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Abstract: This study presented an H, Fuzzy Variable Structure Control (HFVSC) design for Induction Motor
(IM) to solve speed tracking problem. First, the T-3 modelling method was adopted to simulate the nonlinear
dynamic of TM. Tn order to transform the tracking control into the stabilization problem, a set of new internal
desired states was defined to construct a new control. Then, the HFVSC controller for uncertain IM driving
system was proposed based on the fuzzy model and the feedback gains were determined in terms of linear matrix

mequalities. The resulted closed-loop system was proved that the state trajectories can across into the specified
sliding surface in finite time and the H_ performance can be obtained. Simulation results verify the correctness

and feasibility of the proposed scheme.
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INTRODUCTION

Induction Motors (TM) are widely used in industrial
applications due to their high efficiency, high reliability
and relatively low cost (Krishnan, 2001). They are
recognized as one of the key components in automation
and robots. But the dynamic model of an IM 1s lughly
nenlinear because of the coupling between the motor
speed and the electrical quantities, such as two axis
currents and flux linkages. The physical parameters may
also not be exactly known, even worse, the load torque is
most often unknown (Asseu er al., 2010). All these factors
would impose adverse impact on the control performance
and make controller design for an IM difficult when high
speed and high precision are required in the real
application.

In order to deal with this problem, the Variable
Structire Control (VSC) strategy using the sliding mode
concept has been widely studied and developed for
control and state estimation problems since the works of
Utkin. In general, V3C comprises a discontinuous control
input that drives the control system toward a specified
sliding swrface. This control technique has many good
properties to offer such as msensitivity to parameters

variation, external disturbance and fast dynamic response.
Several methods of applying sliding mode control to TM
drives have been presented by Asseu et al. (2008, 2009),
Choi (2009), Lasaad et al. (2007) and Zhang and Wang
(2009). All of these methods have a common feature: the
analysis and design of the sliding mode controller are
based on the mathematical model of the IM as used in
indirect vector control.

Due to the complexity of the structre of the
controlled TM with perturbations, the mathematical model
used in V3C strategy is in general difficult to derived or
too expensive to asses m IM drives. However, most
complex nonlinear systems including IM can be linearized
for model-based control (Feng, 2006; Ali, 2011). Model-
based fuzzy control utilizes a fuzzified open-loop linear
model of the plant to derive a set of fuzzy if-then rules
constituting the corresponding fuzzy controller. The T-3
fuzzy model which is often used in the literature, is
employed in this study since it can be easily approximated
to most nonlinear systems and has the inherent ability to
combine with SMC (Bortolet and Palm, 1997). For T-3
fuzzy control, the nonlinear system can be decomposed
into several subsystems. Then, the controller design can
be carmried out with Parallel Distribute Compensation
(PDC) approach (Tanaka and Wang, 2001).
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Over the past few decades, the H_ control problem for
uncertain systems with disturbances has been an active
topic in control system theory and application (Cao and
Frank, 2000). The H. control 1s proposed to reduce the
effect of the distwrbance input on the regulated
output to within a prescribed level. For the T-3 fuzzy
systems, there are a great number of results on the H,
control problem and various approaches have been
proposed by Hong-Qiang et al. (2008) and Choi (2008).
Very recently, there are many authors investigating the
problem of H_ fuzzy control for electrical drive systems. A
fuzzy state feedback controller of induction motor with
H.  performance is designed by Jamoussi et al.
(2010). The saturated signal is represented as a perturbed
signal and the speed control of an induction motor 15 be
further investigated by H_ teclmique to determine the
achieved robustness in study of Chang and Wang (2005).
A Linear Parameter Varying (LPV) feedback controller for
an mduction motor 1s designed using H_ control theory
and input-output feedback linearization and the proposed
controller delivers high performance over the entire
operating range of the induction motor in study of
Prempein and Postlethwaite (2002). However, the problem
of VSC control for uncertain fuzzy systems with the
robust H_ performance is still open and remains unsolved
which motivates the present study.

In this study, for the purpose of obtaining a linearly
controlled speed and keeping the robustness of VSC
strategy on the matched uncertain system, the H_
fuzzy variable structure control (HFVSC) based on the
T-S model was proposed for the speed tracking of IM
drive. To the best of our knowledge, it was the first time
for the idea to appear in the literatures. A set of linearized
equations was first obtained from the original nominal
mathematical model of IM at different operating points.
Thern, based on the T-S modeling method, a fuzzy global
model was obtained by combining these linearized
equations. An LMI-based design approach was
developed and the HFVSC controller was built such that
the global T-S fuzzy system confined on the global sliding
swiace was asymptotically stable. The HFVSC controller
switched on the global sliding surfaces such that the T-S
fuzzy model with imknown uncertamties and external load
disturbances had the robust H. performance. Fmally,
some simulation results were presented to validate the
proposed scheme.

MATHEMATICAL MODEL of IM
The dynamic model of an TM is described in a

synchronous two-axes reference frame by Krishnan
(2001):
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where, g, Wy Ls L Uy Uy, are the rotor flux linkages, the
stator currents and voltages in d-q axes, respectively.
o=1-L" AL, L), k=LAcL,L), .= LR, 1,=L/R,
vy = l/ot+l-o/ot, p=nL./JL,), L, L. L, R, R, are the
mutual inductance, rotor inductance, stator mnductance,
rotor resistance and stator resistance, respectively. w,, is
the rotor speed, B is the viscous friction coefficient, T is
the rotor moment of inertia, n, is the number of pairs of
rotor poles and T, is the load torque. The synchronous
speed can be calculated as ©, = MW tL1.,/ (T V). The
voltages u,, and u,, are the control mnputs of the system
(Eq. 1). The stator currents and rotor speed are
measurable quantities which are obtained by Hall-effect
current transducers and encoder.

DESIGN OF ROBUST FUZZY VARTABLE
STRUCTURE CONTROLLER

Output tracking based on T-S fuzzy control: To
investigate the control design of system (Eq. 1), we let the
state vector X (t) = [Ly, Ly s We 0] the control input
vector u(t) = [uy 1,,]" and the measured output y (t) = [1,,
i,» ©_]". Then, the state equations of IM considered here
can be represented as:

{x () = A[x(O] x &) + Bu()+Dw(t) (2)
¥y (O =Cx (1)
Where:
All A12
A=Ay A, O
0 A32 A33
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The load torque 15 regarded as the external
disturbance, i.e. w (t) = T,.

The nonlinear system (Hq. 2) can be expressed by the
T-8 fuzzy model:

Plantrulei: If z (t)is F, .z, (1) s F,,, ...
(t), Then, x(=Ax®)+Bu) i=1,2, .. 1.
By using the fuzzy inference method with a singleton

and z (t)is F,;

fuzzifier, product inference and center average defuzzifier,
the fuzzy model (Eq. 2) can be expressed as the following
global model:

x(t)= 3 h, (()[Ax (D) + Bu (0] 3)

where, As are the system matrices with appropriate
dimensions, z (t) = [z,, Z,, ..., 2]" is the premise variable
vector that consists of the system states, 1 is the number
of fuzzy rules and:

h (=0, @)/ Y, 0@, oz =]]"F, z;(t)

for all t. The terms F; (z (t)) are the fuzzy set It is
assumed, as usual, that w,>0 and h,>0 and:

2 h ) =1

foralltand1=1,2, ...,1.

However, it is noted that system (Eq. 3) is only a
linearized fuzzy model of IM without considering any
model uncertainty or external disturbance. Therefore, we
take the above perturbations into account and modify the
uncertamn T-3 fuzzy systems (Eq. 3) as:

£ = Y [Ax M +Bu®]+ Y h Dw() 4

where,
¥ hDw(t)

denotes the whole uncertainties including parameter
variations and load disturbances.

From Eq. 4, it is easy to find that the uncertainties
don’t satisty the so-called matching conditions. Thus, the

H., robust technique should be adopted to alleviate the
adverse impact on the control performance.

For speed tracking control of IM, the control
objective is required to satisfy (@, (H)-(w,, (£))-0 as teo
and the amplitude of the rotor flux linkage:

= Jwit vy,

keeps constant, where ., is the desired speed signal. In
order to convert the output tracking problem into a
stabilization problem, we mtroduce a set of internal
desired states, X, = [Lus iy Wi Wiy @]’ which are to be
tracked by the state vector x (t).

Let x(®=xt)-x,(t) denote the tracking error for the
state variables. The time derivative of %(t yields:

% (t)=ihl A‘i(t)+ihlB‘r(t)+Dw(t) (3

In Eq. 5, the new control input i1s calculated as
follows:

zn) h,B.T(t) = zn:hlBlu )+ E h, A x, (1) — %, (1) (&)
iml =1 iml

According to the above description, we can find that
the tracking control is converted to the stabilization
problem. Then, our control purpose 1s to design the new
controller T (t) to make the new state X()=0_

The PDC offers a procedwe to design a fuzzy
controller from a given T-S fuzzy model. In the PDC
design, each control rule is designed from the
corresponding rule of a T-S fuzzy model (Tanaka and
Wang, 2001). The designed fuzzy controller shares the
same fuzzy sets with the fuzzy model in the premise parts
as follows

Control rulei: If z, (t) s F, ;, z, {(t)isF, , ... and z, () is F,
» Thent(®=-K &t 1=1,2, .. 1
The PDC can be represented by:
T=-3" hK £ (7)

where, the feedback gains K, = MX™' will be determined
by solving the following LMIs such that the overall
stability is guaranteed:

AX+BM, +XAT + MTBT <0 (8)
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(AX+BM, +AX+BM)+(XAT + MTB] + XA+ M/B <0 (9)

where, X 1s a positive-definite matrix.

H_ fuzzy variable structure control: Design of our
HFVSC controller mvolves two iumportant phases. The
first phase 1s to design a suitable sliding surface function
S so that once the system enters the hyper-plane S, the
desired dynamic characteristics can be realized. The
second is to design a proper controller T (t) instead of
Eq. 7 so that it can drive the system’s dynamics into the
designed hyper-plane and stay thereafter.

We first define the linear shding surfaces as follows.
The proposed sliding mode function 1s:

S=Cx (10

where, CeR™ 15 the designed SMC coefficient and C
should be properly choiced so that the equivalent control
of SMC would be really existed (Choi, 2009).

For the design of the variable structure, it is
necessary to have the prior knowledge of the upper
bounds of uncertainties and disturbances. The variation
of load torque would impose adverse effect on the control
performance. Generally, for a given IM system, the
maximum of the allowable torque 1s known and certain;
therefore, the bound 15 easy to obtain. There exists known
positive constant r,, such that the followmng inequality is

fulfilled:
ICDw (O] <P (11)

where, the notation | .| denotes the Euclidian norm of the
vector and ., 1s the upper bound of the uncertainties.

Then, the proposed HFVSC controller in this study is
designed as:

Ty rvse (0 = Te(EHT, (1) (12)
where,
% (=Y h, (z)(B'EBY" BTPA, £(0) (13)
i=1
(0 =1, + 5 [S O] + ¥, Isen[S(O] (14)

where, 1,, 1, are designed parameters and sign (.) 1s the
sign function.

The following theorem proves that the stability of the
proposed controlled system is guaranteed if the sliding
swface (Eg. 10) and controller (Eq. 12) are employed.

Theorem 1: If there exist matrices Q>0 and Y such that the
following LMI holds:

(PA,+BY)+% PD I
D'p —1 0
I 0 -I

<0 (15)

where, K = YP and P = Q7', the state trajectories of the
close-loop system Hq. 5 under the control law (Eq. 12-14)
will reach the sliding surface defined in Eq. 10 within finite
time and the motion of system (Eq. 5) confined on the
sliding surface has the robus H_ performance.

Proof: We firstly analyse the reachability of the above
controller. The time derivative of the sliding mode
function 1s obtained as:

$=B"PB)'B " Px
= zn)hi (z)(B" PB)"'B"PA, &(t)+u(t) + ihl (2)(B'PB)'B"PDw(t)

1=l i=1

=—S—rnsen($)—F, (sen(®) + ihl (z)(B'PB)'B'PDw(t)

i=1

(16)

Let s; denote the jth element of the sliding mode S,
then 1t is evident that |s;|<|S|. Once the inequality s>0
holds, Eq. 16 can be rewritten as:

1

§=—1s -5 =T () +[ih](z) (B'PB)'B"PDw (r,)J

i=1

£-gs; -5 -V, (D+

{ih, (z) (B"PB)'B"PDw (t)} ‘

i=1

(17)

S8 - =, (D) +

[ihl(z) (BTPB)"BTPDW(I:)J

i=1

<—ps,— —F () + ihi ()| (B"PBY ' B"PDw (1)
i=1

e

In the same way, if s>0 helds, Eq. 16 can be
rewritten as:

82 —hS;+h (18)

From Eq. 17 and 18, if S (t)#0, the inequality $-8<0
holds; thus, the sliding function S (t) will reach to zero
with finite time and the system states reach the sliding
surface.

Once the required sliding swface is obtained, the next
step 1t to design the control law that drives the trajectories
to the sliding surface and maintains it on the sliding
swface. To achieve this goal, a proper control matrix P in
Eq. 15 should be choosen.
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Now consider a Lyapunov function given as follows:
VIRD] =& (HPE(D) (19)

The time derivative of the Lyapunov function V can
be obtained as follows:

Vit =T OPEHET (OPED)

#{T(t)zn:h,(z)[(A, +BK)"P + P(A, + BK)] % (1)

i=1

+2zn:hl(z))"cT(t)PB[':(t) —KxM]+ £ 10

i=1

PBRDw (1) +w ({)D"B"PZ (1)

To ensure the asymptotical stability of the control
system, the time derivative of V should satisfy the
inequality V({t)<0; On the other hand, to achieve the
robust H_, performance on the state error, the following
inequality should be satisfied:

W, (1) = V1) + 2T (OO - rPw (Hw(t) <0 (21)

Once the system states reach the sliding swface,
S(t)=0and £"(®PB=[B"P% )] =0 ; thus, the second term
in the night hand of Eq. 20 equals zero. If there exist a
matrix P such that the following inequality holds:

ih, @)X (O[A, +BK)P+P(A, + BKMH] % (1) (22)

1=1

+ %1 PBDw (1) + wI (ODTRT P& (t) — v*wT (Hw (H)<0

Then, we have W, (t)<0. Now, the state trajectories of
the system (Eq. 5) will be restricted on the sliding swace
and 1its motion has the robust H. performance. The
mequality Eq. 22 can be transformed into the followmg
LMI:

N T T (PA, +PBK)+%+1 PD X(t)
2he[xo w (t)]-{ op _ Yzl}'{w(t)}<0

(23)

The inequality Eq. 23 1s equivalent to the following:

i=1

Fhi(z)(PAl+PB11g)+*+1 PD

D'P 1 (24)

Fh,(z)(PA,+PB,K,)+* PD}{I}[I 0]<0
T 0
D'p —1

According to the Schur complemental lema, we have:

(PA,+PBK)+* PD I
D'P 1 0 |<o (25)
I 0 I

If the T.MI (Eq. 25) holds, the inequality Eq. 21 and 22
also hold; thus, the derivative V& <0 1s satisfied. Thus,
the control law (Eq. 12) drives the state error trajectories
of the system m (Eq. 5) onto the sliding surface (Eq. 10)
and the system is stable. After the new controller T, pyge
(t) 1s designed, the original control mput u(t) can be
derived by using Eq. 6.

SIMULATION RESULTS

Application of the proposed HFVSC controller on IM: To
show the effectiveness of the proposed methods, the IM
drive with motor parametric uncertainties and load
disturbances 1s formulated. The system in Eq. 2 can be
exactly represented by the following T-S fuzzy model:

Plant ruleR": If z, (t) is M, ;;,, z, (1) is M, ,, and z, (t) is
M, 5. Then x(®=Ax(®+But)+w ©) where, R' denotes the
ithruleand j(1)=1,2,1=1,2, .., 8 M, M;,, M, , M,,
M, ,, M, are fuzzy sets. A and B represent the system
matrix and the control matrix of the ith sub-system. We
have B, =B,=... =B; =B and A, can be easily determined
according the T-S modelling theory as following:

- (npay +Mayy / Tuy) K /it Kanpayy 0
—(npail +Mai2 I Tewyd =¥ —Ksnpa11 E. it 0
A1: M/t 0 =T Malszr\l-’r 0
0 M/t ~Ma, o /Ty -1/ 0
0 0 Ha; —Ha3 -B/J

where, a=a, a, a, 1=1,2, ..., 8 are defined as
a; = (D;D,D)), & = (d:D,D)), a; = (Dd,D)), a, = (d:d,D)),
a; = (D;D,d,), a; = (d:D,d)), a, = (D;d,d)), a; = (did,d,).

We can choose z, g =1, 2, 3, as the premise variables
and define z () = 1,(t), z; () = 1,, (), z, () = w {t). The
universe of the premise variable is U, = [d_ D | where,
d, = min (z,) and D, = max (z,). Thus, U, can be divided
into two fuzzy subspaces and eight linear sub-system is
obtained to represent the induction motor. When
designing the global controller, the local controllers are
integrated together through the membership function h,.
The corresponding membership functions are:

h; = M;;M,M;,, h, = M M, M, h; = M, MM,
h, = M, MM, by = MM, My, by = MM, M,
h, = M;M,M,,, hy = M,M;,M,,
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where, M, is the membership function of the fuzzy set
M, and:

_z—d _Di-z _z—dy

1 ¥ LT ;
D, -d, Dy -4, D, -d,

M, =D2722 M, = %4, My =D3723
D,—d, D, —d, D;—d,

Simulation results: The proposed HFVSC scheme has
been tested in simulation. The 3-phase 4 Kw induction
motor 1s characterized by the following parameters:

+  Rated line voltage = 380V

¢ Ratedspeed=1440r min™'

*  Stator resistance R, = 1.2 0

* Rotorresistance R, =1.8Q

*  Stator inductance L., = 155.4 mH
*+ Rotor inductance L., = 156.8 mH
+  Mutual mductance L_ =150 mH

*  Moment of inertia ] = 0.07 kg m’
¢ PairofpolesP=2

The umverses of premise variables are defined as:
[d, D]=[-100A,100A], [d,, D;] = [[10A,104], [d;, D;] =
[0, w,,] where, the maximal speed w,=150rad sec™".

In order to show the high performance tracking of the
proposed scheme, at the first case, the 50 rad sec™
square-wave speed command and 1 Wb rotor flux
command are firstly considered. The speed tracking and
the actual flux amplitude are shown in Fig. la and b,
respectively. It can be seen that the actual speed can well
track the command signal and the speed response 1s fast.
The d-axis flux rises to 1 Wb within 1 sec and the g-axis
flux has a small fluctuation and nearly equals to zero.

60

@
50 |

40 |

30

20

Wi (rad secGY)

10

-10 L I I L
0 2 4 6 8 10

Time (sec)

At the second case, consider the trapezidal speed
tracking for the desired speed reference with parametric
uncertaimties. To verify the robustness to the change of
system parameters, the rotor resistance and the friction
coefficient are increased to 200% of their rated values
(R, = 2R, B = 2B,), respectively. In this case, the motor
starts from a standstill state and we want the rotor speed
to follow a triangular speed command that starts from zero
and accelerates until the rotor speed is 120 rad sec™ with
2 sec. Then, at time t = 4 sec, the reference speed
decelerates and at time t =& sec, the reference speed
reverses to -120 rad sec™. The system starts under no
load and at t = 5 sec the load torque steps from T; = ON.m
to T, = 50 N.m while at t = 8 sec the load torque 1s
removed. Therefore, this case involves changes both in
the reference speed and in the load torque. The flux
command is still equal to 1 Wh.

Figure 2a shows the desired rotor speed (dashed line)
and the real rotor speed (solid line). As it may be
observed, the rotor speed tracks the desired speed in
spite of system uncertainties. The maximal tracking error
is less than 3 rad sec™ as in Fig. 2b. Moreover, the speed
tracking 1s not affected by the load torque change at the
time t = 5 sec, because when the sliding surface is reached
(sliding mode), the system becomes insensitive to the
boundary external disturbances. As shown in Fig. 2c, the
amplitudes of d-q axis rotor flux basically remain
unchanged despite of a small fluctuation in startup and
the moment of sudden load change. Figure 2d gives the
control mputs when using our control laws (Eq. 12,13 and
14). The original control mput u (t) 13 bounded and varies
with the speed command. As it can be seen, the chattering
phenomenon of control input 1s effectively alleviated.

(b)

0.0 P—finme Foerm.

0 2 4 6 8 10
Time (sec)

Fig. 1: Response under square wave commeand, (a) speed tracking and (b) rotor flux amplitude
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Fig. 2: Response for triangular wave command, (a) speed tracking curve, (b) speed tracking error, (¢) rotor flux amplitude

and (d) stator voltages

0.02+
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. 0.00 i A
=3
g -0.024 3
5
-0.04 4 4
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T T T T T
5 5.2 5.4 5.6 5.8
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Fig. 3: Speed  tracking error under different load
torque: 1-T, = 20 N.m; 2-T, = 50 N.m; 3-T,= 80
N.m; 4-T, =120 N.m

At the third case, the motor starts and accelerates
until the steady state at 100 rad sec™". At the time t= 3
sec, a load torque 1s applied to the motor. Figure 3 gives
the speed tracking error cwrves under different load
torque. As it may be observed, the rotor speed tracking
error is less than 0.06 rad sec™'. Moreover, the speed
tracking 1s not affected by different load torque by
reason of the inherent property of sliding-mode motion.
Therefore, compared with other existing fuzzy methods
present scheme has a faster speed response and high
control performance.

CONCLUSION

In this study, by combining the powerful
approximation of the T-S fuzzy model and the easy
implementation of the variable structure controller, an H.,
fuzzy V3C controller 1s proposed to achieve the accurate,
fast and robust speed tracking for the induction motor.
Simulations results have been carried out to verify the
feasibility and the validity of the proposed control
scheme. Compared with existed control scheme, the
H FVSC has the following merits and novelties.

Unlike the traditional model-based controller, the
proposed approach does not need the exact mathematical
model of IM and the global dynamics are simulated by the
T-S model with proper fuzzy rules and fuzzy
memeberships.

Unlike the traditional VSC method, H. techmque 1s
introduce to resist the parameter uncertainties and the
load torque distwrbance, thus, the additional enhanced
robustness can be obtained besides that of VSC.

Also, the structure of the proposed controller
composes the T-S fuzzy control part and the sliding mode
supervision part, thus, both merits of them can be
achieved.
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