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Abstract: Inverse problem which arise widely in scientific and engineering areas is to find out unknown

properties of the objects. The ill-posed and nonlinear nature of inverse problem causes the difficulties of

solving such problems. An improved particle swarm optimization with new velocity updating equation

and without velocity limit is proposed to solve the parameter identification of elliptic differential equation

problem. When the evolution process falls in the stagnation state, new promising particles are generated

randomly by multi-parents crossover operator. The numerical results show that hybrid PSO algorithm 1s
effective to solve parameter identification problems of elliptic differential equation and 1s not very sensitive to

noise.

Key words: Ill-posed, trajectory, velocity, stagnation, crossover

INTRODUCTION

The aim of inverse problem is to find out an unknown
property of an object, or a medium, from the observation
of a response of the object (Ramm, 2005). Inverse
problems arise widely in scientific and engineering areas
(Isakov, 2006). For example, the inverse problem 1s to find
the subswface mhomogeneities by sending an acoustic
wave m geophysics; m nondestructive testing, the
inverse problem is to find a defect in the material by the
Eigen frequencies. The nonlinear and ill-posed nature of
inverse problem causes the instability of the solutions,
1e., slight changes m the observed data may lead to
significant deviations in the solutions. So far, a variety of
mathematical or physical methods is used to solve inverse
problems (Ito and Kunish, 1985). In these methods, Pulse
Spectrum Technology (PST) and regularization method
are used widely. But PST method strongly depends on the
selection of imtial model If the mitial model 1s
mappropriate, PST method easily falls into local optumal.
Similarly, the effect of regulanization method 1s decided by
the choice of regularier. Much literature discusses the
choice of regularization parameters (Ben-Yu and Zou,
2001; Huang and Zou, 2007; Li and Zou, 2007, Liu and
Zou, 2007; Jin and Zou, 2008). Wu et al. (2004) originally
proposed an elite-subspace evolutionary algorithm to
solve parameter identification of inverse problems and the
measure noise was taken into consideration firstly.

Particle swarm optimization algorithm which simulates
the social msects’ behaviors of searching foods is a
population-based intelligence strategy. It converges fast
and it 18 easy to unplement. Although some particle swarm
optimization algorithms are successfully used m many
engineering optimization areas (Liang et al, 2006;
Parsopoulos and Vrahatis, 2004, Kadirkamanathan et af .,
2006), a few of them solve inverse problems effectively.
In this study, a hybrid PSO algorithm 1s proposed to
successfully identify parameter of elliptic differential
equation.

DESCRIPTION OF INVERSE PROBLEM

The following elliptic problem will be concerned in
this study:

e CORTI I (1)

u=20 onl

Here, { can be any bounded domain in R with piece wise
smooth boundary I'. The objective of a parameter
1dentification procedure 15 to choose a parameter g* such
that the solution u associated with q* well matches the
measwred state. In general, the measured data u may be
corrupted by measurement errors. The data with noise
level & is denoted by u®. In practice, we may only measure
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the state u within a certain time period T for the time-
dependent model. And the sampling data u 1s discrete
pomt. The time interval T = [0,1] 18 divided equally into n
parts, the step size h=1/n and mesh pomtx =ih
(1=01,2,...,n). Suppose two boundary points’ values
u, and u, are given, the observed values of o’ at
each mesh pomt x (1=0,1,2,...,n-1) canbe denoted as
u = (u,u,.. ). f(x) and u are known, the inverse
problem is to identify the parameter g.

Co-author Wu proposes using Hat function ¢,(x),
@,(X),..., @(x) to discretize the parameter q(x). The
identified parameter q(x) can be expressed as:

4,00 =40, )
Where:
Jx-x/h xe[x,x]
b= {0 otherwise

(x-x_)/h xelx_,x]
0.(0=1(x,-x/h xe[x,x,] i=L2--n

0 otherwise
(x—x_)'h xe[x_.x]
b, 0= {0 : e
otherwise

The Eq. 1 can be transformed into discretization form by
using difference method and hat functions, as Eq. 3. q(x)
can be obtained by solving Eq. 3:

—(qiy +a)u, + (g + 29, +qp)u, — (g, +q,,)u,, = 2h°F, (3)

To transform the ill-posed parameter identification
problem into an optimization problem, we consider the
regularization method to evaluate the quality of solution.
Regularization function which decides the evolution
direction is as follows:

min J(q) = h|u, —u’|+ BN(Q) 4)

where, u, 1s the solution by solving differential Eq. 1, b 1s
a regularization parameter. N(q) is a regularization term
which is determined by the continuality of the parameter
q and the penalty function N(¢) we designed is:

N@ :%i(‘*‘ ) (5)
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THEHYBRIDPARTICLE SWARM OPTIMIZATION

PSO 13 a population based algorithm introduced
by Kennedy and Eberhart (1995). In PSO, a particle
represents a potential solution which is a point in the
search space. Hach particle adjusts its flying direction
according to its own experience and the other particles’
experlence of the swarm. Each particle in swarm has its
own velocity and position in different time. The velocity
and position updating formulas are n Eq 6 and 7,
respectively.

{Vm = v, +cr{pbest —x )+, (ghest —x) (6)

‘vt+1| = vmax

X =X Vi 7
where v, and x, are the velocity and position of the ith
particle at time t, respectively. pbest, is the best previous
position that the ith particle has ever visited, gbest, is the
best position discovered by the whole particles. ¢, and ¢,
are the cognitive parameter and social parameter,
respectively, both are positive number. r, and r, are
random number in the range [0,1]. The velocity v, can not
bevond the constant v,.,.. A large inertia weight is more
appropriate for global search and a small inertia weight
facilitates local search. Inertia weight w 1s used to balance
the global and local search abilities. w 18 distributed in the
range [0,1]. The velocity Eq. 6 has three elements: current
velocity of particle, recognition ability which presents
itself experience of the particle and social part which
shows the ability of information sharing in swarm.

The effect of velocity limit: From Eq. 6, we find x,,, is
limited in the circle which is with a center of x, and a radius
of Vo 1.8, X, €U(X, v )2(X, Vauu). Velocity limit v,
decreases the global search ability and increases the early
convergence possibility, because the position vector’s
change 1s restricted by v

Equation 6 can be simplified as:

o'

- &)
dt?

dx dx
(w—l)E—‘i’XH‘UZ f(aﬂ‘i,t)

where, ¢, = c1, ¢, = o, ¢ = @1, and u= @, pbest ¢,
ghest, Equation 8 is the second order linear equation. The
following theorem 1 is the existence and umdqueness
theorem for the second order linear equation.

Theorem 1 (Robinson, 2004): Given a function f{x,, x,, t)
suppose that f, /0%, and df/0x, are continuous functions
for a,<x;<a, b<x,<b, and t;<t<t, Then for all initial
conditions:
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x(ty) =% and X' (t)) =y, 9)

x"=fix', xt) (10)
on some interval 1 containing to, ie., a continuous
function with two continues derivatives that satisfy Eq. 9
and 10on 1.

The particle velocity is v, = dx/dt. In the initialization
procedure, each particle is assigned with a random
velocity and position in the solution space [X,.,, Xl
Suppose x(t;) = %, v(t,) = dx/dt = v and %, vy € [ K-
From Eq. &, we can get:

Because 9f/ov and of/9x are continuous m [X,. X..|, the

theorem 13 deduced from the above preliminary

discussion.

Theorem 2: For particle system, Eq. 6 has a unique
solution without the velocity limit v, .

According to theorem 2, we can cancel the velocity
limit v, so the particle can search the whole space , i.e.,
X € Q.

A new velocity updating equation: In this section, a new
velocity updating equation is proposed based on the
analysis of the particle’s trajectory.

Equation 6 and 7 can be transformed into:

(11)

V,, = OV, +U-0X,

(12)

X, =X +ov,+u-ox,

Let y, = u/-x;, Eq. 12 and 13 can be described in
matrix form:

H,, =B-H, (13)

Where:

Ht—{VtJandB—[w ¢j
Y, -® 1-0¢

Suppose we know the particle’s mitial state Hy, Eq. 14
can be deduced into Eq. 15 by iteration method.

H,=BH, (14)
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If matrix B is diagonalizable, there exists a matrix Y.,
making the following equation true.

0
YBY™' —L—[e‘ } (15)
0 e
where,
€,= ((®+17¢)i1/(®+17¢)2 —4e) /2
are the distinct eigenvalues.
Let S, =Yh,Eq. 14 and 15 can be changed to:
By =L-5, (16)
I (17)

t o

Definition 1: Let A = {x,} and B = {y,} be sequence with
limit ¢ and &, respectively. If

lim{y, —&)/(x, ~c)=0

n—s00

that 13 said that B converges faster than A.

Theorem 3: The PSO algorithm converges faster when the
eigenvalue ||e/|—0.

Proof: Suppose thatg, = L*.s, and S'=1L55,. So

g' 0 g 0 71_
0 &')L0 &

lim S, /S, =0

0
() /e,)"

(e, /e,
0

S;/St—L‘/L‘—[

|

if and only if ||g//e|<<1. So, the PSO algorithm converges
faster when the eigenvalue ||e;|[~0.

w 18 more near 0, the PSO algorithm gets higher
convergence rate. Based on the above discussion, a new
velocity updating equation is proposed.
=av, +cr(pbest, —x,)+¢,(1—m)gbest, —x,) (18)

Vt+1

At the beginning of the run, the large inertia weight
makes the particle’s current velocity have major impact on
the velocity updating. But it makes the global best
position gbest, have minor impact on the velocity
updating. So, the algorithm has stronger global search
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ability. With the decreasing of inertia weight, the
algorithm converges faster. At the end of the run, the
small inertia weight makes the social part have a great
effect on the swarm search behavior.

The scheme of multi-parents crossovers: In the late
optimization procedure, the particles converge faster
with the decreasing inertia weight. It 1s proved that
the optimization  procedure fall in the stagnation
situation when the particles congregate the point
p* = (@ pbestt@gbestb)p. Multi-parents crossover
operator is adopted to break the stagnant situation.

The multi-parents crossover operator is described as
follows:

Begin
Select M particles X;, X, ..., Xy from the swarm randomly;
Form a tensor space

M M
V={XX=%aX,-05<a <15 Ya =1

i=l i=1

Select a point X' from V randomly;
End

X' is the new particle generated by several parents.
The multi-parents crossover operator plays an essential
role in keeping diversity of population and makes the
other particles’ merits mherited by the new particle as
well.

The structure of the hybrid PSO: Each particle presents
a potential solution q(x). The structure of the hybrid PSO
is described as follows:

Begin

Tnitialize particle swarm

{randomly generate the position (x) of each particle and the associated
velocity (w);

pbest; is equal to x; for each particle i;

calculate the best position (gbest) of the swarrm;

}

while not {stopping criterion} do{

for(1=1to swarm_size){

update the velocity of each particle by using Eq. 18 without velocity limit;
update the position of each particle by using Eq. 7 and limit the position
between [Xyum, Xnmaxl:

calculate the pbest; for each particle [X ., X,..];

calculate the gbest of the swarrm;

it (stagnation_time=threshold vahie)

for( i=1 to swanm_size)

ifrand<p,)

pos_ partile, =multi_parents crossover operator( );

}
End.

EXPERIMENT RESULTS

Here, numerical experiments of two different elliptic
parameter identification problems are reported. In test 1,
the parameter q(x) to be identified is pure polynomial
function. In test 2, the parameter g(x) 1s trigonometric
functions. In the experiments, the swarm size and the
maximum iteration rmumber are set to 30 and 5000,
respectively, the cognitive parameter ¢, and social
parameter ¢, are set to 2 and the inertia weight w deceases
linearly from 0.9 to 0.4. Because crossover probability p,
varies with the noise level &, the concrete value p, 1s
shown in Table 1. The regularization parameter P is
different for different problems.

The observed data u(x) has the following form:

¥ = {1+ + rand(ulx))

where, rand() is a function which generates a stochastic
number distributed m [-1,1] and 4 is the noise level
parameter.

Test 1:

— Q0§ ) =100 x=(0,D
w=0 uh=0

where, u(x) = sin(nx), g(x) = 4x’+x+2.

For this experiment, B is 1.0x107". The mumerical
results are shown in Fig. 1-3. Figure 1 1s the experiment
result with noise level 1%, Fig. 2 is the result with noise
level 5% and Fig. 3 is the result with noise level 8% for
test 1. When the noise level 1s 1%, the 1dentified solution
well fit the exact solution as in Fig. 1. When the noise
level is 5%, the identified solution only has a minimal
deviation from the exact solution as in Fig. 2. When the
noise level 1s 8%, the identified solution still better fit the
exact solution as in Fig. 3.

Test 2:

— Q0§ ) =100 x=(0,D
w=0 uh=0

where u(x) = si(1x), q(x) = 6x cos(mx)+6.

Table 1: The value of crossover probability p,

Noise level (&) Crossover probability (p,)
1% 0.95

5% 0.85

8% 0.80
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very small deviation from the exact solution when the
noise level 13 5%. Even the noise level increases to 8%,
the experiment results are still satisfactory, as in Fig. 6.

DISCUSSION AND CONCLUSION

As far, Wu et al (2004) has done the same
experiments on discrete parameter identification in elliptic
system by applying an evolutionary algorithm with
multiple parents’ crossover operator. In the experiments
Wu et al. (2004), the proposed algorithm yields good
performance on elliptic parameter identification problems
and is not very sensitive to noise. This study presents a
hybrid PSO algorithm without velocity limit to solve the
same problems. The particles without speed limit can
expand the search scope and the algorithm enhances the
capacity of the global search. A new velocity updating
equation is proposed to accelerate the convergence speed
of the swarm. When the evolution 1s deadlocked, new
promising particles are generated by multi-parents
crossover operator. The numerical experiment results
show the hybrid PSO is effective to identify the
continuous parameter in elliptic problem. Because of the
1ll-posed nature of inverse problem, the noise of observed
data probably leads to large deviation of the solutions. It
is fortunate that the algorithm proposed in the paper is
net sensitive to the noise even the noise level is up to 8%.
We are going to study the non-continuous parameters
identification of mverse problem in the near future.
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