.

In SAB, not all parts belong to the new entity. So, we
classify the spaces of SAB into four parts: part T is inside
both A and B, part II mside A but outside B, part III
outside A butinside B and part I'V outside both A and B.

959

7
| \ /
| < 4
\ /7
| \ 7
| /’
| W g
27\
272
N
' 74 / \
o // 0 \
\
7 \
L/ 1 \
Pt Nt ety
7
7
74

Fig. 6: Parts of SAB. I: Inside A and B, II: Inside A
but outside B, III: Qutside A but inside B and
IV: Outside A and B

Tt can be proved that the four parts always exist whatever
the triangles look like and wherever they are. To
understand easily, the Fig. 6 shows a model in which all
parts are the same. Tt is obvious that triangles in part T
should be remained and the others should be deleted in
intersection operation, triangles in part I and IIT should
be remamed and the others should be deleted in umon
operation and that only triangles m part II should be
remamed i A-B operation and only triangles in part 111
should be remained in B-A operation.

In cellular medel, all elements including triangles are
managed by a data structure-owner list. And both
processions-deleting and remaimning triangles are achieved
by pointers (the handle of triangles in owner list), which
can reduce the computing time greatly.

EXPERIMENT RESULTS AND ANALYSIS

Figure 7a-f 1s experiment results of Boolean
operations between two closed entities on HUST-CAID.
Figure 8Ba-¢ 1s results between a closed entity and a
non-closed entity. Figure 9a-c 13 between two non-closed
entities.

In HUST-CAID, the Boolean operation doesn’t be
processed as division computation for the consistency of
semantics and operations of features when there is(are)
the non-closed entity(s). Because the changes are not
obvious, there are no results of the subtraction (only A-B)
operation between closed entity and non-closed entity in
Fig. 8 and the mtersection and subtraction operations
between two non-closed entities in Fig. 9.

Inform. Technol. J., 9(3): 956-961, 2010

(d) © ()

Fig. 7: Boolean operations between closed entities. (a)
entity A, (b) entity B, (¢) union (AUB), (d)
intersection (ANB), (e) subtraction (A-B) and
(f) substraction (B-A)

@ (b) (©
o ®

Fig. 8: Boolean operations between closed entity and
non-closed entity. (a) entity A, (b) entity B, (¢)
union (AUB), (d) intersection (AmB) and (e)
substraction (B-A)

(D (D

©

Fig. 9: Boolean operations between non-closed entities.
(a) entity A, (b) entity B and (¢) umon (AuUB)

Table 1: Rates of detecting and triangulating
Triangles of entities Detected triangles Triangulated triangles Hit rate (%0)

100 13 12 92.31
200 25 33 88.00
500 67 55 82.90
1000 122 102 83.61

In addition, this algorithm doesn’t use any
approximation operation and can maintain the accuracy of
entities well. Lots of experiments show that the hit rate of
selecting triangulated tiangles with this algorithm 1s very
high, even to the complex entities containing 1000 more
triangles it can be more than 83% (Table 1).

960

DISCUSSION

It's easy to know that the efficiency of traditional
algorithms of Boolean operation is mversely propotional
to the total number of triangles in entities (Jing-yu et al.,
2006). So, it is inefficient to the traditional algorithms to
deal with the complex models (Hong et al., 2008). In many
CAD/CAID systems, the approximate triangles are used
largely instead of quondam triangles for rapid processing
(Shigi and Hongzan, 2005), which may result in
unexplamed errors (Zhenhua and Yuanjun, 2009), such as
holes (Gong et al., 2009). However, the new algorithm
proposed in this study ignores all triangles which have
not any possibility of being triangulated by Cubes. So,
there are only a few of trangles remamed which need to
be checked. It 13 obvious that the smaller the triangle set
which need to be detected is, the faster the speed of
intersecting detection is. And whatever entities are, the
ratio of detected triangles to all triangles in entities
changes a little. So, the Cube-based algorithm of Boolean
operation can keep its effecency well.

In addition, the usage of classify of spaces makes the
more improvement of efficiency. The new entity created
by the new algorithm is exact to the quondam entities and
has not any ambiguities or errors.

CONCLUSION

In this study, a Cube-based algonthm of Boolean
operation 13 proposed, which can be used for not only
closed entities but also non-closed entities. And this
algorithm can improve the speed of Boolean computation
greatly without any approximate operation. So, it is more
adaptable and practicable. In future studies, the ability of
semantic maintaining and the speed of intersection
detecting will be improved further.

ACKNOWLEDGMENT

This study 1s supported by National Nature Science
Foundation of China under Grant No. 60173055,

REFERENCES

Bidarra, R. and W.F. Bronsvoort, 2000. Semantic feature
modeling. Comput. Aide Des., 32: 201-225.

Gong, Y.X., Y. Liu, L. Wuand Y.B. Xie, 2009. Boolean
operations on conic polygons. J. Comput. Sci.
Technol., 24: 568-577.

Hong, Y., L. Hac and L. Wenhe, 2008. Basic Boolean
operation research n catmull-clark subdivision
surface. J. Comput. Res. Dev., 45: 1259-1268.

Inform. Technol. J., 9(3): 956-961, 2010

Hongjun, L., W. Congjun and H. Shuhuai, 2003. Boolean
operation for polygon with holes. J. Huazhong Univ.
Sei. Technol., 31: 18-20.

Jing-yu, W., Q.L Yanand W. Yar, 2006. Discrete Boolean
operation based on triangular patch. Trans.
Shenyang Ligong Univ., 25: 25-28.

Kaibo, G., Z. Lichao, W. Congjun and H. Shuhuai, 2006.
Implementation of boolean operations on STL
models. I. Huazhong Univ. Sci. Technol. (Nat.
Sci. Edn.), 34: 97-99.

Liang, X. and Z. Caiming, 2006. A topology complexity
based method to approximate 1sosurface with trilinear
interpolated triangular patch. . Comput. Res. Dev.,
43: 528-535.

Lorensen, W.E. and HE. Cline, 1987. Marching cubes:
A high resolution 3D surface construction algorithm.
ACM SIGGRAPH Comput. Graphics, 21: 163-170.

Mantyla, M., 1986. Boolean operations of 2-mamfolds
through vertex neighborhood classification. ACM
Trans. Graphics, 5: 1-29.

961

Peng, Y., I H. Yong, WM. Dong, H. Zhang and J.G. Sun,
2005. A new algorithm for Boolean operations on
general polygons. Comput. Graphics, 29: 57-70.

Rivero, M. and FR. Feito, 2000. Boolean operations
on general planar polygons. Comput. Graphics,
24: 881-89¢6.

Schneider, P.J. and D.H. Eberly, 2004. Geometric Tools for
Computer Graphics. Publishing House of Electromces
Industry, Beijing.

Shigi, O. and B. Hong zan, 2005. Frame Boolean operation
m suwface subdivision. J. Huazhong Univ. Sci
Technol. (Nat. Sci. Edn.), 33: 61-63.

Tomas, M., 1997. A fast triangle-triangle intersection test.
I. Graphics Tools, 2: 25-30.

Zhenhua, Z. and H. Yuanjun, 2009. Queer problems on

2D Boolean operation. Comput. Appl. Software,
26: 24-33.

	ITJ.pdf
	Page 1

