http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 10 (6): 1194-1200, 2011
ISSN 1812-5638 / DOL 10.3923/1).2011.1194.1200
© 2011 Asian Network for Scientific Information

Modeling Web Services Composition with Timed Pi Calculus

Yuanyuan Zhang, Jun Liu, Qiong Tang and Yan Wu
College of Information Technology, Zhejiang Chinese Medical University,
Hangzhou 310053, People’s Republic of China

Abstract: The Web service techmology 1s the de facto standard to expose the functions of business
applications for implementing the integration of existing e-business and improving business processes. We
need to study the problem of modeling, testing and verifying the behaviors of Web services, especially in
services composition. This study focuses on the issue of behavioral modeling in a service composition. It
adopts the timed PT calculus to model service behaviors and mteractions n a formal way. To handle the
structural composition, we improve the syntax and semantic of timed PT Calculus. Based on the evolution of
the timed PI calculus process, we can compose services on the fly and ensure the correctness of services
composition. Owr case study shows that the proposed approach has a good scalability and efficacy for service

compeosition. In conclusion, our approach 1s an improvement method to modeling Web service composition.

Key words: Web services, service composition, timed PI calculus, on the fly, process evolution

INTRODUCTION

Due to the role of the World Wide Web has been
changed from information interaction to service
interaction, Service Oriented Computing (SOC) is an
emerging paradigm for the distributed computing and
e-business processing. Web services and Web service
compositions (WS compositions) are currently considered
to be the most widespread possibility for implementing
service-oriented architectures (Papazoglou and van den
Heuvel, 2006). The next wave of the internet era 13 being
driven through the integration and composition of basic
Web services available on the Web both within and
across organizational boundaries. However, the building
of value-added services is not a trivial task owing to the
different platforms, heterogeneous programming
languages and secwrity firewalls. To truly integrate
business processes across enterprise boundaries it 1s not
sufficient to merely support simple mteraction using
standard messages and protocols, e.g., XML, SOAP,
WSDL and UDDI specifications. These processes should
provide high availability, rehability and scalability,
because a failure m them can cause high economic losses,
such as in B2B, B2C, G2G processes of commercial
applications.

Recently, languages for Web
composition have emerged, e.g., WSFL (http//www.
ebpmlorg/wsfLhtm), XLANG (http:/’www.ebpmlorg/
xlang htm), OWL-3 (http://Awww.w3.org/Submission/

several service

OWL-3/) and BPELAWS (http://www.oasis-open.org/
apps/org/workgroup/wsbpel/.). The goal of these
languages is concentrated in defining primitives for
composing services and automating service coordination
in a workflow-based management way, such as the
literature 1n Misra et al. (2006). Generally, based on the
graph structured process models, a composite task of the
Web services application is controlled and represented by
a labeled directed graph in which nodes represent steps
of execution and edges represent the flow of control and
data among the different steps. Each step i3 either an
atomic task or another composite task that discovered and
invoked across the Internet or an enterprise intranet.
However, due to the interoperability, the major fields of
reliable Web service compositions research are involving
discovery,
monitoring and services maintain. Therefore, there is a

services services composition, services
need of new techmiques to addressing the new
requirements of the Web service environment. Among
these, the time constraint 1s considered as an important
factor in ensuring the correctness of the Web service
compositions. To the best of our knowledge, none of the
existing mndustrial standards and technological solutions
can meet this need.

In most of the cases a real-time system/cyber-
physical system is composed of multiple components that
are working concurrently within some time constraints.
The correctness of the composite software behavior

depends not only on the tasks that the system is

Corresponding Author: Yuanyuan Zhang, College of Information Technology, Zhejiang Chinese Medical University,
Hangzhou 310053, People’s Republic of China

1194

Inform. Technol J., 10 (6): 1194-1200, 2011

designed to perform but also on the physical instant at
which these tasks are performed. Therefore, we are still
trying to modeling, testing and verifying the behaviors of
Web services.

Recently, Time Petri Nets (TPN), Timed Automata
(TA) and Timed PI caleulus (T,) are widely-used
formalisms for the modeling and analysis of timed
systems. As support tools, there exists several efficient
tools like UPPAATL (Pettersson and Larsen, 2000),
KRONOS (Yovine, 1997) and CMC (Laroussinie and
Larser, 1998).

Timed automata (TAs) (Alur and Dill, 1994) firstly
introduced by Alur and Dill for modeling the time
behaviors based on FSM, where the invariant and a clock
guard are proposed as the conditions constrained m state
and transiion of automata, respectively. Moreover,
temporal logics CTL have also been extended to deal with
real-time constraints for specifying the properties, such as
bounded reachability and safety. A lot of research has
been proposed on the timed venfication algorithms:
efficient data-structures, on-the-fly algorithms,
compositional methods, etc. Therefore, TAs can be used
to model and reason about real-time systems such as
network protocols, business processes, reactive
systems, etc. And more researches of TAs has been
extensively studied (Alur et al., 1994; Logothetis, 2005;
Bouyer et al., 2000).

Petr1 Nets are a formalism developed in the '60s by
C.A. Petri to model concurrent systems. In literature, time
has been added to PNs in many different ways. The two
main extensions of Petr1 Nets with time are Tiune Petr1 Nets
(TPNs) and Tuned Petri Nets (Saeedloei and Gupta, 2008).
For these classical transition-time Petri Nets, recent work
focuses check whether or not the coverability and
boundedness are decidable by applying a backward
(or forward) exploration techmique (Abdulla and Jonssorn,
2001) for timed reachability analysis. Generally, the
approach for the analysis of TPNs concerns their
transformation from TPNs to TAs. For example, Cassez
and Roux (2008) shown how to check that a given TPN
satisfies a property written in this logic. For this, they
proposed a translation from TPNs to Timed Automata
(TA) and check the property on the equivalent TA.

The PI calculus introduced by Milner ef af. (1992) 1s
a process algebra for modeling concurrency and mobility.
Each component is modeled as a process. A whole system
15 abstracted as a set of processes among which
nteractions are carried out mdependently. The PI calculus
provides a conceptual framework for describing systems
whose components interact with each other. For instance,
Berger (2004) considered extension of PI calculus with
time and introduced (m-calculus) asynchronous PI

calculus with timers and a notion of discrete time,
locations and message failure. Lee and Zic (2002)
introduced another timed extension of PI calculus called
real-time PI calculus. They have introduced the time-out
operator. Ciobanu and Prisacariu (2006) focusing on
temporal aspects of distributed systems and introduced
and studied a model called tined distributed PIL

caleulus.
Web service exposes service functionality by
interface operations descriptions. Each service

composition defines that the component services interact
with others by sending and receiving messages. Under
time constrains, such as time-outs, the messages
exchange event should be accomplished within a fixed
time limit. Actually, the PI calculus 1s proper to model
these behaviors and interactions of Web service. Thus, in
this study, we present a formal approach to modeling
time-related Web service composition using the technique
of timed PI calculus. We model the composite Web
service as timed workflow that have to respond to
externally generated signals or inputs within specified
time limits. Also, the futwe behavior of such a system
depends on the time at which the external signal is
received. As illustration of this methodology we use a
case study which is an On-line sell system, whose
description contains some time constraints. The study
shows that compared with the traditional modeling
technique, our approach not only improves the efficiency
of Web service composition but also obtains the timed
behaviors for describing the time-critical system.

MOTIVATION

A specific scenario of timed Web services
composition is encountered when a customer asks a
vendor agency for a business activity. Once the vendor
agency receives customer request, it dynamically selects
related service components, such as a login service, a
Goods browse service, an express delivery service, a
confirmation print service and a credit-card payment
service and then composes these services into a
composite service (we call it On-line sell system, OLSS).
The behaviors are as follows: After login the On-line
system published by the vendor, the customer choose the
Goods and input the delivery address. Then the system
checks the available Goods and requires the customer
specifies the credit card mformation. Finally, the system
presents a final confirmation to the customer to complete
the booking. However, to accomplish the dynamic service
composition with time constrains for customer is a highly
complex task. The response action (or the execution
action) has time constrains. This process 1s only valid for

1195

Inform. Technol J., 10 (6): 1194-1200, 2011

a period of just half-howr which means that if any process
has not been received or send in that period, the On-line
system will end the business interaction.

Techmically speaking, the WS composition
coordinates the functionality of two Web services and 1s
used by a third Web service. The ability to handle time 1s
also considered a very appropriate feature because
business services cannot wait forever for the reply of
other parties. Timers are specialized by (1) timers can be
set or started, (2) timers can be stopped and (3) timers can
time-out. This can be the case when describing a
particular behavior (for instance, a time-out) or stating a
complex property (for example, “the alarm has to be
activated within at most 10 time units after a problem has
occurred™).

THE TIMED P1 CALCULUS

In order to model W3 into the timed PI calculus
process model, we first introduce the time-stamp to satisfy
certain time constraints. In study of Saeedloei and Gupta
(2008), messages are represented by a triple of the form
<m, t,, ¢, where m is the message, t,, is the time-stamp on
m and ¢ is the clock used to generate the time-stamp. Owr
notion of real-time and clocks is inspired by timed
automata (Alur and Dill, 1994). There are two types of
clock operations (C) clock resets and constraints as
follows (Sacedloel and Gupta, 2008).

C ::= Reset |Constramnt | €
Reset ::= (reset Clock)| Constraint (reset Clock)
Constraint ::= ce ~0
ce 1= xtce|x-ce|x
x ;2= Number|Clock
cr=<> <z |=

There are two core concepts in the conventional PT
calculus: processes, chammels and names. The simplest
entities are names. Hach name has a scope and can be
unbound (global) or bound to a specific process. The
channels are used as links to commumcation by which
processes interact with each other by sending and
receiving messages over a chammel In this study, the
channel contains three types of timed constrains: input
activity C%<m, t,, c¢>, output activity Ca<m, t , ¢> and
silent activity Cz. For example, (¢<6) T <x, t,, ¢ indicates
that x must be sent out on channel a within six time units
since the clock ¢ was reset.

The capabilities for actions are expressed via the
prefixes of BNF, of which the syntax is
follows:

defined as

P:= (process)

0 (Null process)

| Ca=x, tx, c>.P (Input process)

| Ca<x, tx, ¢».P (Cnitput. process)

| CzP (Silent process)

| { (P+gP) (Choice composition)
| (PllgP) (Parallel composition)

| (P, gP) (Sequence composition)
[(1gP) (Replication composition)
| (va)P (Restriction)

[[x=v]P (Conditions)

Input process means that the process waits to read a
value from the channel a and after having received a value
u, the process continues as P but with the newly received
name u replacing x, denoted as P{wx}, Output process
means that the process sends out x over the channel a
and then behaves like P; Silent process means that the
process can evolve to P without any actions. When an
input (or output, or silent) process occurred completely,
the clock ¢ will be reset.

Here, we introduce { to express the global time
constrains of the structural composition, where { is an
extra formula clock Cn{ = @. The quantifier ze{ is encoded
for time-bounded reachability or response for Web
services composition. The operators “+°.°|]",*’and “I°
represent nondeterministic choice, parallel composition,
sequence composition and replication composition,
respectively. And the event g is used to describe the
composition’s clock invariant. For example, (g<5) (P+..P)
indicates that the choice composition P+P must be
complete within 5 time umts since the clock g was reset at
the start of composition.

Restriction means that the process behaves like P but
the name a is local, meaning that the name cannot be used
for communication with other processes; Conditions
means that the process behaves as P if x and y are the
same name, otherwise it does nothing.

Operational Semantics: it is used to describe the
possible evolutions of a process. Sangiorgi and Walker
(2001) had given as a set of transition rules focusing on
input and output event. To handle the structural
composition, we umnprove the semantics of timed PIL
Calculus. The operations semantic are described as
follows:

Intuitively, our implementation of Table 1 i1s an
extension of PI Calculus. We have encoded the time
restriction g to each movement of process. For example, in
Choice composition, the formula:

p—E=p!
(g~0)(P+(g> Q)&»P'

means that if per-condition P—%5p' is satisfied then the
choice composition process should be accomplished

11%¢

Inform. Technol. J.,

Table 1: Semantics of timed PT calculus

10(6): 1194-1200, 2011

Behaviors of web service

Operational semantics

Choice comp osition G, pr
CHO = P P _
@-0) P+, Q—=>P
(ete)Ca _
CHO -RES = reset ¢,P Pm where c e {T,a{x,t,,c).a < ¥atg,c >}
(g ~ 0)(reset ¢)(P+,,, Q)—">P
Parallel composition 3 p—C ,pr
S &~ 0P Q5P Q]
(reset c)Co ,
PAP-RES = reset ¢,P ot E)Cl:; —— where bn(c) ~ 1 (Q) =&
(g ~0)reset)P ||, Qq————P'||Q
a<x by, o> ' a<x by, or '
Sequence composition SEQ = P PLQ Q
g~0F, Q——>FQ
SEQ B R-ES _ reset C,P Creset ©) a<x, b ,c> P .’Q (reset c);<x,LI,c> Q.
' (g—0) (reset) P; ,Q——P" Q'
Restriction
aax, Lo ' 3<%, Lo '
CROT: P . —— U P PE Y (0}
PQ——>wxP'|Q
CLOSE - RES— reset ¢,P (rest Jesinb,> D o) (reset c)acx, by, o> Q' fx e (Q)
' (g~ O)(reset) P;_Q— > (vx) P'|Q' ’
it o P—telmotes Spr
Replication composition REP = R
(g~ 0!, 1P —{stesmhs ,pyp
REP RES _ reset C,P (resetc)a<x,t, o> P.

(g~ 0) (reset ¢)t P—lmsldetiubs ,p1p

within the g time units which described in time restriction
g over C. The process also can be formalized with a reset
command (resect ¢) for ¢lean all clock variants during the
choice composition, namely, the formula is denoted as:

(reset c)P_(ﬂJC‘*_,P.
(2~ 0)(reset C)(p g Q)ﬂJCw_,P.

Similarly, in Parallel composition, when bn (¢t) nfn (Q) =
which indicates that action « 1s not compatible with the
process Q, the parallel composition || 1s asynchronous. In
Sequence composition, one service oufput messages
Ca<m, t,, ¢> which can be received as mput message
C®<m, t,, ¢> by the other service. Note that the sequence
composition mtroduces the silent action during services
composition. In Restriction composition, suppose x can’t
be received by the invoked service Q that x&fn (Q), the
restriction operation (va) P is used to monitoring the
restriction. In replication composition, it 1s required to be
acted with the tune restriction g for mmplementing the
(PR L pry p) loop operations.
IMPLEMENTING THE TIME CALCULUS FOR
WS COMPOSITION

We first give out our architecture to reflect the
success of service execution and interactions. As Fig. 1
shown, in the service layer, each Web service has time
element that involves the service execution time, the
starting time for execution, the service binding time and

timed 1nput/output descriptions. In the services candidate
layer, services pool 1s used to provide the alternative
service when current service fails. In workflow model, the
Web service-based software system in general is modeled
as a workflow under control processes.

In previous study, the BPELAWS is used specify the
invocation of WS composition and the WSDL 1s used to
expose the functionality of Web services. This section
presents methods of the translation from BPELAWS
specification of WS composition to Timed PI calculus.

For service layer, we can model the input (output, or
silent) process for the each W5 according WSDL (Web
Service Defimition Language). In the mndustrial standard
service description language WSDL, there are four types
of operations, 1.e., one-way, request-response, solicit-
response and notification. In our study, WSDL is
improved that <time stamp=""">, <clock name=""> and
<clockOperations/> are introduced to describe the timed
behaviors of the service interface. The corresponding PI
calculus are translated as follows:

Algorithm 1: One-Way description
<operation name="a"=
<input message="x" =
<time stamp ="t />
<clock name="c">
<clock Operations=
<clock expression="c<9">
</clockOperations>
</input >
</operation=>

b (T O A =

1197

Inform. Technol J., 10 (6): 1194-1200, 2011

Workflow
Model
v < v
‘ . ‘ Service
WSI1 W S1 W S1 W S1 Candidates
2 wsa WS2 W S2 WS2
] 1 A 1
1 1 | 1
Service
'''''' . Warehouse
Web Web o Webv
Service Service Service

Fig. 1: The architecture of a timed modeling framework

Algorithm 2: Request-Response description

Algorithm 4: Notification description

0 <pperation name="a">
<input message="x" > =*(c<9) B, 0 (d<3) 2y, b, >
<time stamp ="tx” />
<clock name="¢"">
<clockOperations>

<clock expression="c<9">
</clockOperations>
</input >

<output message="y" =
<time stamp ="ty” />
<clock name="d">
<clockOperations=>

<clock expression="d<3">
</clockOperations>
</out>

</operation=

Algorithm 3: Solicit-Response description
O<operation name="a">

<output message="y"" > +(d<3)a<y,b,c>.(c<9) a<x, t, ¢
<time stamp ="ty” />

<clock name="d">

<clockOperations>

<clock expression—"d<3">
</clockOperations>

</out>

<input message="x" >

<time stamp ="tx” />

<clock name="¢"">

<clockOperations>

<clock expression="c<9">
</clockOperations>

</input >

</operation=>

Algorithm 1-4 show that each type of operation can
be modeled as a process expression with the additional

<operation name="a"=
<oulput message="x" > =+ (c<Da<x, t, ¢
<time stamp ="t />
<clock name="c">
<clock Operations>
<clock expression="c<¢">
<fclockOperations=
</output >
</operation=

time constrains. Notice that, an operation of the request-
response type or solicit-response type can be represented
by the combination of a one-way type operation and a
notification type operation.

For work flow layer, the BPEL describe the
specification of the composite WS where the < receive>
and < reply > activities are used to describe the interface
constramts of WS mcluding time constraints. The
<invoke> activities are used to represent interaction to
other services. It can be mapped to a sequential
composition that invoke send input parameters and
obtains the message from the mvoked service. In
additional, there are two kinds of <invoke> activities in
BEPL, namely, synchronous and asynchronous. They can
be mapped to the parallel and sequence composition. The
while activity mtroduces an iteration control and requires
a loop structure to represent the repetition. The pick
activity combines a switch activity applied to various
sequences of other activities. In ow practice, we extend
the BEPL to broaden their applicability to the tined
structural behaviors, such as the tag <time constrains=.

1198

Inform. Technol J., 10 (6): 1194-1200, 2011

Algorithm 5: A sequence description
<gequence>
<time constrains="g">
<clockOperations>
<clock expression—"g<3">
</clock Operations
<clock reset="g"/>
<receive operation ="a" >
<invoke operaction="LoginService™>
<reply operation ="a" >
<receive operation ="b” >
<invoke operaction="BookingHaotel>
<reply operation ="b" >
<ftime >
</sequence >

=+ (c<3) Pa; P,

For example, in Algorithm 5, we depict how the
sequence composition 18 formulated where a global g 1s
added. It means that at the beginning the global clock 1s
reset and the process of sequence execution needs to be
invoked within 3 time units.

CASE STUDY

Consider again the example shown in section I1. Tn
this section, we will discuss how the business logic model
of the campsite WS (OLSS) 15 built with the help of timed
PT calculus. The service behavior refers to the dynamic
properties of a service which includes the actions the
service can take, the states the service has and the
message exchange sequence supported by the service. In
Fig. 2, the interactions of QLSS are specified via six states
(Plogine Pricwr Pactiverss Peretitearss Pprins Peng) 8N seven channels
(C1,C2,C3, C4, C5,C6, C7). In this design, it 18 assummed
that services receive the message through their
corresponding channel. C1, C2, C7 are notification-type
which output a messages succ, fail, mess with different
time constrains, respectively. C3, C4, C5, C6 are the one
way-type operations which get mput messages
selectgood, onl.inePay and cashPay, respectively.

Cl: = {x,<1, succ}

= {x,<1, fail}

= {x,<5, Select goods}
= {x,<2, On line pay}

Plogin

Q
4
I

"
A
Ay
D
Q0
=
([

C5: = {x,<4, Cash pay}
Cé6: = {x,<2, per Info}
1= {1<x,<2, Mess}
C2
v
P

Fig. 2: A composite service

Using timed PT calculus to model the behavior of a
service, we can define the whole service as a timed PI
calculus process.

P:= (reset(x)) (x<1) ((=1) ¢y <8UCC, b, Xo=t, ((0<1) o <fail, tag,
N=(%<5) o3 <select Good, Lwooss X3 ((reset 1) (y<1) ((6=4)
C5 <cashPay, boashiays X5 Fy

x2(%52) o <perlnfo, b, %™))(1060<2) 07 <MESS, byess, X97)))

(=<2 gy <onLinePay, touersy

According to the operational semantics, we
simulate the process of each step of business logic.
In Fig. 2, there are three message exchange sequences
which can eventually come to an end (denoted as 0).
of the exchange

sequences, we can build a composite service correctly on

the fly.

From the operational semantics

The first message exchange sequence 1s gotten as
follows:

P _eetoia , (<) T <SUCC, bk Xoh ((0=1) o <fail, tag,
X=(5=5) o3 <select good, Lopuooes, X (reset (y)) G<1) (=4 5
<cashPay, Loges, X7+, ((4<2) 0q <onLinePay, lutips, X (4<2)
Cpertnteor X%s7)). (150552)
0.

s <perlnfo, C7 SHESS, b, X))

GRS LN

The second message exchange sequence is gotten as
follows:

P tmstedy o ((551) g <SUCE, by, X7+ ((551) o7 <fail, by, x>
(<5) 03 <select good, tepuoees Xz~ ((reset (¥)) <1) ((=4) 5
<cashPay, g X7, (52) 0q <onLinePay, Lypr., %~ (%52 Cg
<perInfo, tegw X)) (15X <2) o7 <mess, t ., F2N).q
el gy v (x555) (3 <select g00d, Lupoos, %57, ((reset () (y<1)
((x5=4) s <cashPay, basipay X5ty ((x=2) ca <onLinePay, Lot inePaye
X7 (452 og <perlnfo, teun, %)), (1<G<2) o7 <mess, by,

x72)).
(x5 < 5) < olectGiood, typogees

M(reset (¥)) <1) (x<4) (5 <cashPay,
Leasipar X5+ ((4<2) 0g <onLinePay, bopire, X>.(X<2) (g <perinfo,
beatatos %67))- (153G52) (07 <MESS, byee, X77)).

treset (wty) ((X5<4) Cs <cashPay, Lagpy X2, ((4<2)
4 “ONLINEPaY, tuginesy X062 G PO, Ly %620, (155,52)

CF SMEsS, by, X7)

(34<1) <cashpay, togpry. %53 0
5 U

The second message exchange sequence is gotten as
follows:

1199

Inform. Technol J., 10 (6): 1194-1200, 2011

P_gswamd | ((<1) o7 <SUCC, b, X7y ((0=1) o7 <fail, te,
x>.(6<5) o3 <select good, tapucoos, X357, ((Teset) (<1 (Go<d)
5 <cashPay, L, X571, (0<2) g <nLinePay, buirsy X7 (%52) O
<perlnfo, b, X67)). (15%:52) 7 <MESS, by, X57)))

Gl o, 1., (X2<5) (o3 <select good, Lopocos, %™, ((reset ()
G=D) (x4 05 “cashPay, Luwre X7ty (x52)
bortinepays Xa™ (X6<2) g <perinfo, t e X #)).(1<X £2) 07 <mess, e

x5=))

C4 <onLinePay,

(ol ctolo0d, Ly goods X3

((reset (y)) (y<1) ((<4) 5 <cashPay,
boastpan %57ty ((52) og <onLinePay, boers, %™ (%52) g <perlnfo,
bretnmes %6)). (153552) 07 <MESS, byess, %57))

et), ((%554) 5 <cashPay, Luary X7t (X<2) g
<onLinePay, by, X7 (6<2) g <pernfo, tonm. X)), (1<4<2)

O SIMESS, by, X77)
(%4<2]<0onLinePay topngey. 24

(%<2}
%) (196 <2) 07 <mess, by, Xo™

C6 <perlnfo, Lpertngis

Cra<)<perlnd, tor g, 5>y, (15%752) (77 <MESS, byecer X

(1<xp<2)<mess, lpoe, 3>

, 0

CONCLUSION AND FUTURE WORK

In the complex, distributed, open, dynamic and
unpredictable environments, how to enswe the
correctness of Web Services composition plays a critical
role in SOA. Tt is becoming well-admitted that the use of
formal methods is hot top in software engineering, such
as Petr1 Nets, Automata and PI calculus. In this study, we
introduce timed PI calculus processes to describe the
services and their interactions. In the particular case
study we have used to illustrate how this methodology
works. Present future work will focus on automatic
checking so as to implement a tool supporting this
verification. Many existing tools can help us to do the
verification automatically, such as the tool MWB. So, we
plan to extend the MWB to check the timed process.

ACKNOWLEDGMENT

The authors would like to thank the editors and
anonymous referees for their suggestions and the
remarkable improvements they brought to this paper. This
paper has been supported by the research fund of the
Zhejiang Chinese Medical University (2010ZY14).

REFERENCES
Abdulla, P.A. and B. Jonsson, 2001. Ensuring
completeness of symbolic verification methods for
infinite-state systems. Theor. Comput. Sci.,

256: 145-167.
Alur, R and D.L. Dill, 1994. A theory of timed automata.
I. Theor. Comput. Sci., 126: 183-235.

Alur, R, L. Fix and T.A. Henzinger, 1994. A determinizable
class of timed automata. Proceedings of the 6th
International Conference on Computer Aided
Verification, (CAV’98), Springer-Verlag, Londorn, UK.,
pp: 1-13.

Berger, M., 2004, Towards abstractions for distributed
systems. Technical Report.

Bouyer, P., C. Dufourd, E. Fleury and A. Petit, 2000. Are
timed automata updatable. Proceedings of the 12th
International Conference Computer Aided
Verification (CAV), July 2000, Springer, Chicago, IL,
USA., pp: 464-479.

Cassez, F. and O.H. Roux, 2008. From Time Petr1 Nets to
Timed Automata. In: Petri Net, Theory and
Applications, Kordic, V. (Ed.). I-Tech Education and
Publishing, Vienna, Austria.

Ciobanu, G. and C. Prisacariu, 2006. Timers for
distributed systems. Electron. Notes Theor. Comput.
Sci., 164: 81-99,

Laroussinie, F. and K.G. Larsen, 1998. CMC: A tool for
compositional model-checking of real-time systems.
Proceedings of the IFIP Joint International
Conference on Formal Description Techmques and
Protocol Specification, Testing and Verification,
(FORTE-PSTV’98) Kluwer Academic Publishers,
Dordrecht, pp: 439-456.

Lee, I.Y. and I. Zic, 2002, On modeling real-time
mobile processes. Aust. Comput. Sci. Commun.,
24:139-147.

Logothetis, G., 2005. Forward symbolic model checking
for real time systems. Proc. Asia South Pacific Design
Autom. Conf, 2: 1043-1046.

Milner, R., J. Parrow and D. Walker, 1992, A calculus
of mobile processes, [. Inform. Comput., 100: 1-40.

Misra, R B., S. Srinivasan and D.P. Maital, 2006. The use of
web services technology in the design of complex
software interfaces: An educational perspective.
Inform. Technol. T., 5: 1127-1131.

Papazoglou, MP. and W.J. van den Heuvel, 2006.
Service-oriented design and development
methodology. Int. J. Web Eng. Technol., 2: 412-442.

Pettersson, P. and K.G. Larsen, 2000. UPPAALZk.
Bull. Ewr. Assoc. Theor. Comput. Sci., 70: 40-44.

Saeedloer, N. and G. Gupta, 2008. Tined PI calculus.
http: /Awww . utdallas. edw~gupta/tpi. pdf.

Sangiorgi, D. and D. Walker, 2001 . PT Calculus: A Theory
of Mobile Processes. Cambridge Umiversity Press,
New York, USA..

Yovine, 5., 1997. KRONOS: A verification tool for
real-time systems. Int. J. Software Tools Technol.
Transfer, 1: 123-133.

1200

	ITJ.pdf
	Page 1

