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Membership-Dependent Stability Conditions for Takagi-Sugeno Fuzzy Systems
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Abstract: This study deals with the stability analysis and stabilization of fuzzy systems from the viewpoint of
membership fimctions. Firstly, some linear matrix mequality conditions for the stability analysis and stabilization
of Takagi-Sugeno (T-3) fuzzy systems are derived, which are dependent on the upper bound and the lower
bound of the membership functions. Secondly, the local stability problem of the T-S fuzzy systems is
considered and some sufficient conditions for the local stability analysis and stabilization are provided. Finally,
some numerical examples are given to illustrate the effectiveness of the proposed results.
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INTRODUCTION

Much attention has been paid to the study of
fuzzy systems which can model many nonlinear
systems (Feng et al., 2005; Linfeng et al., 2009, Ajloum
and Al-Hamouz, 2004). The Takagi-Sugeno (T-3) fuzzy
system is an important fuzzy model. Hence, many research
efforts have been devoted to stability and performance
analysis of Takagi-Sugeno (T-S) fuzzy systems over the
past few vears in the literature by Takagi and Sugeno
(1985), Sugeno (1999) and Wang et al. (1996) and the
references therein. A great number of the significant
results were derived via the Linear Matrix Inequality (LMI)
approach. Some basic stability conditions were
presented by Wang et al. (1996) and some relaxed results
were provided by Guerra and Vermeiren (2004), Kim and
Lee (2000), Liu and Zhang (2003) and Tanaka et al
(1996, 2003). Currently, much attention 13 focused on
reducing the conservativeness of the TMI stability and
performance conditions. An important way to reduce the
conservativeness 1s using the fuzzy or piecewise
Lyapunov functional technique (Feng et af., 2005;
Mozelli et al., 2009; Rhee and Won, 2006, Tanaka et i,
2007, Yuan et al., 2008; Zhou and L1, 2005; Zhou et al.,
2007). However, some conservativeness still exists and
the stability of many stable fuzzy systems can not be
proved by the existing results. Take the system:

()= h, (z(t)x(t) - (1 - h, ((£))x(t)

for example. It can not be proved stable by the
aforementioned results. But it is stable when
O<h,(z(t))<0.5.

The LMI conditions in the aforementioned work
do not depend on the membership functions, which
may be a sowce of conservativeness. Indeed, the
stability of fuzzy systems may depend on the bound of
the membership functions sometimes, such as the
system mentioned in the last paragraph. On the other
hand, if some knowledge on  the bound of the
membership functions in a region around the equilibrium
18 known, some relaxed conditions may be derived on
the local stability of the fuzzy systems. Motivated by
this, Sala and Arino (2006, 2007) considered the local
stability problem and the stability problem of fuzzy
systems from the viewpomnt of the membership
functions.

In this study, the problems studied by Sala and Arino
(2006, 2007) are considered and new results are proposed.
Membership-dependent conditions on the stability of the
fuzzy systems are derived, which are dependent on both
the upper bound and the lower bound of the membership
functions. Sufficient conditions for the local stability of
the fuzzy systems are also derived.

For real symmetric matrices X and Y, the notation
<Y means that the matrix Y-X is positive definite. T is the
identity matrix with appropriate dimensions.  The
superscript T represents the transpose.

PRELIMINARIES

Consider the T-5 fuzzy control system described by
the following rules:

Plant rule i: [f z(T) 1s F,, ... and z(t) 1s F',, then:
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Rty = AX(D) +Bu(t)

where, x(0)eR" 1s the state vector; u(t)eR" 1s the control
input; z(t), ..., z(t) are the premise variables; F',, ... F', are
the fuzzy sets; A and B; are the system matrices. The
normalized membership functions are then given by:

Lz 0]

DI |

where, |1;[z(t)] is the grade of membership function of z(t)
in .. In what follows, the argument of hy(z(t)) will be
dropped for simplicity. A more compact presentation of
the fuzzy model 1s given by:

h, (z(t)) = i=1,..5

x(0= A(h)x(t) + B(hu(t) (1)

Where:

Adh) = E;thj, Bth) = E;h‘Bj

The widely used controllers for T-S fuzzy systems are
so-called Parallel Distributed Compensators (PDC) defined
by:

u(t) = Eth‘x(t) (2

where, K; 13 a constant matrix to be designed. Combine
Eq. 1 and 2 the closed-loop system becomes:

() = Esih‘h Gx(t)

i=1 j=l

3)

where, G; = A+BK..

Stability of fuzzy systems: Let us review some existing
results on the stability of system . When u(t) = 0, Eq. 3
becomes:

(1) = A(h)x(t) (4)
The following sufficient conditions are proposed by

Tanaka et al. (1996) based on the Lyapunov function
V(x(t) = x"(OPX(1)

Lemma 1: Tanaka et al (1996) system in Eq. 4 is
asymptotically stable if there exists P>0 such that:
(5)

ATP+PA <0, i=l-.s

969

To reduce the conservativeness of the conditions in
Lemma 1, a fuzzy Lyapunov fimction approach is
provided.

Lemma 2: Tanaka et al. (2003) assume that:

Ihl<o, i=l-s-1

System in Eq. 4 is asymptotically stable if there exist P0
such that:

B2P, i=l-s-1,

s-1

1
2 0B B+ {ATR ¥ RA S ATR TP A)
i=1

<0,1<i<j<s

Stability of PDC fuzzy control systems: For the
stability of system , much more sufficient conditions have
been reported. Let's review two main results in those
works.

Lemma 3: Tanaka et ol (1998) system m Eq. 3 1s
asymptotically stable if there exist X0 and M, such that:

AX+XAT-M'B] -BM, <0, i=1,--5,
AX+XAT+ AX+XAT-BM, - MB]
-BM,-M{B] <0, 1gi<jss

In such case, the controller gain matrix can be given
by K, =MX™"

Lemma 4: Liu and Zhang (2003) system in Eq. 3 is
asymptotically stable if there exist matrices 30, M, and Y
such that:

AX+XAT-MB] -BM, -Y, <0, i=1-,8

AX+XAT+AX+XAT-BM, - MB]
-BM,-MB] -Y,-Y, <0, l<i<jss,

Y, Y, ¥,
Y21 Y22 : YZS <0
Ysl Y52 Yss

In this case, the controller gain matrix can be given by
Ki=MX"

Membership-dependent stability conditions: When the
above conditions are infeasible, we should seek some
other conditions. Note that the membership functions do
not appear in the aforementioned TMI conditions. This
may be a source of conservativeness sometimes. In fact,
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some  conservativeness may be reduced if the
knowledge on the membership functions for a particular
T-S fuzzy system is introduced in the TLMI framework.
Motivated by this, some researches have been done to
seek the stability condition for system in Eq. 3 and 4 with
the assumption that the upper bound of h and hh is
known. The main results on this problem are restated in

the following.

Lemma 5: Suppose that O<h <[3;, system 1s asymptotically
stable if there exist symmetric positive matrices P; and N,
such that:

ATPHPA - N+ Y BN, <0, i=ioos (6)

i

Lemma 6: Suppose that Oshhi<fy, system in 3 1s
asymptotically stable if there exist matrices X, 3;=3{; and
symmetric matrix R, such that:

X=0,
R, 20,
AX+XAT -M/B]-BM,-R,+A-X, <0, i=1-5

AX+XAT+ AX+XA] -BM,-M[B] -BM,-MB! -R,
H2A-X;-X; <0, 1<i<j<s,

1

Where:

A= EEBMRM

k=l kslzs

In this case, the controller gain matrix can be given by
K=MX"

Lemma 5 and 6 are corollaries of Theorem 2 and 3 in
Sala and Arino (2006, 2007), respectively. It 1s easy to see
that if there exists P satisfying , let N, = €I, and P satisfy
if £ 15 small enough. So, 1s more relaxed than. By a similar
process, one can see that the conditions in Lemma 6 are
less conservative than those m Lemma 4. It 1s worthy
pointing out that the results in Lemma 5 can be extended
to a fuzzy Lyapunov functional approach to further
reduce the conservativeness.

When ATP+PA is unfeasible for some i, system in
Eq. 3 cannot be proved stable by Lemma 1 and 2. But it
may be proved stable by Lemma 5. It i1s noted that the
condition in Lemma 5 depend on the upper bound of h,
only, but has no relationship with the lower bound of h,.

In the next section, we will seek to introduce the lower
bound of the membership functions into the LMT stability
conditions of the fuzzy systems.

RESULTS

Here, we presents some sufficient conditions on the
local stability and stabilization of system in Eq. 3 and 4
when both the lower bound and the upper bound of h, are
known.

Stability of fuzzy systems: The following theorem gives
sufficient stability conditions of system in Eq. 4.

Theorem 1: Assume that O<o<h,<B<1. System in Eq. 4 is
asymptotically stable if there exist matrices P>0 and
1=1,....s such that:

ATP+PA -V, <0, i=L..s (7
EB'Y' +20:1(A,TP+PA, ~Y)<0 (&)

Proof: Choose a Lyapunov function as:
V{x(t) = x" (OPx(t)
Note that:

Vx() = 2x" (OPR(T)
=x"(O{ AT (WP + PA) fx(t)

= xT(t)ihx + Eshi(AiTP +PA, - Y)Ix(D)
<xT(D) {ESBX] + Esa‘(AfP +PA, —Y‘)}x(t)

where, V(x(t)) denotes the time derivative of V(x(t)) along
the trajectory of Hq. 4. Tt follows from Eq. 7 and 8 that
Vix(t)<0 for any x(t)#0. So, system in Hg 4 is
asymptotically stable if and are satisfied. This completes
the proof.

Theorem 1 provides a new condition to check the
stability of system. When o >0, Eq. 7 and 8 may guarantee
larger stability region than sometimes. This will be
illustrated in the following example.

Example 1: Consider the fuzzy system with the following
rules:

s R, Ifx,(t)is M, then (1) = Ax(1)
s R, Ifx,(f) is M, then X(t) = Ax(D)

Where:
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-5 -4 -2 4
A= , A=
-1 -2 20 a

Assume that O<h,<a, then 1-g<h<1. Let ¢ = 4.
Using the LMI tool box, one has that the LMI conditions
in both Lemma 1 and 2 are infeasible. When ¢ = 0.4,
solving, one has:

0.4497
{ 1.5267

0.8072
—0.8059}

_ [1.9382 0.4497}

—0.8059
{33.2259

N, =
0.7936
19.1956

N, =

191956 11.1163

Solving Eq. 7 and &, one has:

0.0795 01705
15508 03428
{—0.3428 1.8394}
33249 22121
{2.2121 1.5189}

_ {0.2747 0.0795}

1

4=

When ¢ = 0.3, by solving Eq. 7 and g, the following
results can be obtained.

0.0761 0.1527
7[1.4312 70.3177}

_ |:0.2729 0.0761}

T -03177 17192

[2.9768 19183
?7]1.9183 12579

Next we consider the stability of system. The
following theorem provides sufficient conditions for the
stability of system when the bound of h, 15 known.

Theorem 2: Suppose that O<e<h<f<1. System (3) is
asymptotically stable if there exist matrices X>0, Y>>0 and
M, i,j = 1,...,s such that:

AX+XAT -MB] -BM. -, <0

i:L"',S,_j:L"'zs

@)

Eu] (AX+XAT-MB] -BM -Y,)
(10)

FYBY, <0, j=los
i=l

In such a case, the controller gain matrix can be given
by Ki=MX "

Proof: Define P =X and Y, =PY,P.
Pre-multiply and post-multiply P to Eq. 9 and 10,
respectively, one has:

(1)

GIP+PG, Y, <0,0,j=15

s

Y o (GIP+PG, -, )+ EBEJ <0
i

i=l

(12)
j=1-s.

Choose the Lyapunov function as V(x(t))=x" (t}Pxct).
From, one has that:

V(x(t) = 2xT (OPRCL)

—xT(t) {Esih‘hj(GgP + PGij)}x(t)

i=l j=l

—x(1) {EZh‘hj(GEP +PG,— Y,)

i=l j=l

+ Esih‘h]'{u }x(t)

=l =l

<x"(t) {EEa‘hj(GEP + PG, — Y,

i=l j=l

+Esi Bih, Yy }X(t)

i=l j=l

- Eh X {E o, (GIP+PG, - Y,)
j=1 i=L
+ Y BY, }x(t).
i=1

It follows from Eq. 12 and 13 that for any Vix(t}<0.
Therefore, system (3) is asymptotically stable if Eq. 9-10
are satisfied. This completes the proof.

(13)

Example 2: To show the effectiveness of Theorem 2, we
consider the fuzzy control system with the following rules:

s Ry Ifx,(t) is M, then,

XD = Ax(©+But) =123

where:
{139 729 - 1
A= 0ol o © 'T|o
0.02 —-4.64 8
A, = , B,=
035 021 0
—a —4.33 6—b
A, = , B,=
0 005 -1

Assume that &, by P, oy sh, =B, o, <h, <5 then:

971
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oo, <h.h, 5%07%)2, mugshlhgsiaﬂzf
and
1 2
o,0, < hh,, 51(17(11)

When o =0;=0;=0.1and B :BZZBEZO'S,
shown that Theorem 2 can guarantee the stability of the
closed-loop system and the controller can be designed.

it can be

Local stability conditions: Unfortunately, the lower
bound of h is usually equivalent to 0. In such a case, the
LMTIs in Theorem 1 and 2 are not feasible. However, ¢,
may be bigger than 0 in a zone around the equilibrium of
system in Eq 3 and 4. In such a case, we have the
following corollaries on the local stability of system and
systerm.

Corollary 1: Assume that h; satisfies 0<&; £h <B <1 inga
region € that contains the equilibrium x = 0. System in
Eq. 4 13 locally asymptotically stable at the equilibrium
x = 0 if there exist matrices P>0 and Y, 20.i=l--s
satisfying Eq. 7 and 8. In such a case, the set of the wmutial
state ©'={x<R*|x"Px<Vy} is a domain of attractiomn,
where,

V,, = min {x"Px | x € 50}
with 90 denoting the boundary of Q.

Proof: It is easy to see that if x(0)=Q" then (0 €L From
the proof of Theorem 1 one has that:

v(x)sxT{iﬁYﬁia,(A}mmi—x)}x (14)

for any sxcQ". Suppose that Eq. 7 and 8 hold, one has
that vix)<o0 for any =< Q" and V(x)=0 only whenx = 0.
Therefore, Q"
ensures that every solution of system in Eq. 4 starting in Q"
will approach x = 0. And the proof is completed.

is an invariant set. LaSalle's theorem

Corollary 2: Assume that h; satisfies 0<¢; £h <B <1 inga
region € that contains x = 0. System in Eqg. 3 locally
asymptotically stable at the equilibrium x = 0 if there exist
matrices X>0, Y;>0and M, 1, = 1,..,s satisfying Eq. 9 and
10. Insuch a case, the controller gain matrix can be given
by K, = MX ' and @' =&[x'X"x<V,} is a domain of
attraction, where, V), = min{x"Px|x € 30} with 0 denoting
the boundary of Q.

1.0 T T I

0.8- e x =arcsin (0.98)

x, =arcsin {0.98) 2
L 1 L
15 -1.0 0.5 0.0 05 1.0 1.5

Fig. 1: Basn of attraction in example 3

Proof: Corollary 2 can be derived easily based on
Theorem 2, which 18 smmilar to the derivation of
Corollary 1.

To illustrate the effectiveness of Corollary 1, we give
the following example. The application of Corollary 2 is
similar to that of Corollary 1. Hence, it is omitted here.

Example 3: Consider the system investigated in
example 1. Suppose that:
h1:1+sinx1(t), hz:l—sinxl(t)
2 2

then h, hand h, satisfy 0.01<h <0.99 and 0.01 <h £0.99
when -arcsin 0.98<x, <arcsin 0.98. Solving Eq. 7and 8 with
o, = o, =001 and B, = B, = 0.99, one has that:

[11.8091 -5.9513

_[—5.9513 24.0503}
542115 -1.8099
1_[—1.8099 52.9116}
[59.7889  59.5099
{59.5099 70.5902}

2

So, the system is locally stable at the equilibriuum x =0.
Let

>

V,, =min{x"Px | x, = +arcsin 0.98}

According to Corollary 1, one has that the basin of
attraction of x =0 1s Q"= {x‘xTPx <V}, which 1s shown in
Fig. 1.

CONCLUSION

Some membership-dependent L.MI conditions have
been derived on the stability analysis and stabilization for
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continuous T-3 fuzzy systems. It has been shown that if
the lower bound and the upper bound of the membership
functions are known, some new stability conditions can
be obtained. Furthermore, when the bound of the
membership functions in a region of x = 0 is known,
relaxed conditions can be obtained on the local stability
of the fuzzy systems. In such a case, a basin of
attraction of x = 0 18 also provided. The given numerical
examples have shown the effectiveness of the proposed
approaches.

REFERENCES

Ajlouni, N. and 3. Al-Hamouz, 2004. Genetic design of
fuzzy mapped PID controller for non-linear plants.
Inform. Technol. T, 3: 44-48.

Feng, G., CL. Chen, D. Sun and X.P. Guan, 2005.
Controller synthesis of fuzzy dynamic systems based
on piecewise Lyapunov functions and bilinear matrix
mequalities. [EEE Ttans. Fuzzy Syst., 13: 94-103.

Guerra, T.M. and L.. Vermeiren, 2004. LMI-based relaxed
non-quadratic stabilization conditions for nonlinear
systems 1in the Takagi-Sugenos form. Automatica,
40: 823-829.

Kim, E. and H. Lee, 2000. New approaches to relaxed
quadratic stability condition of fuzzy -control
systems. [EEE Trans. Fuzzy Syst., 8: 523-534.

Lmfeng, B., C. Fugu and Z. Xiangjmn, 2009. Fuzzy
adaptive proportional integral and differential with
modified smith predictor for micro assembly visual
servoing. Inform. Technol. T., 8: 195-201.

L, X and Q. Zhang, 2003. New approaches to controller
designs based on fuzzy observers for T-S fuzzy
systems via LMI. Automatica, 39: 1571-1582.

Mozelli, L.A., R. Palhares and G. Avellar, 2009. A
systematic approach to mmprove multiple Lvapunoy
function stability and stabilization conditions for
fuzzy systems. Inform. Sci., 179: 1149-1162.

Rhee, B.J. and S. Won, 2006. A new Lyapunov function
approach for a Takagi-Sugeno fuzzy control system
design. Fuzzy Sets Syst., 157: 1211-1228.

Sala, A. and C. Arino, 2006. Local stability of open- and
closed-loop fuzzy systems. Proceedings of the [EEE
International Symposium Intelligent Control, Oct. 4-6,
Mumch, Germany, pp: 2384-2389.

973

Sala, A. and C. Arino, 2007. Relaxed stability and
performance conditions for Takagi-Sugeno systems
with knowledge on membership function overlap.
[EEE Trans. Syst, Man, Cybernetics Part B:
Cybernetics, 37: 727-732.

Sugeno, M., 1999. On  stability of fuzzy systems
expressed by fuzzy rules with singleton consequents.
IEEE Trans. Fuzzy Syst., 7: 201-224.

Takagi, T. and M. Sugeno, 1985. Fuzzy identification of
systems and its applications to modeling and control.
IEEE Trans. Syst, Man Cybermetics, 15: 116-132.

Tanaka, K., T. lkeda and H.O. Wang, 1996. Robust
stabilization of a class of uncertain nonlinear systems
via fuzzy control: Quadratic stabilizability, control
theory and linear matrix inequalities. IEEE Trans.
Fuzzy Syst.,, 4: 1-13.

Tanaka, K., T. Tkeda and H.O. Wang, 1998. Fuzzy
regulators and fuzzy observers: Relaxed stability
condition and LMI-based design. IEEE Trans. Fuzzy
Syst., 6: 250-265.

Tanaka, K., T. Hori and H.O. Wang, 2003. A multiple
Lyapunov function approach to stabilitization of
fuzzy control systems. IEEE Trans. Fuzzy Syst,
11: 582-589.

Tanaka, K., T. Hori and H.O. Wang, 2007. A descriptor
system approach to fuzzy control system design via
fuzzy Lyapunov fimctions. IEEE Trans. Fuzzy Syst.,
15:333-341.

Wang, H.O., K. Tanaka and M.F. Griffin, 1996. An
approach to fuzzy control of nonlinear systems:
Stability and design 1ssues. IEEE Trans. Fuzzy Syst.,
4: 14-23.

Yuan, Y., Q. Zhang, D. Zhang and B. Chen, 2008. A
dmissible conditions of fuzzy descriptor systems
based on fuzzy Lyapunov function approach Int.
I. Inform. Syst. Sci, 4: 219-232.

Zhou, S. and T. Li, 2005. Robust stabilization for delayed
discrete-time fuzzy systems via basis-dependent
Lyapunov-krasovakii  function. Fuzzy Sets Syst,
151: 139-153.

Zhou, 8., J. Lam and A K. Xue, 2007. filtering of discrete-
time fuzzy systems via basis-dependent Lyapunov
function approach. Fuzzy Sets Syst., 1 58: 180-193.



	ITJ.pdf
	Page 1


