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Abstract: Wavelet analysis has been a popular subject for over twenty years. The multiple vector-valued
multiresolution analysis of space L? (R, C**) is introduced and the notion of biorthogonal multiple vector-
valued wavelets with five-scale is proposed. A necessary and sufficient condition on the existence of
biorthogonal multiple vector-valued wavelets 18 presented by means of paramitary vector filter bank theory.
An algorithm for constructing a sort of biorthogonal multiple vector-valued finitely supported wavelets is
provided. We also characterize the multiple vector-valued wavelet wraps and three biorthogonality formulas
concerning the wavelet wraps are established by virtue of time frequency analysis, iterative and operator
method. Moreover, it is shown how to obtain new Riesz bases of space L’ (R, C**) from these wavelet wraps.
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INTRODUCTION

Wavelet analysis has been studied extensively in
both theory and applications during the last two decades.
The main advantage of wavelets is their time-frequency
localization property. Construction of wavelet bases 13 an
important aspect of wavelet analysis and multiresolution
analysis method is one of important ways of constructing
various wavelet bases. Wavelet transform is a simple
mathematical tool that cuts up data or functions mto
different frequency components and then analyzes each
component with a reselution matched to its scale.

The main feature of the wavelet transform is to
hierarchically decompose general functions, as a signal or
a process, into a set of approximation functions with
different scales. Engineers in fact have discovered that 1t
can be applied in all environments where the signal
analysis 1s used. In order to implement the wavelet
transform, we need to construct various wavelet
functions. Though orthogonal wavelets have many
desired properties such as compact support, good
frequency localization and vanishing moments, they lack
symmetry as demonstrated by Daubechies (1992). Vector-
valued wavelets are a class of generalized multiwavelets
(Yang et al, 2002). Xia and Suter (1996) and Xia and
Zhang (1993) mtroduced the notion of vector-valued
wavelets which have led to exciting applications in signal
analysis (Telesca et al., 2004), fractal theory (Iovane and

Giordano, 2007), image processing (Zhang and Wu, 2006)
and so on It i1s showed that multiwavelets can be
generated from the component functions in vector-valued
wavelets. Vector-valued wavelets and multuwavelets are
different in the following sense. For example, prefiltering
is usually required for discrete multiwavelet transforms
but not necessary for discrete vector-valued wavelet
transforms (Xia et al., 1996). In real life, Video images are
vector-valued signals. Vector-valued wavelet transforms
have been recently studied for image coding by Li (1991).
Hence, studying vector-valued wavelets 1s useful in
multiwavelet theory and representations of signals. Chen
and Cheng (2007) studied orthogonal fimitely supported
vector-valued wavelets with 2-scale. Similar to um-
wavelets, 1t 13 more complicated and meamngful to
investigate vector-valued wavelets with five-scale.
Inspired by Chen and Huo (2009), we are about to
investigate
biorthogonal finitely supported vector-valued wavelets
with five-scale and propose a constructive algorithm for
designing biorthogonal finitely supported vector-valued
wavelets. Nowadays, wavelet packets, due to their nice
characteristics, have attracted considerable attention,

existence and construction of a sort

which can be widely applied in science (Chen and Zhi,
2008) and engineering (Leng ef al., 2006), as well as
optimal weight problem (Liand Fang, 2009). Coifman et al.
(1992) firstly mtroduced the notion of orthogonal wavelet
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Packets which were used to decompose wavelet
components. Chen and Wei (2009) generalized the
concept of orthogonal wavelet wraps to the case of non-
orthogonal wavelet wraps so that wavelet wraps can be
applied to the case of the spline wavelets and so on. The
introduction for biorthogonal wavelet wraps was
attributable to Cohen and Daubechies (Behera, 2007,
Zhang, 2007), Zhang and Saito (2009) and Chen et al.
(2009¢) constructed 4-scale biorthogonal vector wavelet
wraps, which were more flexible in applications. We will
generalize the concept of umivanate biorthogonal wavelet
wraps to vector-valued wavelet wraps with multi-scale
and investigate their biorthogonality property.

THE VECTOR-VALUED FUNCTION SPACE

TLet $€Z be a constant and s>2. The space I’
(R, C¥¥) is defined to be the set of all multiple vector -
valued functions , 1.e:

£,0 fi,® - i
. £3,(0) Dpp® - £, ()

O L0 - fu®

where, f,, () €1.” (R}, 1, v =1, 2,... s. Examples of multiple
vector-valued signals are video images m which f | (t) 15

the pixel at the time the lth row and the vth column. For
any F (el (R, C¥9):

IF 1=y g £ (DT e
and its integration is defined to be:
JeF(Odt=(lef, (0dt),,
1.¢., the matrix of the integration of every scalar function

£,(t.5.1=1,2, ...,s. Forany F ()eL’ (R, C*®), its Fourier
transform is defined by:

Fe):= [ F(t)-exp{—io t}dt (1)

For any F () T (t)el.? (R, C¥F), their symbel inner
product is defined by:

(F,Ty:= [,F®T)dt (2)
where, ' means the transpose and the conjugate.

Definition 1: We say that a family of multiple vector-
valued function:

{F, )}, cL (®B,C™)

is an orthonormal basis in L’ (K, C¥9), if it satisfies:
<FpFp>=8 0.0 le 2 oand G (H)el’ (R, C¥F), there
exists a sequence of sxs constant matrice Q, such that
G(t)= Tnez QpFp(t) where, I, denotes the sxs
identity matrix and § ;= 1 whenj = land &, = 0 when j »
1.

Definition 2: A sequence of vector-valued functions

{F.()} ., c UcL¥R,C™) 1s called a Riesz basis of U1f (1)
For any, G (t) € L7 (R, C¥) there exists a unique sequence
of sxs matrix {P }, such that:

G ()= I PF, O (3)

(2) there exist constants 0<C,<C,<e such that, for any
sxs constant matrix sequence {P.},

Coll {Pet [+ <) Bz P ()] <o P3|

where, | {P,} |- 1s the norm of the matrix seq {P.},.;.

We begin with the following refinement equation and
the multiple vector-valued multiresolution analysis, that
is commonly used in the construction of wavelets.
Assume that H (tel.’ (R, C*°) is satisfied the following
refinable equation:

H(t)=5-% _,D,H(5t-n) )]

where, {D,},.; 13 an s*s sequence of matrice, which has
only a finite nonzero terms. Define a closed subspace V,
c L* (R, C¥), jeZ as follows:

V,=Close, ames (Span {H{5't—u)ueZ

where, jeZ We say that H (t) in (3) generates a vector-
valued multiresolution analysis {V;},.,, of L’ (R, C**), if
the sequence {V.},.; s satisfied: (1) V, c V,.,, ¥ j€Z; (i1) F(t)
€ V==>F (SteV,; (i) N, V, = {0} U, V, is dense in L
(R, C¥%; (iv) The translations {I(t): = H (t-n), neZ?} form
a Riesz basis for V. Here H (1) is called a vector-valued
scaling functions. Let W, jcZ, stand for the
complementary subspace of V, in V},, and there exists four
vector-valued function ¥ ,(H)cLXR, C¥¥), 12/ = {1, 2, 3, 4},
such that:

T, () =5 (5tu),1eA, j, ucZ
forms a Riesz basis of W,. It is clear that ¥, ()eW,cV,.

Hence there exist four sequences of sxs matrices {B},,
such that:
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Y (t)=535,, B, H(5tw), 1eA (5)

We say H (t), H() are a pair of biorthogonal multiple
vector-valued scaling functions, if there 1s another

multiple vector valued scaling functions Ht)er®c such
that:

<H(),H(-n)> =8,l,nez (6)

In particular, H (t) 15 called an orthogonal one while
the relation <H().H(-n)>=8, I,.neZ holds.

We call ¥, (t), ¥.mel? (R, C*¥) pairs of
biorthogonal multiple vector-valued wavelets associated
with a pair of biorthogonal multiple vector-valued scaling
functiens, if:

<H('),q"‘(-*l‘l)>:0, neZigA (7)
<fI(-),‘PL(-—n)>:O, neZ, 1e A (8)
<P (-n)=8,3 L.Lveh 9

Similar to Hg. 4 and 5 also satisfy the following
refinement equations:

At -5.5.,5.H5t-v) (10)
F(t)=53 _BiH(t-n), 1€ A (11)

Then, we can gain the following results by Eq. 5
and 8.

Theorem 1: Assume that , defined by Eq. 4and 10, are a
pair of biorthogonal vector-valued scaling fimctions.
Then, for any ,we have:

3D B0 = 1/98,,1, (12)

Proof: Substituting Eq. 4 and 10 into the biorthogonality
Eq. 6, we have

BT, =< (LT - n) > =25 [ DH(St- )H(St—5n - "D,V dt

iz
=5 3D, «H(-)HC-5n-D>@D,) =53 D, D)
ez
Theorem 2. Chen et al. (2006a): Assume P, (t) and ¥, 1),
defined m Eg. 5 and 11, are vector-valued function in
L7 (R, C*9). Then Wi(t) and ¥ (t) are pair of biorthogenal
multiple vector-valued wavelet functions associated with

a pair of biorthogonal vector-valued scaling functions H
(t) and At) , then we have:

S DB =0.keZ 14, (13)
Evezf)'vﬁk(B:,)*:O, keZ,1e A, (14)
ST By (B —8,8,L, nez (15)

Thus, both Theorem 2 and (13-15) provide an
approach for constructing compactly
biorthogonal multiple vector-valued wavelets.

supported

CONSTRUCTION OF THE BIORTHOGONAL
MULTIPLE VECTOR-VALUED WAVELETS

Theorem 3: Let H (t) and ) be a pair of 6-coefficient
biorthogonal multiple vector-valued finitely supported
scaling functions satisfying the following equations:

H()=5-3° D H(St-v) (16)
Hty=5-3° DHGt-v) (17)

Assume there 13 an mteger 1, O<l<5 | such that the
matrix P below 1s an invertible one:

P? =[(1/S), - D, (BT DBy (18)
Define:
B=PD,, jel
B =-P'D,,j=
i ~~ i . 19
ﬁ;: BBy, jel, #1e {0} Ja ( )
B =—(®)'Dyj=1

where, 1€A. Then:

¥ (=55 BHGt-v, 1A

- 5 e
Fy=5.3 0 BeH(St-v), 1e A

are pairs of biorthogonal multiple vector-valued wavelet
functions associated with H(t) and ) .

Proof: For convenience, let 1 = 1. By Theorem 2 and
formulas (13-15), it suffices to show that the set of
matrices:

Blal-shaen

satisfies the following equations:
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Dy (B =D, By =0, 1A (20)
D, (B)* + 22, Dy (B =0,124 (21)
B, @) =B, @) =0,1eA (22)
BL@) ~BLBY - 0,1heA (23)
* DB =014 (24)
DB =0, 1A (25)
5 BB = 1/9)8, 1, A (26)

If ¢B;.B:,-B:,B;,B;-BL) are given by Eq. 19, then Eq. 20,
22, 23 hold from Eq. 12. For Eq. 21, we obtain from
Eq. 12 and 19 that:

D, B +D,BY* + 27, D . BD"
=0, - Dy + 3. 0,0,k
-[,B0" + 30,6 )R- .5y F
=[(1/ )L, -D, B Tp - D, B ®*

= {[ws5), -0,y B - 0,0y B
=[DB)" -D,B)E" =0

Similarly, Eq. 24 and 25 can be obtained. Now we will
prove that Eq. 26 follows:

B, (B)" +B.(B) +B,B,) + LB, B
=P(D,(Bs) + 52,0, D) )P+ QD (D) P
P[P0/ S, —D,(D) P + D, (D) P!
=P[P'D, (D))" + D, D) 1P

—P[D, D))" + PD, (D) 1P

—P[D, D))" +%15 — D, )" 1P :%Is

Corollary 1. Chen et al. (2009a): Tt H (t) defined in Eq. 4
is a 6-coefficient orthogonal vector-valued scaling
function and there exists an integer 1, 0<1<5, such that the
matrix P, defined in Eq. 27 1s not only mvertible but also
Hermitian matrix:

P? = ((1/5)1, - D, (D) "y D, (D) (27)
B,=PD,  j=I_ o5
{Bj __pip, joi PlE(O12343) (28)

Then ¥ (t) = 5 %) B H(5t-v) is an orthogonal

multiple vector-valued wavelets with H (t):

Example: Tet H(t), fiqy ¢ L7 (R,C) and supp H (t) = [0, 5]
be a pair of 5-coefficient biorthogonal vector-valued

scaling functions satisfymg the equations
(Wang et al., 2008):

below

H(t) = SD,H(50) + 5D, H(5t — ) + 5D, H(5t — 5),
H(t) = 5DoH(5E) + 5D H(5t — 1) + SDsH(5t - 5)

where,
D,=D,=D,=D:=Ds=D.=0

SN A

b2 50 | |20 0|, _[vioa+i/20 0

L BT B 0 5 +iN13) 740
10 25 10 25
. R

~ |20 g |~ |20 g |~ [+Jlog+id/zo 0

Do = ,Ds = D= )
W57 W7 0 5 +iv151/ 40
160 64 160 64

Let I=1. By using Eq. 19 and 20, we get:

o 10 10 5
“lo ABssas) 0 Lo WB5)T0 )

J5i20 0 Af5iso 5
_B5i70 —AfEi1rs )

- —Jloa+iy/20 0
b 0 V350 +iv3) /40

5/20 —4/5/50
B, = 5 3 ,B,=B,=0.
V35770 —f35/175
~ 5720 1/8 ~
B, = 5 ,B2=0
357160 7 /64
. (=fz+i) /4 0 . [JS_IED s J~ -
B = LB = ,Bz=By=0
0 —ﬁ(1+iJST)/8 Vs e

By Theorem 3, we have:
Pity=5y. . BHGE-v), Pty =5y, BH{5 -,

are biorthogonal — multiple vector-valued wavelets
associated with H (t) and Hb) .

THE PROPERTIES OF MULTIPLE
VECTOR-VALUED WAVELET WRAPS

To introduce the notion of multiple vector-valued
wavelet wraps, we set
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(@

n

@, = HD, T = F 0, By - HO, D0 ="P.(1), Q¥ =D, Q¥ =BY, Q
=D., QW =BY 1A, neZ

For any o €Z. and the given biorthogonal multiple
vector-valued scaling functions @; (1) and, @ (1)

iteratively define, respectively:

T (B = Ty, (0= Q' 5t k), (29
Bot) = Bront)= 30, s (St-n) (30)

ned

where, 1€, = Au {0}, oeZ.is the unique element such
that ¢ = 5o+ 1€, follows.

Definition 3: We say that two families of multiple vector-
valued functions {@.,., () oeZ., 1€A;} and { @, (L)
0€Z,, 1€A} are multiple vector valued wavelet wraps with
respect to a pair of biorthogonal multiple vector-valued
scaling functions @, (t) and ¢ (1), respectively, where
D, () and @ are given by Eg. 29 and 30,
respectively.

Definition 4: A family of multiple vector-valued functions
{D.., (troeZ,, 1€eA;} 15 called multiple vector-valued
wavelet wraps with respect to an orthogonal multiple
vector-valued scaling functions @, (t), where ®@.,,, (t) are
iteratively derived from Eq. 29.

Taking the Fourier transform for the both sides of
Eq. 29 and 30, yields, respectively:

Do (56) = Q¥ (@) Do (19), 1E A, (31)

T (5) = 0 (@) Do (), 1E Ay, (32)

where:

O ()= %EQ‘;’ - expleined, 1e A, (33)

ned

ém(oo) = %Eé‘n" -expi—inc3, 12 A, (34

ned

We are now in a position to characterizing the
biorthogoenality property of the wavelet wraps.

Lemma 1. Cheng et al. (2007): Let F(t), @y €L’ (R, C™)
So they are biorthogonal ones 1f and only if :

3 oo+ 2kn)F o+ 2y = I, (35)

Lemma2. Chen et al. (2006b): Assume that 1€ A, O (t)
o, (t) e L* (R, C**) are pairs of biorthogonal multiple
vector-valued wavelets associated with a pair of
biorthogonal multiple scaling functions H (t) and ) .

Then, for 1, v €A, we have:

3 0¥+ 2pn/ SOV (w+ 2pm/5) =5 L.

PEfg

Lemma 3. Chen ef al. (2009b): Suppose that {@, (t),
aeZ,} and {@, (t), weZ,} are multiple vector-valued
wavelet wraps with respect to a pair of biorthogonal
multiple vector-valued functions @, (t) and &, (t). Then,
for ¢ ¢ 7,, we have:

(0.0, -0)) =8y, L, ueZ (36)

Proof: The result (36) follows from (6) as ¢ = 0. Assume
that (36) holds when g<n1), where 1) is a positive mteger
and o € 7, Forthe case of ¢ € 7, & = 1, we will prove
that Eq. 36 holds. Order « = 5p+p where B € Z., p € Ajthen
B=w.

By induction assumption, we have:

20(0,0,8.6-) = [, Doprol@I Do (@) expliu- oo

- IRQ(P) (@, (3D, (@ QP (@ expliuw do

= _[[D , ]Q(F) (03)2 (i)(®+ 2km) Do+ 2kn)".QP (o) eiuw dw
- kez

=[  Ie"dw=3,1

" Jo.zm Outs”

Therefore, the result 1s established.

Theorem 4: Assume that {®, (), ne Z,} and { @, (1), n¢€
Z.} are multiple vector-valued wavelet wraps associated
with a pair of biorthogonal scaling functions ®; (t) and
@ o Then, foranyne Z, , 1, v € A, we get that:

(@0 0. Brarel ~ K} = 8,51, ke Z 37

Proof: Since the set R has the following partition:

E= U, (0,27 + 2urn) and ([0, 27] + 2m,)
N0, 2x]+ 2m,) =@,

where, u;#u;, u, u; € Z then by Lemma 1, we have:
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2n (CDW(-),EIS;:MV = k)>: _[R CJISsn»,L(OJ)EI’clsn»,v((;))* -exp{ika}dm
= J. Q(L)(OD)(JI\)n (m)a:)n (@) GV (@) e de

2r+)m
-2 1.

ref

Qv (m)(Bn (m)é)n (@)™ (@) e de

1% -~ = - .
= j Q"(m)z D, (@ + 2rm®. (0 + 2m'Q 7 @) ¢ da

2nfs
= j S Q%w+24m/ 59V @+ 24n/ 5) ™ do

Aedy

=[78,, =83 1,

This completes the proof of Theorem 4.

Theorem S: If {®, (1), xeZ:} and (P, (1), oeZ, ) are
multiple vector-valued wavelet wraps with respect to a
pair of biorthogonal multiple vector-valued functions @,
() and Efo(t) , Then, for ¢, o€Z.,, we have:

(@,0.8.(-0)=35,,8,I, ke (38)

Proof: When ¢ = 0, Equation 38 follows by Lemma 3. As
¢#0 and o, o€, it follows from Theorem 1 that Eq. 38
holds, too. Assuming that « 1s not equal to g, as well as
at least one of {a, 0} doesn’t belong to A,, we rewrite o,
0 as o = 50,1, 0 = 50,1, where p,, n,eA. Case 1. If ¢,
=g, then, # p,. Equation 38 follows by virtue of Eq. 31,
38 as well as Lemma 1 and Lemma 2, 1.e.,

(cp O.Bo - ) = [ Bicyoy () B0y (03 exp {ine}de

Q(“)(mJS){E(D (&/ 5+ 2um)- daa (@/ 5+ 2um) JO™ (w/ 5) dw

usZ

= j{w SEZ QV[(w+ 210) / 5]- G [(eo+ 278) / 5] - explinesbden

[0,10%]

:J‘[u’z ]SLI uls -exp{ine}dm =0

Case 2: If a,#0,, order «, = 5, +1,, 0, = 50, +p,, where
o,,0, €4, and 1, peA Provided that, then Similar to
Case 1, (36) can be established. When, «,#0, we order
¢; = 5S¢, 0,= 50 s, where, 1; ped, o, G, €Z,
Thus, after taking finite steps (denoted by x), we obtaln
e and 1, ped, If ¢, = o, then 1,#p,. Similar to
the Case 1, (33) follows. If . #t,., then it gets from Eq. 12
and 15:

<CI>QK ), o, (-fk)> =0, keZ

(] Z&)m {o+ 2um) C'Iung {o+2un) =0

ued

Furthermore, we obtain:

223, 0.Fa( )= || B (a0 (@) ¢ dw= [ s, v () By ()" expikao)do

= =oas ﬂ]{HQ“(SE)}{‘z (g + 2um)

a8 T T a0 s -
g r 2 1€ G|

{1}@“(5—5)}- o

A1 8% €Y exptoikapd= O.
Therefore, for any «,c € Z , result Eq. 38 holds.

Corollary 2: Let {®_(t), neZ,} is a multiple vector-
valued wavelet wraps with respect to the orthogonal
multiple vector-valued function, ®, (t) Then, for
oK 2, , it follows that:

(DD (-1n))=8,8,.1.neZ (39)

In the following, we will decompose subspaces
v,V, and W, by constructing a series of subspaces
of’r multlple Vecgtor—valued wavelet wraps. Furthermore, we
present the direct decomposition for space L (R, C™). Let
us define a dilation operator A, 1.e., (AF) (t) = F (5t) where
F(t)el® (K, C*%) and set AQ = {AF(t) F(t) €2} where
QcLi(R, C*). Forany ne Z, , denoted by:

Q ={FtH=S M (t-ky: M, } e £ ()},

O = F(H) = M. -k): {Mi} e £(Z)7}

Then Q_l W(“) JheA . Assume that

Q% (5 (oo+ zﬁu)))p Loty 1sa umtary matrix.

Lemma 4. Mallat (1999): For vne Z, , thespace AQn
can be decomposed into the direct sum of Q. i.e:

Ag}h :I‘—-Hu.el\n gzinﬂp e AO (40)

Similar to Eq. 40, we can establish the following

result: Aén - 1y g"%mu_ For any geN, define some sets:
pedig

.o . -
To=% 8A,T =T -Tw

1-0

Theorem 6: The family of multiple vector-valued
functions {@ (-—uw,ue Z,ne T} formsaRieszbasis of
A"V, Inparticular, {®_(-—k), k €Z, ne€ Z,} forms a Riesz
basis of space L (R, C*.

Proof: By virtue of Eq. 40, we have AQ) =@, €, 1e..
Since Q, = V, and W, =4, W = S0 Qo then
AQ =V, g W, .
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Tt can be inductively inferred by using (40) that:

A"y =AW Q. neN (41)
el

Since V., = VB W, j€ Z, therefore, we have:

1

A"Q =AY WAW,,ne N

By Eq. 41 and Theorem 5, we have AX =4 . Q

L'(R,C™) =V, 4 {4 A"W,) = (42)
QU QN=1aq
In the lght of Theorem 3, The family
{O (-—u), ueZ, nel} i1s a Riesz basis of A"V,
Moreover, according to (42), {&_(-—u), ueZ neZ,}
forms a Riesz basis of space 1(R, C7).

Corollary 3: For every neN, the family of multiple vector-
valued functions {¢,(3t-u)u,jeZ ael} constitutes a
Riesz basis of space {D (t-u) uecZ ac}.

Proof: Now that the family {®,(t-u), u, jeZ, ael’,} forms
a Riesz basis of A"V, then for every jeZ, the sequence

i@, (5 t-u), ueZ} constitutes a Riesz basis of subspace

AAv, = A" v, Consequently, for every 0eN, we have
W AATY, = EZAMVD = AV Therefore, {D,(5 t-u), u, jeZ,

ael';} constitutes a Riesz basis of space L.* (R, C*).
CONCLUSION

A necessary and sufficient condition on the existence
of biorthogonal multiple vector-valued wavelets 1s
presented by means of paraunitary vector filter bank
theory time-frequency analysis method. An algorthm for
constructing a sort of biorthogonal multiple vector-valued
fimtely supported wavelets 13 provided. We characterize
the biorthogenality traits of these wavelet wraps. We also
establish three biorthogonality formulas concerning the
wavelet wraps. In the final part, we obtain two new Riesz
bases of space 1.7 (R, C*°) from these wavelet wraps.
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