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Abstract: A new solving approach for constramnt problem was proposed m this study, the constraint problem
needed to solve was decomposed not into single sub-problems but into three types of sub-problems, namely,
rigid subset, scalable subset and radial subset and each type of subset corresponds a cluster of constraint
problem. Based on cluster rewriting rule approach, a small set of rewriting rules were applied in constraint
system and an incremental algorithm was presented, the solving approach could get the generic solution when
no available rewriting rule was available. By this approach, we can determine that constraint system is
well-constrained, under-constrained or over-constrained. The results reveal that the proposed method can

efficiently process constraint problem.
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INTRODUCTION

Parametric design (Hoffmarm and Kim, 2001; Sun and
Liu, 2011) has become the core technology in CAD
system in recent years and the geometric constraint
solving (Hoffmann, 2005) 1s the most important part in
semantic feature modeling (Bronsvoort et al., 2006). But
so far, although geometric constraint has been brought
into three-dimensional field, it can be better used in the
field of two-dimension. It can solve some problems about
parts assembling (Sun and Ding, 2010; Ding and Sumn,
2009) but the existing solving methods (Xueliang et al.,
2010; Wet et al., 2008) 1n three-dimensional geometry
have many difficulties in the applications.

Now, cluster solving method (Bettig and Hoffmann,
2010) is the most mature approach, namely geometric
constraint problems are decomposed into several well-
constramted sub-problems. Each single sub-problem 1s
solved independently, then all sub-solutions are
combined into a generic solution and the generic solution
is the solution of the whole constraint system. Cluster
solving method has two modes: rewrniting rule method
(Durand and Hoffmann, 2000, Hoffimarm and Vermeer,
1995) and degree of freedom based rule method
(Kramer, 1992; Gao et al., 2006).

Rewriting rule method 1s that modeling system tries
to find some subsets of constraint problem and these
subsets must be well-constrained and they have accurate
and efficient methods corresponding for solving, so the

constraint system can be solved quickly. But this method
15 not perfect for three-dimensional problems because
there 1s no rule which can decompose a constraint system
into several well-constrained sub-problems. Therefore,
this method can not be used to solve all of well-
constrained problems and may result in under-constrained
(Sunet al., 2010).

Degree of freedom based rule is that it determines
well-constrained sub-problems by using degree of
freedom analysis. For the specific sub-problems, solving
algorithm may be unknown and algebraic method
(Van-der-Meiden and Bronsvoort, 2005) is used to solve
in this approach, it will increase greatly the cost of
computation when constraint system is very large, so
degree of freedom based rule is also unperfect.

Both of methods require constraint system can be
decomposed into several well-constrained subsets, based
onrewriting rule and degree of freedom based rule, a new
solving approach i1s presented in this study. Firstly
constraint system is decomposed into three types subset:
rigid subset, scalable subset and radial subset. Then
incremental algorithms are applied and at last the generic
solution will be get. This approach can get solution for
the constraint system that can not be decomposed into
sub-problems solved independently.

A constramnt problem instance 18 shown in Fig. 1.
There are five points in three-dimension space where,
/BAC, /DAC, /EAD, /BAE, /ABC, /ADC, /ADE,
/EAR are constrained by angle constraint and a distance
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<(A,B,C) <(C,A,D)
<(A,D,C) <D, A, E)
<(A,D,E) <(&, A, B)
<(A,B,E)<(B,A,C)
Distance (B, F)

Fig. 1: Instance  model and its constraint

representation

constraint lies between point B and point F. Tt is easy
to get hat the whole system is well-constrained but
it 18 difficult to decompose the system mto several
well-constramned subsets. Therefore, the whole system
must be solved in both of method aforementioned.
Present approach can be used easily to decompose the
system into several subset and solving process 1s
effected very light when a few variables changes.

DEFINITION OF SUBSET

A cluster (Van-der-Meiden and Bronsvoort, 2006)
basically represents a collection of distance and angle
constraints on a set of points. We define three types of
subset: rigid subset, scalable subset and radial subset.
The type of a subset determines which distances and
angles are constrained by it. Also, a set of configurations
1s associated with a subset, each of which determines an
alternative set of values for the distances and angles
constrained by the subset.

Subset distance constramts 8 (m, n) are defined as
follows:

& (m,n)=f(m - n).(n—m)

Subset angle constraints /(m, n, t) are defined as
follows:

Z(m,n,t):cos_l{ m-n_ tinJ
8(m—n) &(t,n)

where, m, n, teR’ or R’ are points in the cluster.
By this definition, distances and angles are unsigned;
ie, 8 (m, n)=0and O</(m, n, t)<m.

Definition 1: Rigid subset is a constraint set of all the
points [a,, a,, ..., a,] such that the relation position of all
points is constrained in two- or three-dimensional models,
1e. all distances and angles in point set are constrained.
As shown in Fig. 2a, the rigid subset 15 well-constrained
and has no internal degree of freedom but it can be

a, o, a.ig .......... t}a’ iy
e "
. AR, S L,

Fig. 2: Three types of clusters

translated or rotated. The notation for the subset on a set
of points [a,,a,,..., a,] 158 RIGD ([a,,a,, ..., a,]).

Definition 2: Scalable subset is a constraint set of all the
points [a,, &, ..., &, such that for all 1, j, ke [1, n] and the
angles /(a, &, a) are constrained, shown in Fig. 2b. The
scalable subset has one internal degree of freedom, 1t can
be scaled uniformly. The notation for the subset on a set
of points [a,, a,, ..., a,] is SCLB ([a,, a,, ..., a,]).

Definition 3: Radial subset 1s a constraint set of all the
points [a,, a,, a, ..., a,] such that for all i, je [1, n] and the
angles /(a, a,, a) are constrained, shown in Fig. 2¢. Point
am 1s called the centre point and points [a,, a,,..., a,] are
called the radial pomnts. The radial subset has n internal
degrees of freedom. The notation for the subset on a set
of points [a,, a,, a,,..., a,] is RADI ([a,, a,, a,..., a,]).

REWRITING APPROACH

Re-writing process: To solve a constraint system,
rewriting the system to a single rigid cluster by trying to
apply a set of rewrite rules 1n this approach. A rewrite rule
specifies a pattern, describing its input clusters and its
output cluster in a generic way and it specifies a
procedure to determine the configurations of the output
cluster from the configurations of the mput clusters. A
rewrite rule can be applied if a set of clusters is found in
the system that matches the input clusters in the pattern.
The corresponding output cluster 1s added to the system
and the configurations of the output cluster are
determined by the procedure.

A pattern specifies a number of input clusters of a
given type and a number of pattern variables. These
pattern variables are matched by the solving algorithm
to the point variables of the clusters in the system, such
that the number of variables and the type of the cluster
match. A pattern may also specify that an mput cluster
can match any cluster with a superset of the given
variables. If a variable name occurs several times in the
pattern, it must be matched with a single point variable
that 18 constrained by several clusters m the constraint
systermn.
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To determine the configurations of the output cluster
of a rewrite rule, the procedural part of the rule is applied
for every combination of mput cluster configurations.
Suppose, for example, that two clusters are used as the
input of a rewrite rule and that each cluster has two
configurations associated with it; then four different
configurations for the output cluster are computed.

The generic solution 1s imtially empty. When the user
adds a cluster to the problem (Algorithm 1), the cluster is
added to the generic solution. The algorithm then
searches for possible rewrite applications on that new
cluster, 1.e., rewrite rule applications where the cluster 1s
used as input (Algorithm 3). When a cluster is removed
(Algorithm 2), it is removed from the generic solution. The
rewriting approach 1s implemented as follows:

Algorithm 1: Adding a subset
Function add subset (G,A,8)
G: Generic solution

A Active set

s: Subset

begin

G. add (s)

A, add (5)

Search rewrites (G, A, s)

End

Algorithm 2: Removing a subset
Function remove subset (G, A, 5)

G: Generic solution

A Active set

s: Subset

begin

G. remove ()

A, remove (5)

for each x in dependent subsets (G, s)
Remove subset (x)

for each v in deactivated subsets (A, 5)
A add v)

Search rewrites (G, A, ¥)

End

Algorithm 3: Searching for rewrite rule applications
Function Search rewrites (G, A, )

G Generic solution

At Active set

s: Subset

begin

subset := s + Overlapping subsets (A, )
reference := Reference graph (subset)
for each rule in All rewrite rules

pattem := Pattern graph [rule]

matches = Subgraph isomorphisms (pattern, reference)
for each match in matches

rewrite := instantiate rule from match
it is Progressive (rewrite) then

G. add (rewrite)

A, add (rewrite.cutput)

for each i in rewrite. inputs

it T is Redundant (i) then

A. remove (1)

Search rewrites (rewrite. output)

end

Rewriting rules: If a,, a,, a,, ...,a,€R’.

Rule 1:

RADI (a,, [a,. a, ... DURADI (a,, [a,, a;, ... ]) ~SCLB

(a,, a5, a;])

This rule can be applied when two radial subset share
three points. When a match is found, a new scalable
subset is added to the system.

This rule can be applied to the problem in Fig. 1, as
follows:

RADI (A, [B, C, D, E, F[) WRADI (B, [A, C])— SCLB (A, B, C])
RADI (4, [B, C, D, E, F[) WRADI (D, [C, A, E) — SCLB ([A, C, DD
RADI (4, [B, C, D, E, F[) WRADI (D, [C, A, E]) » SCLB (A, D, E])
RADI (A, [B, C, D, E, F[) WRADI (F, [ A, E]) - SCLB (A, E, F])

Rule 2:

SCLB (A= [ay, @, ... DUSCLB (B =[a,, a,, ... )~ SCLB
(AUB)

Two subsets can be combined into one new one
when the shared points between two scalable subsets
have the same coordinate. The rule can be applied
repeatedly, m the example problem, as follows:

SCLB ([A, B, CTUSCLB ([A, C, D])-SCLB ([A, B, C,D])
SCLB ([A, D, EUSCLB ([A, E, F)~SCLB ([A, D, E, F])
SCLB ([A, B, C, DUSCLB ([A, D, E, F])-SCLB
([A.B,C,D,E F]

Rule 3:
SCLB (A= [a,, a;, ... DNSCLB ([a,, a,, ... )>RIGD (A)

The rule can be applied to the example system,
resulting in a cluster RIGD ([A, B, C, D, E, F]) which
constrains all the variables of the problem.

The solving
indicated by a directed acyclic graph of subset and

comstramt  problem  process 1s
rewrite rules. The solving process of Fig. 1 1s shown in
Fig. 3. In Fig. 3 amrows indicate dependency relations
between subset created by rewrite rules. In Fig. 3, the
subset with no incoming arrows are problem subsets and
the subset with no outgoing arrows is the solution
subsets.

From its we can know whether a

problem is

process,
well-constrained, under-constrained and
over-constrained:
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............................

RIDI ([B, F])

RIDI (B [A, C]) SCLB ([ A, B, C])

RIDI (A [B, C, D, E, F]) SCLB ([ A, C, D))

\ SCLB ([ A, D, E])

RIDI (D [C, A, E])

RIDI (F [A, E]) SCLB ([ A, D, F])

_5_>

Fig. 3: Generic solution fo the problem 1n Fig. 1

¢ A problem is under-constrained if its generic solution
has more than one solution subset or a single
non-rigid solution subset

* A problem 1s over-constramed if any distance
constraint or angle constraint has more than one
source subset

* A problem i1s well-constrained if it is not under-
constrained and not over-constrained. Note that
these conditions are not mutually exclusive

REWRITING RULE APPLICATION

Specific steps of subset rewriting approach are
explained in a mstance, as shown in Fig. 1, based on the
approach mtroduced in this study, geometric constraint
system can be indicated as follows:

RADI(A,[B,C, D, E, F])
RADI (B, [A, C]
RADI(D, [C, A,E])
RADI{F, [A,E])

RIGD ([B,F])

Re-writing constraint system using rule 1 as follows:

RADI ¢A [B, C, D, E]) URADI (B, [A, C) = SCLB ([A, B, C])
RADI ¢A [B, C, D, E]) URADI (B, [C, A, E[) > SCLB ([4, C, D]
RADI ¢A [B, C, D, E]) URADI (B, [, E]) = SCLB ([A, D, E])
RADI ¢A [B, €, D, E]) URADI (B, [A, E) = SCLB ([A, E, B])
RIGD (B, F]

Re-writing constraint system using rule 2 as follows:

SCLB ([A, B, C) WSCLB ([4, C, D]y > SCLB ([A, B, C, D]}
SCLB ([A, D, EDwSCLB ([A, E, B) > SCLB ({A.D,E, B])
RIGD ([B, F]}

~,
/
N
/

RIGI ([A, B, C, D, E, F])

\ 4

A

SCLB ([A, B, C, D))

SCLB ([A, D, E, F]) /

SCLB ([A, B, C, D, E, F])

Rule 2 was applied again:

SCLB (A, B, C, D) WSCLB ([A, D, E, B) »SCLB ([A, B, €, D, ED)
RIGD (B, F])

Re-writing constraint system using rule 3 as follows:

SCLB ([A, B, C, D, E)URIGD ([B, F])-RIGD
([A. B, C. D, E, F])

So, we can get generic solution of geometric
constraint problems shown in Fig. 1 by using subset
rewriting approach.

This method indicates that only one sub set of
rewriting rules i1s changed when any distance or angle
constraint in models is being modified and the change can
only affect the sub set which 1t located, not affect as
traditional approach that all constraint sub-system was
medified.

CONCLUSION

Two types of representation of geometric constraint
system are proposed in this study, namely, scalable
subset and radial subset. This approach expends the
original rewriting method and using a simple cluster
rewriting approach, larger class of constraint problems
can be solved than with only rigid subset. An incremental
algorithm 1s presented for this approach. The advantages
of this method are that large problems can be solved
efficiently and that an mcremental solving algorithm 1s
easy to develop and implement.
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