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Abstract: This study has presented an enhanced particle swarm optimization approach which 1s designed to
solve constrained optimization problems. The approach incorporates a dynamic inertia weight in order to help
the algorithm to find the global and overcome the problem of premature convergence to local optima. The inertia
weight of every individual is dynamically controlled by the Euclidean distance between individual and global
best individual. The approach was tested with a well-known benchmark. Simulation results show that the
suitability of the proposed algorithm in terms of effectiveness and robustness.
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INTRODUCTION

In the last few years, using evolutionary algorithis
to solve constrained optimization problems has attracted
a lot of researches, since such problems are very common
in real-world applications. Particle Swarm Optimization
(PSO) (Eberhart and Kemmnedy, 1995, Kennedy and
Eberhart, 1995; Kennedy et al., 2001, Hu et al., 2003b) 1s
one of the evolutionary algorithms that have been
adopted to solve such problems. PSO has been widely
used to solve several types of optimization problems.
Kennedy and Spears (1998) proposed a matching
algorithm for the multimodal problem generator. Hu et al.
(2003a) used PSO inn-queens problem and Cagmina et al.
(2004) focus on sequencing problems. Hooshmand (2008)
proposed an optimal design using PSO in power system.
Shakiba et al. (2008) researched short-time prediction of
traffic rate. Wang et al (2008) researched structure
learmng of product unit neural networks. Ren et al. (2010)
presented a new global optimization algorithm for
mixed-integer-discrete-continuous  variables based on
PSO. Hernane et al. (2010a, b) focused on scheduling
problem. Nevertheless, they are unconstrained search
technique or lack an explicit mechamsm to bias the search
in constrained search spaces (Parsopoulos and Vrahatis,
2002; Coath and Halgamuge, 2003; Michalewicz and
Schoenauer, 1996). This has motivated the development
of a considerable nmumber of approaches to mcorporate
constraints into the fitness function of PSO (for
example, Runarsson and Yao (2000), Mezura-Montes and

Coello (2005), Liang and Suganthan (2006), Takahama and
Sakai (2006), Cagnina et al. (2007) and Zhao et al. (2008).

P30 was inspired by the movement of a group of
ammals such as a bird flock or fish school. PSO explores
the search space using a population of individuals and
the best performers (either within a group or with respect
to the entire population) affect the performance of the
others. Each individual 1s named particle and represents
a possible solution within a multidimensional search
space. The particles have their own position and velocity
which are constantly updated. They record thewr past
behavior and use it to move towards promising regions of
the search space (Kennedy and Eberhart, 1999).

A new PSO algorithm 1s presented in this study
which is designed to solve constrained optimization
problems. For that sake, our approach contamns a
constraint-handling techmque as well as a mechamsm to
update the velocity and position of particle which is
extended by adding to it a dynamic mertia weight as a way
to avoid premature convergence.

STATEMENT OF THE PROBLEM
Without loss of generality, this study consider the
general nonlinear programming problem (Mezura-Montes
and Coello, 2005) in which the destination is:
Find x which optimizes f (x) (1)
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g x)<0,i=1,..p (2)
hix)=0j=1..p 3

Where x is the vector of solutions x =[x, X,,..., Xp], n
15 the number of inequality constramts and p is the
nmumber of equality constraints (in both cases, constraints
could be linear or nonlinear). All satisfying all inequality
and equality constraint functions determine the feasible
solution.

If F denotes the feasible region and with S to the
whole search space which i1s a D-dimensional rectangle
defined by the lower and upper bounds of each variable
X,, then it should be clear that FcS.

PREVIOUS RELATED WORK

There exist many studies on solving unconstrained
optimization problems using particle swarm optimization.
However, the proposals of constraint-handling
mechanisms for PSO are relatively scarce. Next, this study
will review the most representative work down in this area.

Takahama and Sakai (2006) presented a PSO
algorithm that combines the € constrammed method for
handing constrains. The € constrained method is an
algorithm transformation method which can convert
algorithms for unconstrained problems to algorithms for
constramed problems using the € level comparison that
compares the search points based on the constraint
violation of them. In the £ PSO, the agents who satisfy the
constraints move to optimize the objective function and
the agents who don’t satisfy the constraints move to
satisfy the constraints. But sometimes the velocity of
agents becomes too big and they fly away from feasible
reglomn.

Mezwra-Montes and Coello (2005) added a simple
multimembered evolution strategy to solve global
nonlmear optimization problems which uses a simple
diversity mechanism based on allowing infeasible
solutions to remam 1in the population. The authors
concluded that their results obtained are very competitive
when comparing the proposed approach against other
state-of-the art techniques and its computational cost is
lower than the cost required by the other techmiques
compared.

Liang and Suganthan (2006) proposed a novel
constraint-handling mechanism based on multi-swarms.
The whole population i1s divided into a large number
sub-swarms, these sub-swarms are regrouped frequently
by using various regrouping schedules and mformation
is exchanged among the particles in the whole swarm.
Through combining the exploitation and exploration
together, this neighborhood structwre gives better

performance on complex problems. The authors reported
that the proposed algorithm can find reasonable solutions
for all of the problems taken from Memwa-Montes and
Coello (2005).

Tt was observed that the standard PSO presents
difficulty in finding a fine-tumng of the solution based on
the previous study on particle swarm optimization. In
order to improve the performance of the standard PSO, a
dynamic way to change inertia weight that can control the
exploitation and exploration ability of PSO was proposed
and some improvement of performance has been obtained.
The mnertia weight not only changes with the iteration time
but also has a fine-tuning to the best position of PSO. The
Dynamic Inertia Weight Particle Swarm Optimization
(DIW-PS0) algorithm adds some feature of the algorithms
cited above: the constramt-handing mechanism, the
variant tolerance factor and the velocity update formula.

DYNAMIC INERTIA WEIGHT PARTICLE
SWARM OPTIMIZATION ALGORITHM

Here, we describe in detail our proposed approach
which is called Dynamic Inertia Weight Particle Swarm
Optimization algorithm (DIW-PSO).

General model: As in the standard model, A PSO
algorithm operates on a population of particles. The
particles are D-dimensional real number vectors which are
due to the type of problem to optimize (with D decision
variables). The particles evolve using two update
formulas, one for position and another one for velocity.
The best position found so far for the particles (for the
ghest model) or in the neighborhood (for the Ibest model)
is recorded. The best value reached by each particle
{(pbest) 1s stored, too.

Particular model: As it was stated in some study
(Cagmina et al., 2004; Liang and Suganthan, 2006), the
ghest model tends to converge to a local optimum.
Motivated by tlus, some papers proposed a formula to
update the velocity and position, using a combination of
both the gbest and the lbest models (Cagmna et al., 2006,
2007). Such a formula is adopted here as well and is
shownin Eq. 4 and 5.

Vi = Wy, + ¢ *randl *(p ~par,) +c,*rand2*
{p,par,) + CS*randB*(pgd_parid) {4

paty = par, + vy (5)
where, v i8 the velocity of the particle i at the

dimension d; w 1s the mertia weight whose goal 1s to
balance global exploration and exploitation (Shi and
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Eberhart, 1998). ¢, is the personal learning factor and ¢,
¢, are the social learning factors. These 3 values multiply
to 3 different random numbers within the range [0..1]. py
1s the best position reached by the particle 1, p, 15 the best
position reached by any particle in the neighborhood, p,
1s the best position reached by any particle in the swarm
and par, 1s the value of the particle 1 at the dimension d
(Cagnina et al., 2007).

This study uses a wheel topology (Kennedy, 1999)
to compute the p, value, in which one individual is
comnected to all others and they are connected to only
that one. The Wheel topology effectively isolates
individuals from one anocther, as all information has to be
commumncated through the focal individual. This focal
individual compares performances of all individuals in the
neighborhood and adjusts its trajectory toward the very
best. If adjustments result in improvement in the focal
individual’s  performance, then that improvement is
communicated out to the rest of the population. Thus the
focal individual serves as a kind of buffer or filter, slowing
the speed of transmission of good solutions through the
population (Kennedy, 1999). This concept illustrated in
Fig. 1.

Handing constraints: The typical constraint-handling
scheme 13 Lagrange-based method (Du and Pardalos,
1995). The Lagrange-based method is a classical approach
to formulate constrammed optimization problems. By
introducing the Lagrangian formulation, the primal

problem (Eq. 1) can be written as:

O

Fig. 1. Wheel topology illustration with a population of
size 12

minLx,1,2) (6)
Subject to:
w=0,1=1,...n (7
Az0j=1,.p (®)
Where:
Lx,p )=fx)+pgx)+A Thx) (%)

where, p 1s a nx1 multiplier vector for the inequality
constraints. A is a px1 multiplier vector for the equality
constraints. If the problem Eq. 1 satisfies the convexity
conditions over 3, then the solution of the primal problem
Eq. 1 is the vector x* of the saddle point {x*, pu*, A*} of L.
(x*, p*, A*) so that:

Lo(x*, p*, A<l (x*, u*, A%)<L (x*, p*, A*)

The saddle point can be obtained by mimmizing
L (x* p* A*) with the optimal Lagrange multipliers
{(p*, A*) as a fixed vector of parameter. In general, the
optimal values of the Lagrange multipliers are unknown a
priori (Krohling and Coelho, 2006).

Dynamic inertia weight: Tnertia weight is a very important
parameter in standard PSO algorithm which can be used
to control the exploitation and exploration ability of
algorithm. Tts value determines how much it succeeds
current rate: the bigger the inertia weight of algorithm is,
the greater the speed of particle gets and thus particle has
stronger exploration ability; the smaller the inertia weight
15, the stronger the exploitation ability of particle 1s
(Tian et al., 2008). At present, in the study of modified
P30 algorithms with nertia weight, mertia weight 1s
usually divided into two types of static and dynamic.
Since, 1n the process of evolution, PSO algorithm with
static inertia weight always maintains a constant value,
making the exploitation and exploration ability of
algorithm not reach balance, thus algorithm falls into local
optimization easily and, in the latter of evolution, the
convergence rate greatly decreasing makes algorithm
cannot converge at global optimal solution. Therefore, in
order to overcome these problems, it is particularly
important to research dynamic mertia weight.

This study proposes a new dynamic way of inertia
weight change. During the iteration, the search space
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around p, have a high probability of global optimal
solution, so a high intensity search around p, reached by
any particle in the swarm should be consider.
Shi and Eberhart (1998) used a way of linear decrease to
adjust inertia weight and reference (Cui and Zhu, 2007)
found that with inertia weight decreasing, algorithm early
had a good global search capability and late had a better
convergence but the rate was relatively slow. The
algorithm hopes have a good local search in the search
space around p, and particles out of the search space
around p, have a good global search capability. In that
way, Dynamic inertia weight can control the exploitation
and exploration ability in a good manner.

d, denotes the Euclidean distance of par, and p,.
Tnertia weight w was the function of iteration time k and
satisfied the equation:

d. —o,
wiik) = m, + 5 x—oms = Duin e (pfaxpumber — k) (10)
d MaxMumber

max

where, d__, 15 the maximum Euclidean distance between
any particle and particle p, MaxMumber was the maximal
iteration time and the value of inertia weight dynamic
decreased from w,_, to w,,

DIW-PSO algorithm pseudo code: Figure 2 shows the
pseude code of proposed DIW-PSO algorithm. At
beginning of the algorithm, DTW-PSO randomly initialize
the position and the velocity of each particle. After

Diw-PSO:
Swarm intialization
Intializate pop
Intializate velocity for pop
Evaluate fitness for pop
Record pbest and gbest for pop
Evaluate d,
Swarm flights through the search space
DO
FOR i=1 TO numnber of particles Do
Search the best leader in neighborhood
of par; and record in lbest,
Evahiate o (i, k) with Eq. 10
FOR j =1 TO number of dimensions DO
Update v; with Eq. 4
Update pary with Eq. 5
END
END
Evaluate d,
Evaluate finess (pop)
Record pbest and ghest
WHILE (k<MaxMumber)
result = ghest
RETURN (result)

Fig. 2: Pseudo code of DIW-PSO

evaluating the particles and obtaining the best values:
pbest, lbest, gbest and Euclidean distance d, the
pop begin to evolve. During the evolutionary process, the
position and the velocity of each particle are updated. In
the evolutionary loop, a new dynamic inertia weight
mechamsm 13 applied to mnprove the global search
capability and convergence of PSO algorithm. Finally, the
result (gbest) 15 taken and retirned.

SIMULATION RESULTS AND
STATISTICAL ANALYSIS

To evaluate the performance of the proposed
approach, this paper used the 13 test functions described
in Runarsson and Yao (2000). The test functions chosen
contain characteristics that are representative of what can
be considered “difficult” global optimization problems for
an evolutionary algorithm. The detailed description of the
test problems may be consulted in its original sowrce
(Runarsson and Yao, 2000).

The independent runs per problem performed
30 times. The maximum munbers of generations was set to
500. For the optimization problems studied, the population
size was set to 50. The maximum inertia factor w,. = 1.2,
the minimum inertia factor w,, = 0.4, personal learning
factor and social learming factors for ¢, ¢, and c; was set
to 2.05. The parameter settings such as personal learning
factor, swarm size, social learmng factors and maximum
and minimum inertia factors were empirically derived after
NIUIMErous eXperimerts.

The simulation results using the standard PSO and
DIW-PSO are shown m Table 1. Owr approach found
better best solution in eight problems (G2, G3, G4, G5, G6,
(39, G310, G13) and a same best result in other four (GO1, G7,
(8, G11). Also, our approach reached better mean and
worst result in all problems. A worse best result was
found by DITW-PS0 than PSO in problem G12.

For problem GO1, the optimal solution 1s -15. The
convergence curves of best particle using DIW-PSO and
PSO are shown in Fig. 3. From Table 1, it can be seen that
DIW-PSO and P3O find the optimal solution, however, the
median and mean of fitness found by DIW-PSO 15 much
better than the results obtained by PSO. Using DIW-PS0,
the optimal solution is found in approximately 150
generations, while PSO finds optimal solution in
approximately 300 generations. From the convergence
curves of best particle, it can be seen that the solution
found by DIW-PS0 goes down fast than by PSO which
demonstrates the robustness of the DIW-PSO algorithm.

For problem G04, G053, G06, GO7, GO9 and G10, the
convergence curves of best particle using DIW-PSO and
PSO resembles as for GOl which is shown in Fig. 4-101n
detail.

1539



Table 1: Results Using Pso And Diw-Pso

Inform. Technol J., 10 (8): 1536-1544, 2011

Problem Method Best Median Mean Worst Std. Dev.
Go1 PSO -15.0 -14.337 -14.225 -13.725 0.145
Optimal (-15.000) DIW-PSO -15.0 -14.996 -14.997 -14.995 0.0014
Go2 PSO 0.803623 0.803785 0.803944 0.814864 0.0078
Optimal (0.803619) DIW-PSO 0.803621 0.803634 0.803645 0.803726 0.0006
GO3 PSO -0.9986 -0.983 -0.985 -0.021 0.053
Optimal (-1.000) DIW-PSO -1.0 -0.991 -0.986 -0.954 0.0012
GO PSO -30665.489 -30665.201 -30665.108 -30664.426 0.135
Optimal (-30665.53%) DIW-PSO -30665.539 -30665.539 -30665.530 -30665.539 0
GOs PSO 5126.507 5126.748 5126.751 5127.035 0.345
Optimal (5126.498) DIW-PSO 5126.502 5126.610 5126.615 5126.675 0.173
GOs PSO -6961.810 -6961.741 -6961.736 -6960.915 0.785
Optimal (-6961.814) DIW-PSO -6961.814 -6961.756 -6961.750 -6961.201 0.326
GO7 PSO 24.306 24.365 24.370 24,798 0.1042
Optimal (24.306) DIW-PSO 24.306 24.308 24.340 24.518 0.0374
GO8 PSO 0.095825 0.095721 0.095702 0.093124 0.037
Optimal (0.095825) DIW-PSO 0.095825 0.095825 0.095825 0.095825 0
Goo PSO 580.647 580.659 580.658 680.845 0.0798
Optimal (680.63) DIW-PSO 680.630 680.643 680.642 680,719 0.0155
G10 PSO 7049.20 7049.35 7049.38 7049.89 0.0144
Optimal (7049.25) DIW-PSO 7049.25 7049.31 7049.35 7049.57 0.0056
Gl11 PSO 0.75 0.79 0.83 0.97 0.1054
Optimal (0.75) DIW-PSO 0.75 0.76 0.77 0.83 0.0582
G12 PSO 1.000 0.982 0.985 0.967 0.0126
Optimal (1.000) DIW-PSO 0.998 0.976 0.979 0.945 0.0233
G13 PSO 0.05408 0.05523 0.05571 0.05912 0.0145
Optimal (0.05395) DIW-PSO 0.05395 0.05401 0.05403 0.05531 0.0048
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Fig. 3: Fitness of the best particle for problem G01

Fig. 5: Fitness of the best particle for problem GO5
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Fig. 4: Fitness of the best particle for problem G0O4

Generation

Fig. 6: Fitness of the best particle for problem GO&

For problem GO02, G11 and G13, the convergence
curves of best fitness using DIW-PSO and PSO are

shown in Fig. 10-12, respectively. From Table 1, it can be
observed that DIW-PSO finds a solution very close to the
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Fig. 9: Fitness of the best particle for problem G10

optimal selution which 15 better than the solution found
using PSO. In these cases, DIW-P3O performed
significantly better than PSO in terms of the median as
well as the mean In these problems, the convergence
curves of P3O Shake violently. But DIW-P3O can found
best solution in fewer generations.

For problem GO3, the optimal solution is -1.000.
The convergence curves of best fitness usmg
DIW-P3SO  and PSO are shown m Fig. 13. From
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Fig. 10: Fitness of the best particle for problem G02
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Fig. 11: Fitness of the best particle for problem G11
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Fig. 12: Fitness of the best particle for problem G13

Table 1, 1t can be observed that DIW-PSO finds the
optimal solution, while PSO does not Using
DIW-PSO, the best fitness cwve converges in
approximately 300 generations, while PSO didn’t get to
convergence i1 approximately 450 generations.

For problem G0, the optimal solution is 0.095825.
The convergence curves of best fitness using DIW-PSO
and PSO are shown in Fig. 14. From the Fig. 14, it can be
observed that the curve of best fitness using PSO can’t
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Fig. 15: Fitness of the best particle for problem G12

get convergence at first. After about 150 generations
violently shake, the curve gets convergence finally.
However, DIW-PSO can get convergence at first.

For the problem G12, the optimal solution is 1.000.
The convergence curves of best fitness using DIW-PSO
and PSO are shown m Fig. 15. In this case, according to
Table 1, PSO finds the optimal solution and DIW-PSO
finds a very close value to the optimal. The solution
found by PSO presents a smaller standard deviation

Table 2: Statistic comparison between DIW-PSO and pso using the
wilcoxon rank test

Problem p h zval

G0l 4.6391e-47 1 14.4075
G02 1.7483e-27 1 10.8620
G03 5.6020e-25 1 10.3220
G4 1.8653e-9 1 14.7837
GO05 1.6560e-7 1 15.9838
G0o 4.9548e-17 1 20,9037
G07 2.7784e-18 1 21.0408
G08 2.5587e-31 1 11.6407
G09 0.1720 0 1.3658
G10 2.6112e-017 1 84628
Gl1 0.94%4e-10 1 21.2150
Gl12 5.5681e-34 1 -12.1524
G13 1.879%4e-15 1 14.1495

{0.0126) than the results obtamed by DIW-PSO (0.0233).
The convergence curve of PSO shakes more horrible than
DIW-PSO.

For the problems GO1, G02, G03, G04, G035, GO6, GO7,
G08, G09, G10, G11 and G13, it can be observed that
DIW-PSO converges much faster than PSO and obtains
solutions closer to the optimal and presents a smaller
standard deviation. For the problem G12, however, PSO
provides slightly better results than DTW-PSO.

For the validation of significance of results and
comparison between the DIW-PSO and PSO algorithms,
the Wilcoxon rank sum test using the statistical
toolbox provided m Matlab was carmried out. The
statistic test of the results given in Table 1 15 provided in
Table 2. The Wilcoxon rank sum test ndicates that the
means of DITW-PS0O and PSO are significantly different at
the 95% confidence level, since h is equal to 1 in Table 2.
The Wilcoxon rank sum test conforms that DIW-PSO
performs better than standard PSO except for problem
Gl12.

CONCLUSIONS

In this study, A PSO with a dynamic mertia weight
(DIW-PS0) has been presented for solving constrained
numerical optimization. The use of Euclidean distance for
dynamic changing the inertia weight of PSO seems to
provide a good compromise between the probability of
having a large number of small amplitudes around the
current points and a small probability of having larger
amplitudes which may allow particles to move away from
the current point and escape from local minima.

The DIW-PSO algorithm was compared with the
standard PSO on the benchmark constrained optimization
problems. The simulation results showed that the
algorithm DIW-PSO outperforms the standard PSO. The
DIW-PSO algorithm presents faster convergence and
obtained solutions closer to the optimal.
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