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Abstract: Finding sparse solution to undetermined linear systems 1s one of the fundamental challenging issues
in compressive sensing problems and other signal processing applications. This study has presented a novel
iterative weighted gradient projection algorithm, referred to as the TWGP, to recover sparse signal in large-scale
settings. TWGP is based on a widely used weighted filter technique in signal processing which reduces
undesirable influence so that gradient projection can be applied to achieve computational efficiency. Numerical
experiments are carried out and the results demonstrate the proposed algorithm 1s significantly faster than the
fastest known methods for the 1, minimization programs and further show that the computational time isn’t

sensitive to the sparsity level of original signal.
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INTRODUCTION

Sparse signal recomstruction from a set of
underdetermined or ill-conditioned linear measurements 1s
a fundamental problem in signal processing and statistics.
This problem has over the last few vyears found
application areas from compressive sensing (Donoho,
2006, Guochang et «f, 2010) to source coding
(Goyal et al., 1998), image restoration (Figueiredo and
Nowak, 2003; Yu et al., 2010) and source localization
(Picard and Weiss, 2010).

Suppose A is a measurement matrix in R™" (M=<N)
and n is a noise vector in RY, then we are given

measurements y €R" of the form:
y=Ax-+n (1)

If there are no restrictions on the measurement matrix
A and the original signal x, then the problem of finding an
estimate % is NP-hard in general. While there are at least
five major classes of computation techniques for solving
sparse reconstruction problem (Tropp and Wright, 2010),
namely greedy pursuit (Mallat and Zhifeng, 1993),
Bayesian framework (Wipf and Rao, 2004), nonconvex
optimization (Chartrand, 2007), brute force (Miller, 2002)
and convex relaxation (Chen et al., 1998).

Greedy pursuit, one of the most popular ways at
present (Chen et al., 2008), is used in approaches such as
Matching Pursuit (MP) (Mallat and Zhifeng, 1993),
Orthogonal Matching Pursuit (OMP) (Pati et al., 1993),
Stagewise Orthogonal Matching Pusuit (StOMP)

(Donoho et al., 2006) and Stagewise Weak Gradient
Pursuit (SWGP) (Blumensath and Davies, 2009). Greedy
pursuit iteratively refines a sparse signal representation
by successively choosing one or more elements on a
dictionary that have the highest correlation with current
residual. Bayesian framework employs relevance vector
machine for estimating the underlying signal while
nonconvex optimization procedures develop a related
nonconvex problem and attempt to find a stationary pomt.
Brute force strategies search through all possible support
sets to minimize the number of possibilities. Another very
popular appreoach is to solve the convex unconstrained
optimization problems of the form:

min, |y - A%[] + =[] @

Here, T is a regularization positive parameter which
balances the sparsity of the data against the data fidelity
{(Tropp and Wright, 2010). Many optimization algorithms
have been proposed to
(but nonsmooth) formulation (2), such as Interior-Point
(IP) methods (Kim et al, 2007), Iterative
Shrinkage/Thresholding (IST) (Daubechies et af., 2004)
algorithms, GPSR (Figueiredo et al., 2007) and SpaRSA
(Wright et al., 2009).

This study has concentrated on GPSR methods.
There are two main problems associated with the
application of GPSR to large scale data sets. On the one
hand, the computational time is easily affected by original

solve the unconstrained

signal sparsity and mumber of measwrements. On the other
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hand, there is a great deal of interference of other
uselessly searching directions in GPSR so that the
computational time per reconstruction 1s long 1f without
continuation schemes. Inspired by greedy pursuit
methods, we introduce a variant of GPSR together with
iterative weighted vector estimate and we only update the
searching directions of #® based on the weighted vector.
We refer to the resulting approach as IWGP (Iterative
Weighted Gradient Projection). We show that TWGP
retains all the merits of the GPSR methods and greatly
decreases the computational time. We use numerical
experiments to show IWGP can handle lager scale
compressive sensing problems more efficiently than GPSR
and IST. We also compare the sensitivity of IWGP with
those of GPSR and IST in terms of change of number of
nonzere components and number of measurements.

GRADIENT PROJECTION FOR SPARSE
RECONSTRUCTION

The algorithms discussed and developed in this
study are all part of GPSR algorithms. Given a vector x and
a measwement matrix A, the approach of GPSR i1 to
express Eq. 2 as a Bound-Constrained Quadratic Program
(BCQP) (Wu et al., 2010) via splitting the variable x into
positive and negative parts (Figueiredo et al., 2007) and
can be rewritten Eq. 2 as:

2
2

min, |y - A, - %,) +'|:1T()"(p—:7:n) (3)

SL%,20.%,20

where, £=%,-%,, £,=(%), and & =(-%),.
Equation 3 can be more properly rewritten in a
standard BCQP form as:

min, G (%)= bTi+%iTBi (4)

st Z20

Where:
Es _ AT
i:[fﬂ,bzrb{ ATY}
b Ay
And:
| ATA -ATA
-ATA  ATA

The gradient of the objective function G (Z) is
defined as:

V() =b+BZ (3

(PSR chooses the negative gradient -A G (Z) to
search for each iterate #® :

F00 500 _ By ) (6)

where, ¢® is the step size. This can be sclved by two
strategies in GPSR, called GRSR-Basic algorithm and
GPSR-BB algorithm respectively. In GPSR-Basic, the step
size ¢% is defined initially as:

(g(k))'l'g(k)
@ @
Where:
. (VG EMY), if 2950 or (VG E™)),)<0 )
' 0, otherwise

Then it 1s achieved the proper step size until a
sufficient decrease is aftained in G by running a
backtracking line search. Alternatively, in order to avoid
the fussily mner searching loop, the Barizilai and Borwein
equation (Figuewredo et al., 2007) 1s applied to approximate
to the Hessian of G at ¥ in GPSR-BB. So the step size is
calculated simply as:

b E9)7E"
g ?

Where:
B = - a¥vVG @), -7
+

Note that GPSR-Basic ensures objective function
decrease per iteration and GPSR-BB makes the iteration
easier. They are easy to implement and do not appear to
require application-specific tumng. In reality, GPSR
algorithms tend not to work very well for large-scale
settings because they spend much computational time.
Instead, it 1s necessary to apply specialized techniques,
such as warm-start and contimuation. A more detailed
discussion of GPSR algorithms can be found by
Figueiredo et al. (2007).

ITERATIVE WEIGHTED
GRADIENT PROJECTION

In this study, we propose a novel approach, called
IWGP which combines a weighted vector with GPSR to
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achieve a spare approximation solution to Eq. 1. More
precisely, we mean that 1t 1s more efficient to compute the
gradient AG (2) and to solve Eq. 2 by GPSR. In this
section, we discuss how the algorithm works efficiently as
well as the different ways to choose threshold, describing
the IWGP framework formally.

In fact the gradient AG ( 2 ) contain more information
than its form suggests, by further analyzing its particular
Eq. 5. Foragiven z=[z] %,]" , we have:

VG(Z) =b+Bz
:b+B[ p}
» 9

-AT(y AR, -%))
AT(y- AR, —%))

par

bl

=1+

We define a residual vector (Liejun, 2011):
r=y- Ax (10)

So Eq. 9 can be rewritten as:

VG () = [VG(’:{P)} (11)
VG(X,)
Where:
VG(E,) =t~ AT, VG(E,)=1+A"r (12)

It may be worth noting that the gradient of the
objective function in Eq. 11 can be constitution of a
constant vector T1 and a vector At which means that the
gradient AG (%) includes the information of residual
correlation between the cwrent residual r and
measurement matrix A.

Now we may concentrate on showing that the
proposed algorithm makes full use of the residual
correlation to build up a weighted vector to filter out

unwanted gradient value. We define a vector I in R" by:
I =hard (|c|, Th) (13)

where, ¢ = A'r, Th is a threshold parameter, hard
(x, th) = 2xsign (x|-thl) +1 i3 the well-known
hard-threshold function. We merge the newly identified
vector with the previous weighted vector estimate,
thereby updating the estimate:

Wl:{l, ifJ,=lorW =1 (14)

0, otherwise.

Since the original sparse signal x is a signal
populated primarily with zeros, we can be only interested
in the gradient directions of the locations of the nonzeros
mnZ,

Specifically, we define a new gradient vector:

VG (2)y =

VG(E,) W

VGE) W |

{(VG@F))W}
(VG (X,

(15)

Where:
(VG )y = VAR W (VG ®, )y = VGE,)- W (16)

With the direction to move given by Eq. 15, we can
simply compute the step size as Eq. 9 and update the next
estimate ¥ by Eq. 6.

Threshold selection: To recover the original signal x, we
hope to know which columns of A participate in the
measurement vector y. The idea behind the algorithm is
to identify columns m a thresholding fashion. At each
iteration, we firstly wish to determine a weighted vector
which represents the column of A that 1s most strongly
correlated with the remaining part of y. Then we start to
search from a new approximation along the negative
gradient filtered by the weighted vector. After proper
iterations, we wish that the algorithm will have identified
the correct vector of columns.

These considerations motivate a few number of
possible threshold selection. One simple selection is:

e a7m
stornp ‘JI\_/I

where, t typically takes values mn the range 2<t<3. The
selection strategy is inspired by Gaussian behavior of
residual Multiple-Access Interference  (MATI)
(Donoho et al., 2006).

A similar strategy 1s called stagewise weak element
selection (Blumensath and Davies, 2009). This selection
takes advantage of a threshold based on the maximum of
|r;]. Based on this approach, the threshold is calculated as:

Thyy =Bla™™| (18)

where, Be (0, 1) 1s a weakness parameter.

Both these strategies are well suited to the class of
problems addressed n this study. In the experiments,
unless otherwise noted, we choose (18), with } = 0.75 as

the threshold.
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Fig. 1: Schematic Representation of the IWGP algorithm

The TWGP framework: TWGP operates in k iterations,
building up a sequence of estimations %%,%% %@ .. by
searching along a sequence of negative weighted gradient

vectors _yg" _vg” .. Moreover, the algerithm also
w w

maintains a sequence of estimates W%, W% of
welghted coefficients. Figure 1 gives a diagrammatic
representation.

Meantime a precise framework of the algorithm i1s
defined as follows.

Algorithm TWGP:

Step 1: Start with initial ‘solution” %2 = 0, initial
residual 1 = y and the weighted vector W = 0.
The iteration counter k starts atk = 1

Step 2: Apply matched filtering to the cwrent residual,

achieving the vector of residual correlations:

o = AT®D (19

Step 3: Compute the threshold Th™ from Eq. 18, the
identified vector I as in Eq. 13 and then yield

the weighted vector W®as in Eq. 14.

Step 4: Compute the weighted gradient
(VG EY Ny, (VG (&), as inEq. 16
Step 5: Calculate the new estimate and the new residual:

FUB) _ k=) _ (k1) Flk-D)
X, =% -a (VG(xp N»

=z _ o* D (wG DY),

£ = X0 - 50
r(k) =y *ATi(k)

Step 6: Compute the step size ¢*" from Eq. 9

Step 7: Check the stopping criterion which 1s chosen as

suggested by Figueiredo et al. (2007) |min
(z, AG (2))|=tolP and if it is satisfied, set

. <k
Interference construction Y

AXM

%=%% as the final output of the iteration; otherwise,
set k-k + 1 and return to step 2

EXPERIMENTS

This section illustrates experimentally that IWGP 1s
a powerful algonthm for several types of sparse
reconstruction problems of the form Eq. 2. All the
experiments were carried out on a personal computer with
an Intel Pentium (R) Dual E2200 processor and 1.99GB of
memory.

Let us describe the experimental setup. In each trial,
we start with a d-sparse signal x and its measurements y
according to the model in Eq. 1. Tn all of the experiments
below, we have used an M>N Gaussian matrix as our
measurement matrix A, with all entries mdependently
distributed Normal (0, 1) and then orthonormalizing the
rows. We used parameter of stopping criterion tolP = 107,

In our first experiment, we consider a length N = 4096
signal x that contains d = 100 randomly placed+] spikes.
To simulate measurement noise, zero-mean Gaussian
white noise with variance 107 is added to each of the M
measurements that define the observation y. In the
example M = 1024, 1 = 0005 |A'y|e and the
reconstructions are implemented by GPSR and TWGP.

Figure 2 shows that the original signal and the
reconstruction results with GPSR-BB and IWGP,
respectively. Because of noisy reconstruction, GPSR-BB
camot recover the underlying sparse signal exactly, nor
can IWGP. However, the IWGP reconstruction exhibits a
bit lower Mean Squared Error (MSE) with respect to the
original signal.

In the second experiment, we compare the speed of
IWGP with that of other recently proposed
algorithms, namely, variants of GPSR and IST
(Daubechies et «l, 2004). All the parameters are

similar in the first experiment except that we
perform 100 independent trials. Table 1 reports
the average CPU  times needed by the
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Original (N = 4096, d = 100)
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Fig. 2: From top to bottom: ongimal signal, reconstruction
via GPSR-BB and IWGP
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Fig. 3: CPU time and number of nonzero components

Table 1: Average CPU times

Algorithm CPU time (sec) Iterations MSE

GPSR-Basic 8.0944 239 ©.95e-5
GPSR-BB monotone 6.8333 401 9.99¢-5
GPSR-BB nonmoenotone 6.0778 401 9.02¢-3
IST 17.0340 081 1.16e-3
TWGP 1.4305 84 9.83e-5

several algorithms. The finding in this table presents
IWGP 1s sigmificantly faster than the others. More n
detail, TWGP is approximate 12 times faster than IST and
about 5 times faster than GPSR.

The plot in Fig. 3 presents how the CPU time of IWGP
changes when the number of nonzero components
increases. For comparison, also shown are the results
obtained with GPSR and IST. And the noise’s
variances in this example are fixed the same and the
results are averaged over 100 runs. In general the CPU
time of the algorithms is in line with the increase of the
number of nonzero components. However, TWGP keeps
this growth very mild. In other words, IWGP 18 msensitive
to the change 1 the sparsity level.

Then let us see how much CPTJ time of the algorithms
is required to recover a fixed sparsity level of signal with

40 - [WGP

- GPRS-basic

—-% GPRS-BB monotone

-4 GPRS-BB nonmonotone
- [ST

2
S

CPU time (sec)
13
S

10

- -

0 - T T T T T T
1000 1500 2000 2500 3000 3500
No. of measurements

Fig. 4. CPU time and number of measurements

change 1n the number of measurements. Results in Fig. 4
display that CPU time of TWGP (as well as GPSR and IST)
15 affected by increase in the number of measurements.
Not surprisingly, TWGP costs the least CPU time solving
spare reconstruction problem although the others also
decrease gradually as the number of measurements grows.

CONCLUSION

We have presented a novel gradient projection
algorithm to more effectively solve the solution to sparse
signal reconstruction problems arising in compressive
sensing and other mverse problems. We have employed
a weighted technique to filter out unwanted gradient
components and the resulting algorithm 15 well suited to
handling large-scale settings. In the numerical
experiments, we have tested IWGP by utilizing a
large-scale example. The novel algorithm is significantly
faster compared to state-of-the-art algorithms. Moreover,
the decrease of sparsity level can hardly mterfere the
computational time of the algorithm derived in this paper.
The numerical results further show that TWGP is superior
to GPSR algorithms and IST.
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