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Abstract: This study has proposed a data preprocessing scheme to overcome the negative effects of
non-linearity and signal-to-noise ratio level of multiple input signals on the application of Prony algorithm.
Technology mcluding short time fourier transform and filtering are utilized to mitigate the negative effects. One
case with simulated data and one case with practical measured data are investigated. The results show that the
proposed scheme can mitigate the negative effects of mput signal on Prony algorithm and should be able to

benefit electromechanical mode identification.
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INTRODUCTION

Small signal stability problems have been a primary
concern in power system stability and control
(Kuridur, 1994; Pal and Chaudhuri, 2005). An unstable
oscillatory mode is one of the major threats to power grid
stability and reliability. Moreover, growing modes with
negatively damped modes can result in widespread
outages such as the August 10, 1996 western outage in
North America (Kosterev et al., 1999). Thus, it 1s of great
importance that accurate electromechanical mode
information can be obtained in time to guide the operation
of dispatch and control.

Generally, there are two basic methods for identifying
electromechanical modes: model-based methods and
measurement-based methods (Prony, 1795). With regard
to the model-based methods, the differential equations are
determined and formulated by state wvariables, input
variables and output variables. Then the equations are
linearized arourd an operating point. The number of
equations depends on system scale. Modes can be
obtained by calculating eigenvalue of the state matrix.
This method 18 dependent on the system model which 1s
a bit difficult to be accurately determined because of
the system topology changes frequently. The
measwrement-based methods are kinds of signal
processing tools which only depend on the measurement

data and can perform well no matter how large the system
scale is.

The Prony method is one of the most representative
methods based on measurements. Tt was originally
developed by Baron de Prony in 1795 to explamn the
expansion of various gases (Prony, 1795). Prony analysis
has become a popular approach m analyzing small
signal stability issues in power systems (Zhou et al.,
2010; Hauer et al., 1990, Trudnowski et af., 1999,
Pierre et al., 1997).

Various road blocks limit the practical application
of Prony algorithm. The limiting factors include the data
set contaiming sigmficant effect of non-linearity
(Trudnowski et al., 1997, Palmer, 2009), a multiple signal
data set including some channel signals with high noise
level. The main objective of this paper is to address these
1ssues.

BRIEF OVERVIEW OF PRONY
ALGORITHM

Common mathematical description: Each method
estimates a signal y () as a weighted sum of exponential
terms of the form:

¥ =R exp (1) ()

i=1
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When y (t) is sampled at a constant sampling period
At, the following discrete form is obtained:

y(k):iRz.k k=01---N-1 (2)
i=1

194 2

where, 7, = exp (LAL), t = kAt. N is the number of data
samples and R, 1s the signal residue associated with the
mode A, nis called the model order which 1s not known
for real power system measwrements.

The objective of modal analysis 1s to find the value
of R, A, from the measurement data y (k).

Single channel Prony algorithm: Equation 2 can be
written in the following form:

¥(0) 11 1 [R,
¥y I T ) R, (3)
yN-D] [z 2z - 'R,

Constructing a discrete Linear Prediction Model
(LPM) and z can be obtained by finding the roots of the
characteristic polynomial associated with the LPM:

2" (a2 a4t ta =0 4
Left-multiplying [-a,,-a,,,,-23,,1,0,-,0] to the
N

both sides of Eq. (3), then the following equation can be
acquired using (4):

v(0)
[—an,—an_l,_._,—al,l,O,_._,Oj Y(D =0 (5)
y(N-1)

Further left-multiplying [0,-a ,-a_,,---,—a,,1,0,---,0]
N
to the both sides of Eq. 3 and the result on the right hand
side is also zero. Eq. 6 can be obtained by repeating the
same left-multiply operation:

y(m) yin-1) ym-2) - y(0) a
y+D|_| ym) o y@o-1) ¥ a
yN=-1)| |y(N-2) y(N-3) ¥y(N-n-D|a,

(6)

a; can be calculated by solving Eq. 6 in the least-square
sense, then calculate the roots of (4) to get z, solve (3) for
residue R,.

Multi channel Prony algorithm: Assuming there is a
number of m signals expressing as v, (k), v,(k),- -y, (k) and
(5) can be rewritten as:

[y | [n@-D  ym-2 - v la]
¥ (n + 1) i (I‘l) ¥ (I‘l - 1) ¥ (1) a,
Y1(N71) Y1(N72) Y1(N73) y1(N7n71)
¥a(m V.- y,(n-2) ¥, (0)

Y (n+l) V(1) Y (n-1) Vo (1)

L ¥.N-1) | | y.(N-2) y. (N-3) Vo(N-1n-1) | a

(M)

There are a total of (N-n)»m equations with n
unknown coefficients a; m Eq. 7. a, can be solved in the
least-square sense. With the same method, z is solved by

(4). Finally, a total of m>n residues of m signals can be
obtained by solving Eq. &:

¥.(0) ¥ (O ¥u (O
¥ .0 Yu(D
yWN-D y,(N-D Yo(N-1)
1 1 — 1][R, Ry — R,| &
_ Z; Z; 0 Zy Ry Ry - Ry
Z{\Ll 25*1 T 2571 Rln R2n T Rmn

SELECT THE PROPER PORTION OF
RINGDOWN DATA CONSIDERING
NON-LINEAR EFFECTS

Prony analysis 1s known to be applicable to ringdown
data which 1s generated after some major disturbance,
such as a line tripping and results in observable
oscillations (Zhou et al., 2010).

The use of eigenvalues to describe modes is derived
from the concept of a linear model for a power system. A
power system however, like many systems is actually
only a best
approximation when the system 1s not subjected to large
disturbances. Trudnowsk et al. (1997) reported a detailed
investigation into the effects on system eigenvalues of
four kinds of non-linear. More recently the work reported
by Palmer (2009) and Ledwich et al. (2009) described how
such mitigation of nonlinear effects may be effected.

In general mode identification algorithms can reach

non-linear and the linear model is

a good performance for the response of the system
provided non-linear effects are mimmal when a spectral
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Fig. 1: An example on selecting proper portion of ringdown data

analysis of the ringdown waveform should show constant
frequency over the portion of ringdown data. Conversely,
if the assumption on constant frequency cannot be
guaranteed, techmques such as Prony analysis, AR,
ARMA and FFT based techniques, etc. cannot be used
without incurring errors.

When mode frequencies cannot be assumed to be
constant, techniques are needed to describe variation in
Instantaneous Frequency (IF). Tf fis defined as follows:

__1 do(® <)
Yoam dt

where, z (t) = a (t) ¢*® is the analytic version of the
measured signal y(t) computed by taking its Hilbert
transform and ¢ (t) 1s known as the instantaneous
phase function. If the mput signal 1s a damped sinusoid,
¢ (1) =2nf.

Techniques such as the Short-Time Fourier
Transform (STFT), the Wigner-Ville Distributions (WVD)
and Wavelets are well known and can be used to
determine the IF. However, these techmiques have
different characteristics. For example, WVD i3 not suitable
for IF analysis of multi mode signals because of the cross
terms issue (Boashash, 2003). Because of the simplicity
and robustness, STFT is employed to calculate the [F and
can help to select the proper portion of ringdown data.

Figure 1 shows an example on selecting proper
portion of ringdown data. The upper Figure is a relative
voltage angle data before and after a generator trip
disturbance recorded by Wide Area Frequency
Monitoring Network (FINET) (Zhong et al., 2005). The
bottom Figure is TF plot calculated by STFT with the same
period of recorded data. The Figure represents that IF
varies with time and different color represents the varying
magnitude of frequency component. A warmer color

denotes a greater magnitude of frequency component.
The starting point of ringdown data can be detected when
a significant mode with relatively great magnitude appears
according to the color variation. It 1s represented by the
first black dash straight line in Fig. 1. Prony analysis can
not start until the IF keep constant {corresponding to the
consistent warmest color plot). The proper portion data
for Prony analysis is the data window between the two
red arrows. When the significant mode starts to disappear
the ringdown ends accordingly, as shown with the last
black dash straight line.

DISCUSSING THE EFFECTS OF VARIED
QUALITY OF CHANNEL DATA ONMULTI
CHANNEL PRONY ANALYSIS

Individual signals are analyzed independently often
resulting in conflicting frequency and damping estimates
{due to noise effects). The multi channel Prony analysis
can solve this problem and also allows for more accurate
estimation of electromechamcal oscillation modes under
noisy conditions (Trudnowski et al., 1999). Nevertheless,
multi channel data is sampled by different measurement
device and the data quality may be varied Some of them
may have a low signal-to-noise ratio (SNR) or outliers
resulting from the temporary communication problem,
measurement device failure, etc.

A simulation case 1s developed to investigate the
effects of varied quality of channel data on multi channel
Prony analysis. Two chammel simulated signal, 31 and S2
which shares a common eigenvalues, -0.0311+71.5538, 1s
generated as shown in Eq. 10:

81=10e""" cos(2m= 0.2473t +207) (10)

82 =527 cos (2 0.2473t + 40)
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Fig. 2: Mode identification results for 40dB SNR of 52
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Fig. 3: Mode identification results for 30dB SNR of 52

One channel signal S1 is pure without any noise and
noise with a certain SNR ranged from 20 to 40 dB is added
nto another channel signal S2. Then, multi channel Prony
1s employed to estimate the eigenvalue. The simulation 1s
run 100 times independently for each SNR case. Average
value and standard deviation value of estimated
eigenvalue are calculated. Returning to the first step,
another SNR model 1s injected into 32 and the global
process is repeated. The repetition continues until all SNR
candidates investigated. The estimated
eigenvalue, average value and standard deviation value
correspondmng to different SNR of 32 are shown n Fig. 2,
3 and 4, respectively.

From Fig. 2 to 4, it can easily observe that multi
channel Prony analysis performs worse with ligher stand
deviation as the SNR of 52 decreases. Thus, the signal

have been

1.5564 Eigenvalue estimation by multi channel prony analysis
° °° BTrue value
1.55554 o OFEstimated value
° 80 o
1.5554 ° (-]
[} (-}
= ° o ©
<
> 1.55454 0
< o ; N o
& o%0 o © d o
2 15541 o o °8° °
i ° ® %, 8 §o o o °
£ 155351 o o L o 0 o
= °°, & o
2 | (-]
g 1.553 o %o % o °°
)
£ 155259 O °
1.552- 02
2927 Avg. =-0.0311 +j1.5538 o
15515 Std. Dev =0.0012 °
S O %{5 QL_}\ S ré% 9
SHECEEF SN N
Real part of Eigen value

Fig. 4: Mode identification results for 20dB SNR of 52
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Fig. 5: Flow chart for filtering channel data

filtering process before multi channel data go through
multi channel Prony module 15 mdispensable.

Accuracy of Fitting (AOF) as shown m Eq. 11 1s
employed to evaluate the fitting performance between
reconstructed signal and original signal:

frcol an

AOF =20log,, -
x(k)— K(k)H
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Fig. 6: 23-bus system used for dynamic simulation

where, x (k) and ﬁ(k)

are criterion signal and

reconstructed signal, respectively. ||.|| denotes the usual
root-mean-square norm and the units of the AOF metric
are decibels (dB). From Equation 11, it can be concluded
that the higher AQF, the better the fitting performance.
Thus, more accurate modal analysis results can be

obtained.

Imtially, AOF for every channel data can be obtained
by single channel Prony analysis. The chamnel data with
1ts AOF greater than a threshold 1s regarded as a qualified

data prepared for multi

channel Prony analysis.

Conversely, the channel data with its AOF less than the
threshold is thought as the inappropriate data and should
be discarded. Figwe 5 shows the flow chart of this

filtering process.

VALIDATION of DATA PREPROCESSING
SCHEME

In order to evaluate the effectiveness of the
proposed data preprocessing scheme, two cases in which
multi channel data 1s obtained from dynamic simulation
and Wide Area Measwement System (WAMS) are
investigated.

23-bus system dynamic simulation: A 23-bus system
shown in Fig. 6 is employed for dynamic simulation by
power systemn simulation software PSSE. At 1* second,
the 101-gerator with 750 MW marked as black arrow is
tripped and the simulation lasts for 30 seconds. All 23
buses voltage data are recorded and the DC component
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Fig. 8: Time frequency analysis plot for 23 channels data in case 1

is removed before the signal enters the Prony analysis
module by subtracting average value for all 23 buses,
respectively, as shown in Fig. 7.

The small signal stability software NEVA 1s
performed on the system and mode identification results
are obtained as listed in Table 1.
determined and the comresponding frequency and
damping ratio mformation are also provided. Frequency of
ten modes is ranged from 0.11 to 2.45 Hz. These results
can be used as criteria to evaluate accuwacy of the
proposed algorithm.

Since the sumnulated 23 channels data 1s pure without
any noise, the module of filtering channel data is not
necessary to perform. Then, the module of selecting
proper portion of data 15 enabled and the time frequency
analysis 13 illustrated in Fig. 8. Apparently, the data time

Ten modes are

Table 1:Mode identification results of 23-bus system by eigenvalue analysis

requency caculated by STFT

20

25

0.6
0.5
04
0.3
0.2

0.1

Frequency  Damping Frequency Damping
Mode (Hz) Ratio (%)  Mode (Hz) ratio (%o)
1 011 55.6 3] 1.33 30.5
2 0.12 63.6 7 1.54 13.6
3 1.09 15.3 8 1.04 17.0
4 1.18 7.0 9 229 08.3
5 1.27 74.2 10 245 05.7

Table 2: Dominant mode identification results of 23-bus system by three

methods
Dominant mode Dominant mode
Method frequency (Hz) damping ratio (%e)
Eigenvalue anatysis 1.09 15.3
Promy with preprocessed data 1.09 15.6
Prony with original data 1.06 4.42

window suitable for Prony method is between 2 and
10 sec because of constant frequency. Dominant mode
frequency around 1 Hz can be estimated directly.
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Fig. 9: Relative voltage angle recorded by 23 FDR umuts for case 2

Oscillation plot from filtered channel data
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Fig. 10: Relative voltage angle recorded by 23 FDR wnits for case 2

Mode identification results by multi channel Prony
algorithm from the processed data and original data are
listed m Table 2. Only mode information of dominant
mode with most concern is introduced. The criterion of
mode information by eigenvalue analysis is also listed in
order to compare conveniently.

Table 2 shows that the multi channel Prony algorithm
with the preprocessed data performs better than it with
the original data. Tt can be concluded that Prony algorithm
combined with the data preprocessing 1s more accurate
and effective on mode identification for dynamic

simulation data. Actually, estimation of dominant mode
frequency from original data 1s reasonably with small error
but dampmg ratic estimation has totally opposite
situation which may be resulted from the non-linear
effects of input data.

Field measurement data from FNET: As mentioned
above, multi channel Prony method with preprocessed
data has a good mode identification performance on
simulated dynamics data. However, the practical
application circurustance could be more complicated since
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Fig. 12: Results of FFT for case 2

field measurement data are subjected to the effect of
noise, measurement device failure and temporary
communication problems. Therefore, it 1s indispensable to
validate the proposed scheme by field measurement data.
One random oscillation case occurred on November 7,
2010 in the Eastern Interconnection (EI) in North America
was recorded by FNET and is shown m Fig. 9. A 32-sec
relative voltage angle data (referenced to one FDR’s
measurement) is captured by 23 FDR units for Prony
analysis.

Let the original 23 chamel ringdown data go
through the module of filtering channel data shown in
Fig. 5, the filtered dataset with 11 channel data is shown
m Fig. 10.

Then time frequency analysis plot is illustrated by
Fig. 11. Obviously, the portion ringdown data suitable for
Prony analysis is between 1 and 11 sec. Obviously, three
significant modes with frequency around 0.2 and 0.4 Hz
can be observed.

Table 3: Mode identification results for case 2 by three methods

Mode Methods Frequency (Hz) Dampingratio (%)
1 FFT 0.2051
Promy with preprocessed data 0.1922 17.54
Promy with original data 0.1924 21.36
2 FFT 0.4004
Promy with preprocessed data 0.4017 8.36
Promy with original data 0.7456 12.83
3 FFT 0.4688
Promy with preprocessed data 0.4828 9.68
Prony with original data 0.9130 16.36

The Prony algorithm is performed with preprocessed
data and original data and respective mode 1dentification
results are listed in Table 3. Besides, the estimated
frequency result of an FFT analysis 1s used as the criteria,
shownin Fig. 12.

From Table 3, it can be concluded that the Prony
algorithm with preprocessed data performs accurately on
dominant mode frequency estimation compared to FFT
and has a better performance than Prony algorithm with
ongimal data. Specifically, only one of three dominant
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modes can be revealed by Prony algorithm with original
data. Probably the reason is because of the effects of
unfiltered channel data and non-linearity of input signal.

CONCLUSION

This study discussed practical 1ssues occurred when
the Prony algorithm is employed for mode identification
on practical ringdown data. Varied noise level of multi
channel data could downgrade the performance of mode
identification. Hence, a data filtering method on multi
channel data 13 provided. Time frequency analysis by
STFT is applied to ringdown data to select the proper
portion data for Prony analysis to eliminate the effect of
power system non-linearity on mode identification. Two
cases Including simulated dynamic case and practical
measwrement case recorded by FNET are investigated and
results show that the proposed data preprocessing
scheme can overcome the practical 1ssues and definitely
unprove the robustness and accuracy of Prony algorithm.

Additional cases should also be studied in depth to
validate the proposed scheme. Future research will focus
on the on-line implementation and more effort on
algorithm will be made to accommodate on-line
application.
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