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Abstract: The Resource-Constrained Project Scheduling Problem (RCPSP) is a NP-hard problem in information
engineering. The activities of a project have to be scheduled for satisfying all the precedence and resowrce
constraints. We presented a heuristic algorithm (EDAS) to deal with this problem which emploved an estimation
of distribution algorithm (known as EDA) and improved the local search capacity with a simplex search. In thus
algorithm, the EDA firstly searched the solution space and generated activity lists to provide the initial
population; then, the EDA selected the sample solutions to build a probability distribution model. The new
individual was generated by sampling this model. The simplex search was used to enhance the local search
capacity of the EDA. Compared with state-of-the-art algorithms available in the literature, we showed the
effectiveness of this approach empirically on the standard benchmark problems of size J60 and 7120 from

PSPLIB.
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INTRODUCTION

The Resource-Constramned Project Scheduling
Problem (RCPSP) (Hartmamnn and Briskomn 2010) 1s a
classical NP-hard problem in scheduling. The problem is
widely applicable in project management, construction
engineering, software development and preduction
scheduling. The objective 1s to schedule the activities of
a project so as to minimize the project make-span, subject
to precedence and resource constraints. This problem has
been well researched for over four decades. Previous
studies have proposed several meta-heuristics which
have been successfully applied to solve large scale
problems with better robustness and higher calculating
speed. Chen (2010) developed a mixed binary mteger
programming model to optimally solve this kind of NP-
hard problems. Xie (2009) proposed a serial scheduling
and parallel scheduling algorithm which firstly formulated
the problem to a nonlinearity programming problem and
then transformed 1t mto an integer programming problem
based on the piece linear rate-distortion model.
Ziarati et al. (2011) investigated the application of bee
algorithms RCPSP. In the study of Chen (2011), the
justification technique was combined with PSO as the
proposed Justification Particle Swarm Optimization (JPSO)
insolving RCPSP. Zhu et al. (2010) presented an effective

Forward and Reverse Schedule Generation (FRSG) method
with a novel complete local search to find the solution
with the best objective value. Benedict and Vasudevan
(2008} proposed an Improved Tabu Search Algorithm for
the project scheduling problems. Tn our previous studies,
we proposed an efficient algorithm ACOSS, combined a
local search strategy, Ant Colony Optunization (ACO) and
a Scatter Search (S3) mn an iterative process for solving
RCPSP (Chen et al., 2010).

Different from the previous studies, we aim at
showing the feasibility and effectiveness of the estimation
of distribution algorithm for the RCPSP. Estimation
of Distribution Algorithms (EDA) (Larranaga and
Lozano, 2002) are evolutionary algorithms based on
estimation of and sampling from probabilistic models,
have been successfully applied to the combinatorial
optimization problems (Campelo, Guimaraes et al., 2009;
Eddaly et al., 2009; JTarboui et al., 2009, Naeem and Lee,
2009, Luo et al., 2010, Meiguns et al., 2010, Rodrigues
and Yamashita, 2010, Wang et af., 2010¢;, Xuet al., 2010,
Zhong et al., 2010, Zhang and i, 2011). Campelo et al.
(2009) introduced an approach for the design of
electromagnetic devices based on the use of estimation
of  distribution  algorithms coupled with
approximation-based local search arourd the most
promising solutions. Eddaly, Tarboui et al. (2009) propose
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an Hstimation of Distribution Algorithm for solving a
flow-shop scheduling problem with buffer constraints.
Rodrigues and Yamashita (2010) used the EDA algorithm
for mimimizing resource availability costs n project
scheduling. In the traditional evolutionary computation,
new candidate often generated by
combining and modifying existing solutions 1n a
stochastic way. The underlying probability distribution of
new solutions over the space of possible solutions is
usually not explicitly specified. In the EDA, the
representation of the population 1s replaced with a
probability distribution over the choices available at each
position in the vector that represents a population
member. So a population may be approximated with a
probability distribution and new candidate solutions can
be obtained by sampling this distribution. This algorithm
may have several advantages, such as, avoiding
premature convergence and being a more compact
representation.

But, as a global search algorithm, EDA does not
perform well for the large-scale problems with a slow
convergence speed. It’s known that an effective algorithm
not only can explore the solution space sufficiently and
also can find the elites by local search. After the analysis
of the RCPSP problems, this study improves the local
search capacity of the EDAS algorithm with a simplex
search. The simplex method (Klee and Minty et al., 1970)
15 a popular algorithm for numerically solving linear
programming problems. Tt can be viewed as a family of
combinatorial local search algorithms on the boundary of
a solution space (Cosio et al, 2010; Li et al, 2010,
Osgood et al., 2010, Song et al, 2010, Wu et al., 2010,
Xuet al., 2010). The search moves from one point of the
solution space to a neighboring one with a better
objective value, according to a chosen rule. Today, the
sinplex method 1s still widely used and remains important
in practice, particularly in combinatorial optimization and
local search.

In this study, we will describe how to mtegrate the
EDA and simplex approach. Our empirical test showed
that owr hybrid approach performed well on the standard
benchmark problems of size T60 and T120 from PSPLIB.

solutions are

THE RCPSP MODEL

The Resource Constrained Project Scheduling
Problem (RCPSP) 1s stated as follows. For the project A,
n+2 activities I = 0,1,2,....nn+1 and r renewable resources
are given. A constant amount of R, units of resowrce k is
available in each time unit. The duration of an activity i is
given by d;. During this time period, a constant amount of
1y, umts of resowrce k 1s occupied by the activity 1. The

dummy activities 0 and nt+1 represent the beginning and
the end of the project, where d, = d,,, = 0 and 1y, = 1,
Parameter d, 1, and R, are assumed to be non-negative
integer values. The activities are interrelated by two types
of constraints: (1) precedence constraints prevent activity
i from being started before all its predecessor activities P,
have been completed and (2) the sum of the resource
requirements for resowrce k in anytime peried cannot
exceed R,. The optimized objective of the RCPSP is to find
precedence and resource feasible completion times for all
activities such that the make-span of the project is
minimized.

Let the completion time of activity 1 be denoted as D,,
then the completion times of schedule S are denoted as
D, D.,..., D,. The conceptual model of the RCPSP can be
described as follows:

min D, (1)
st. D,<E—d  i=12..n+LheP (2)
¥ <R,  keK;t20 (3

eyl
D20 i=L2..n+1 &)

i

The objective function given by Eq. 1 minimizes the
make-span of the schedule. Equation 2 enforces the
precedence constraints between activities, while Eq. 3
enforces the resource limitation constraint, where A(t) =
1|D-di<t<D,, 1.e., the set of activities being processed
(active) at time t. Finally, Eq. 4 describes the constraint of
the decision variables.

THE EDAS ALGORITHM

The main flowchart of EDAS algorithm: In this study, we
integrate the estimation of distribution algorithms and the
simplex method to construct the Estimation of Distribution
Algorithms with Simplex method (EDAS) for solving the
RCPSP problems. Figure 1 shows the main flowchart of
the EDAS. In the imtial stage, the parameters and
population is imtialized. The toumnament selection 1s
employed to obtain the selected solutions. Then the EDA
explicitly extracts global statistical information from the
selected solutions by (often called parents) and build a
posterior probability distribution model of promising
solutions, based on Gaussian model with diagonal
covariance matrix (GM/DCM) (Larranaga and Lozano,
2002; Wang et al., 2010a,b). New solutions are sampled
from the model thus built and fully or n part replace
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Fig. 1: Flowchart of EDAS

the old population. Tn addition, the simplex method is
used to search local optima in each iteration and the
limitation of EDA such as poor local search ability and
premature 18 largely enhanced. The SM searches the local
neighborhood of the current optimal feasible solution to
improve the velocity of convergence.

The representation and decoding procedure for the EDAS
algorithm: The representation and decoding procedure
for RCPSP plays an important role in algorithm
performance. We herein employ the random key
2010), a

representation (Shi et al, solution was

EDA

P Output results’

N

Call the simplex
method to search
the local solution

Sampling the
model for the
new individual

The probability distribution
model

represented by a random sequence and denote s, as the
number of activities in the sub-problem S:

X, = (5 h, J(5=12,,8) - 0, <1{j=12,..5, )

In random key representation, schedule generation
schemes (3GS) are the core decoding procedures for the
RCPSP (Kolisch and Hartmanr, 1999). Two different SGSs
are available in the literature: (1) the serial SGS that
performs activity-incrementation and (2) the parallel SGS
that performs tine-incrementation. Considering the
advantages and disadvantages of both schemes, we use
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a random real number, 14,(0<1y5.< 1) to select the SGS with
which to construct the schedule, as defined by:

o :{serial-SGS, .if Liog S0.5 (5)

parallel-3GS, if g = 0.5

The sample solution selection method for the EDAS
algorithm: It is important to select the sample solution for
applying the EDA. We employ the tournament selection
as a countermeasure. The tournament selection randomly
selects two individual in a population and the individual
with better fitness will be the sample solution. Repeat the
process until the number of the sample solutions meets
the requirements. In this paper, the number of the sample
solutions is only half of that of the population. We denote

NP as the number of the population, so the number of the
sample solutions 13 NP/2.

The probability distribution model for the EDAS
algorithm: This step 15 to build a probability distribution
model. Since the distribution of categorical varables 1s
Gauss distribution or similar Gauss distribution in the
realistic situation, so we employ Gaussian model with
diagonal covariance matrix (GM/DCM) to buld a
probability distribution model. GM/DCM considers the
correlation between random variables and uses every
element of the matrix to represent the covariance among
different components of a random vector. This method
describes the cormrelations among the different design
variables more reasonably and these correlations are
applied to guide the further search.

Each design variable obeys the normal distribution,
so the joint probability density function of the sample
solution (n dimensions random vector x = (%, X,, ..., X,) 18:

= —l(x—u)’C’l(x—u)} (6)

1
(2m)7 1" °"‘{ 2

We denote C as covariance matrix of n dimensions
random vector, |C| as the determinant of covariance
matrix and C™' as the mverse matrices of C. We can
estimate the mean p and covariance matrix C by Maximum
Likelihood Estimate (MLE) (Lawrence and Chromy, 2010,
Yin et al., 2011):

1 NP2
PR (M)
C:(Nljﬁ)t’j(x* — ) (%= 1) ()

The mean p and covariance matrix C need to be
re-calculated 1n every iteration step.

The sampling method for the EDAS algorithm: For
generating the new individual, the EDA here is
implemented for sampling the joint probability density
fimction which 18 employed for describing the probability
distribution model. As for each of the random variables,
sampling method is used to generate random numbers.
The vector formed by these random numbers, will be a
new mdividual Repeat this procedure until the whole new
population is completed. Tn the GM/DCM, each dimension
of the design variables obeys the normal distributions,
x,~N(p,, 0;). This paper employs Box-Muller formula as the
sampling method:

Iom =+/—21n1, sin{2mm, ) (9)
X = Loy PO, L (10)

In Eq. 9, 1, and r, are random numbers between 0 and
1 while random number t,,,,, obeys the normal distribution,
N{0,1). And based on Eq. 10, the sample pont x is
determined which obeys the normal distribution,
x~N(,,0,). By this way, the complete sclution is obtained.

The local search strategy using simplex search: The
simplex search 1s very suitable for nonlinear function
optimization without any gradient information and coding
operation. The process is composed of three basic steps
are reflection, compression and expansion. The iterative
processes are follows:

Step 1: Initialize the compressibility A, the expansion
coefficient [} and the tolerance &

Generate randomly n+1 points, X, X,,..., X, to form
a simplex

Calculate the wvalues of function f(x), 1=
0.1,...,nto get the best point x,, the worst pomt x,.
We denote the fitness of them as follow:

Step 2:

Step 3:

£, =f(x, )= max{f (%,)....f(x,}}

£, =f(x,)=min{f(x,),...f(x,)}
Step 4: Calculate the centre pomnt x_ of x;,..., %,., except
the pomnt x;,

n
X —X
=0 b
X, = ——————
n

and the reflection point x,, X, = 2x-x,

If f, = f(x_) =1, compress the pre-processed data,
X, = XA(x-z,). Then calculate £ = f(x,) and go to
Step 7 ;if £, goto Step 6

Step 5:

1377



Inform. Technol J., 10 (7): 1374-1380, 2011

Step 6: Carry out the expansion, X, = X, tU{(X, %) and
calculate f, = f(x.). If f.<f, unplement the
following assignments x, = x,and f, = £ else x, =
xand f=1f

Step 7: If f<f, substitute x, for f, and that f, for f,. Put
the new point x, with the other n points to form
anew simplex. Retrieve the best point x, and the
worst point x,, then go to Step 4 ; if £, go to
Step 8

Step 8: If f,-fi<e. |f|. end the process and set X' = x and
f' = £; else shorten the step size and follow the
formula x; = (x+x¥/2, 1 =0,1,....n, then go to Step
3, continue the calculation

THE EXPERIMENTS

We applied the EDAS to the standard instance sets
T160 (480 nstances each with 60 activities) and J120
(600 instances each with 120 activities) (Kolisch and
Sprecher, 1997). These sets are available in the well known
PSPLIB along with the optimum, or best known values
that have been obtained by various authors over the
years. In J60 and J120 the optimal make-spans for some
instances are not known and only upper bounds (current
best solutions) and lower bounds are provided. For a fair
machine-independent compearisen, we limited the number
of generated and evaluated schedules in EDAS to 1000,
5000 and 50,000, respectively. EDAS was implemented in
JAVA 1.6 and all the experiments were performed ona PC
with 1.86 GHz CPU and 2 GB RAM numing the Windows
XP operating system.

In the preliminary experiments, we employed a
strategy to obtain suitable
parameter values for each algorithm. We settled on the
following control parameters: the number of the
population, NP = 100 and the number of sub-problems,
S=4

Table 1 and 2 gave the performances of EDAS and
several RCPSP heuristics from the literature with 1000,
5000 and 50,000 evaluated schedules. This study
compared EDAS with GAPS (Mendes et al, 2009),
GA-DBH (Debels and Vanhoucke, 2007), GA-hybrid-FBI
(Valls et al., 2003) and GA-FBI (Valls et ai., 2005).

Table 1 listed the lower bound results for instances
with 60 activities. The EDAS ranked 4th for 1000
schedules and both 2nd for 5000 and 50,000 schedules,
respectively. In this situation, the performance of the
GA-FBI method is the worst of the five kinds of
algorithms. The GA-DBH showed better results than the
EDAS which meant that the GA-DBH 1s very suitable for
project scheduling with 60 activities.

trial-and-error control

Table 1: Average deviation (%) fiom critical path lower bound-ProGen set

J60
Schedules
Algorithm References 1000 5000 50000
EDAS This study 11.73  11.01 10.68
GAPS Mendes et al. (2009) 11.72  11.04 10.67
GA-DBH Debels and Vanhoucke (2007)  11.45  10.95 10.68
GA-hybrid, FBI Valls et al. (2005) 11.56 11.10 10.73
GA-FBI Valls et afl. (2003) 12,21 11.27 10.74

Table 2:  Average deviation (%) from critical path lower bound-ProGen set

J120
Schedules
Algorithm References 1000 5000 50000
EDAS This study 34.63 3234 30.71
GAPS Mendes et @i. (2009) 34.19 3234 30.82
GA-DBH Debels and Vanhoucke (2007)  34.07 32.54 31.24
GA-hybrid, FBI ~ Valls et al. (2005) 3587 33.03 31.44
GA-FBI Valls et al. (2003) 3539 33.24 31.58

Table 2 listed the results for J120, where the EDAS
algorithm ranked 3rd for 1000 schedules. As for 5000
schedules, the EDAS ranked 1st which was equal to the
GA-DBH algorithm. The EDAS ranked 1st for 50,000
schedules showed that EDAS can produce better
solutions for the large-scale problems J60 and 1120, That
is to say, the EDAS algorithm can solve the large-scale
RCPSP problems effectively.

The reason for the improved performance is that
EDAS combines the advantages of the GM/DCM and the
simplex local search method. The GM/DCM describes the
correlations among the different design variables more
reasonably and the correlations are applied to guide the
firther search. The simplex method 15 used to search local
optima in each iteration to fill the gaps of the EDA such as
poor local search ability and the lower velocity of
COIV eIgence.

CONCLUSIONS

In this study, we proposed a heuristic algorithm
combining the Estimation of Distribution Algorithm (EDA)
and the simplex local search strategy to solve
resource-constrained project scheduling. The
computational results of the EDAS algorithm were
compared with the state-of-the-art heuristics on the
standard instance sets and from the PSPLIB. The
experimental results indicated that, EDAS performed
well compared with other hewristic algorithms for
the large-scale RCPSP problems. This study also showed
that the EDAS is a promising method for solving the
RCPSP. Further studies will focus on enhancing the
applicability and efficiency of the proposed EDAS
algorithm for various complex real-world scheduling
problems.
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