http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 10 (1) 158-163, 2011
ISSN 1812-5638
© 2011 Asian Network for Scientific Information

The Implementation of Semaphore Management im Hardware Real Time Operating System

Yan LI, Ping-Ping Gu and Xian-Shan Wang
The Computer and Control Institute, Harbin University of Science and Technology, China

Abstract: Currently, the study about hardware RTOS (Real Time Operating System) focus on implementation
of the single module of RTOS by hardware, the overall hardware RTOS design and realization is seldom at home
and abroad. So the hardware and software partitioning and implementing a hardware IP core of RTOS 1s worth
further study. In this study, hardware-software partitioning of the hardware RTOS and the semaphore
management are designed and implemented. The semaphore management is a program segment which runs
frequently in operating system, the design solution that realize the semaphore management based on FPGA is
put forward, i order to enhance the response capability of the RTOS. The storage structure, ECB (event control
block) and mapping table are realized by on-chip registers; the semaphore management is realized by
combinational logic circuit, both of them bring high speed to execute the semaphore system call function and
P/V operations. The entire design 1s described by VHDL, simulated by the ISE 8.2 and realized on Xilinx's
Virtex-1I Pro Field Programmable Gate Array (FPGA) board. The result shows that realizing the semaphore
management by hardware achieves good results in speeding up the RTOS.

Key words: RTOS, Semaphore, ECB, FPGA, hardware

INTRODUCTION

Operating system performance is not improving at the
same rate as the speed of the execution hardware
(Muneer and Rashid, 2006). As a RTOS are not keeping
up with the demands placed on them. The RTOS is
extensively used in the embedded system with the
development of embedded technology, so there 15 an
exigency to enhance the response capability of RTOS
(Ramadass et al, 2007). However, improving data
structure and scheduling algorithm of the RTOS which
realized by software may improve the performance of
system, but it 1s still unsatisfactory (Jianhua et af., 2008).
At the same time, the word length of Microcomputer has
reached 32, which is the upper limit size of the machine
word (Yugui and Baohua, 1990).

A new approach implement the RTOS i hardware
based on FPGA to improve the efficiency has been
proposed by several institutes at home and abroad and
some works have been done, in order to solve this
problem (Yan et af., 2010). Currently, the software can
be realized by hardware in two methods, one is
micro-program mode with the characterizes of low cost,
convenient and flexible; the other 1s realizing the software
by combinational logical circuits, which characterizes are
high speed and reliability, what’s more important is the
approach is gradually showing its superiority with the
development of large scale mtegrated circwmt (Yugui and

Bachua, 1990). This thesis put forward the approach to
realize the semaphore management in hardware in order to
improve the efficiency of real-time system. The semaphore
management and ECB management are designed reference
to the RTOS pC/OS-II. The semaphore management
system calls and P/V operations are realized by
combinational logical circuits.

STRUCTURAL DESIGN OF HARDWARE RTOS

In this study, the system calls which used frequently
in RTOS, such as task manapement, semaphore
management, interrupt management and so on, are realized
by hardware and others are realized by software. As it is
shown in Fig. 1, there are two parts in the hardware RTOS,
the software kemel and the hardware kernel. The software
kernel can be subdivided into two parts, the interface
transmit the information between application program and
the hardware kemel, other parts of the software kernel
implement other system calls which are not suitable to
realize by hardware. These two parts cooperate with each
other to form a complete Hardware RTOS.

In this system, a system call is completed by
following steps. When a system call is mvoked by the
application program, the function code and the parameter
of the system call are sent to the software kernel, the
interface sends the function code and parameters to the
hardware kernel. The function code and parameters are

Corresponding Author:
Tel: 86+13664617642

Yan Li, Box 263, No. 52, Xuefu Road, Harbin, Heilongjiang Provinee, Postal Code 150080, China

Inform. Technol. J., 10 (1): 158-163, 2011

Application |
Interface
Semaphore " Task
Software management management
kernel H
| ECB management | Interrupt
management
External
CFU : pt
¥ 3 Harware RTOS
External Internal
device memory

Fig. 1: The structure diagram of hardware RTOS

decoded and the hardware kernel executes the internal
process of the system call and retuns result to the
interface, the software kernel returns result to the
application program at the end (Nakano et af., 1997).
When a task switching invoked by a system call or by
external events, the hardware kernel sends an interrupt
signal to the application program, saves the context of
task in runming state, then mforms the task manager to
executes a task scheduling, finds out the task with highest
priority and load its context (Nakano et al., 1995).

THE HARDWARE DESIGN AND IMPLEMENTATION
OF SEMAPHORE MANAGEMENT

The concept of semaphore management: The semaphore
1s actually a constraint mechamsm, which is extensively
used in multi-tasking kernel to manage the common pool
resource (Hemalatha and Vivekanandan, 2008), mark the
occurrence of an event and make the behaviors of two
tasks synchromzed. The semaphores work as key in
RTOS, so a task can not goes on until it gets the
semaphores needed (Labrosse, 2001).

The relationship among the tasks, interrupt service
routines and the semaphores are shown m Fig. 2. In the
figure, the key and the flag symbolize the semaphores and
task can not goes on unless it obtains the key first, if the
key have been occupied by other tasks, the current task
has to be set in waiting state until the key 1s released.
Structural design of the hardware semaphore
management: As it is shown in Fig. 3, the semaphore
management module and ECB management are logical
structures, both of them are independent of the CPU, can

159

OSSemCreate()

OSSemPost()
OSSemPend(}
Ny 08SemAccepi()
OR O5SemQuery() .

'@'ﬂ

OSSemAccept()

Fig. 2: The relationship of tasks, interrupt service routines
and semaphores

/" Semaphore management \ (
B map ECB management
Read/write logic of map
¥ i The storage
& | & | |module of ECB
The control module || %- W ﬁ.
of semphore e,
5 Read/write logic
¥
\|]:)ecodjng circuit: | i Decoding circuit
Software Hardware kemnal and Software Herdware kernal and

kernal other structures kemmal other structures

Fig. 3: Hardware structure of semaphore management

directly get mformation from the software kernel or other
structures of the hardware kernel.

A data bus is established between the semaphore
management module and ECB management module to
speed up commurnication between them. The hardware
RTOS works independent of the CPU and reduces the
CPU's financial burden to improve the processing ability
of system.

The ECB is the basic data structure to realize the
semaphore management, message mailbox management
and message queue management module in puC/0OS-IT.
Therefore, the event control block management would be
realized first.

The design and implementation of ECB: In the system,
the ECB structwre is designed reference to the structure of
ECB in pC/OS-II. Each storage cell of ECB contains
Event Type umt, Task Waiting list umit, Cnt unit and so
on. The Event Type used to label the current ECB has
been allocated by semaphore, mutex semaphore, mailbox
or message queue, when an ECB is assigned to a
semaphore, Cnt 1s the counter of semaphore; the Task
Waiting list in ECB is used to store the tasks priorities
which are waiting for this semaphore (Labrosse, 2001).
The structure diagram of the Task Waiting list
implemented by hardware 1s shown in Fig. 4.

Inform. Technol. J., 10 (1): 158-163, 2011

[ok
77 Data cable 'C_
8ids . I I I e I D
Bk 11 H o Hifonlf ~ ok
—] h—I I — o &
Sidd, E 0 | 1 - nH ... Hot EM
Lo HHtH| | E
& Pl] S;ﬁné i S |gid
Sid3,f 3 l]
ool ~ Ho | [
bo\
| Address decade of column | —
sidz | sidl T sido T me

Fig. 4: Schematic figure of task waiting list

The structure of Task Waiting list 1s sunilar to a matnx
with 8 rows and 8 columns, the storage umts numbers are
from 00 to 77. When a running task applies for a
semaphore and does not get it, the task 1s set n waiting
state. Make signal Wr effectively, use the priority of the
task as address and decode the address to select the
corresponding unit and write 1. When task A releases a
semaphore and task B gets it, then task B should be
deleted from Task Waiting list, make the signal Del
effectively, use the priority of task B as address and
decode the address, select the corresponding unit in Task
Waiting list and write 0.

Other basic umts of the ECB memory cell m hardware
system are achieved by calling the TP core supplied by
FPGA board; The ECB storage body are made up by ECB
cells which are combined by basic memory umts. An ECB
cell can be selected by decoding the address, reading or
writing operations is finished follow the control signals.

Design the system call function of semaphore
management in hardware: The ECB 13 a public data
structure, an ECB is needed firstly when a semaphore
created in the traditional operating system, the P/V or
other operations can not be done unless a semaphore has
been imtialized, When delete a semaphore, the ECB cell
has been used by the semaphore should be released.
Both operations above required many steps to complete.
The first step 1s to look up the ECB storage body when a
semaphore 1s created, to find if there are any spare ECB
cells; if there is no spare ECB cell, the error message is
returned; otherwise the ECB cell address is generated and
returned to the task which applies to create the
semaphore, the last step 1s iitials the ECB cell. The whole
process above will waste a lot of clocks in sending data
back and forth among modules, which makes the system
speed-down;, A mapping table 1s set to record the usage
of ECB mn the semaphore management module to solve

160

18t 2nd Ird Sth

column column column columnn
1st row 0 0 0 1
2ndrow| O 1 0 0
Sthrow| 0 0 0 0

Fig. 5: Schematic figure of mapping table

this problem, each position in the table corresponds to an
ECB cell, when a position 1s 0 /1 means that the ECB cell
1n 1dle position 1s spare/occupied.

As it is shown in Fig. 5, value in the unit at 1st row,
&th column is 1, it means that ECB cell with offset address
000 111 18 occupied; value of the unit at 2nd row, 2nd
column 1s 1, it means that the ECB cell with the offset
address 001,001 is occupied.

When a semaphore is deleted, the first step the
Control Module 1s to look up the mapping table, to read
out the wvalue i corresponding position and judge
whether it is 0, if it is 0, it means that the semaphore has
been removed by other tasks, delete error signal is
returned by the Control Module to the task which tries to
remove the semaphore. Otherwise the Control Moedule
clears the record of the semaphore in the mapping table,
informs the ECB management module to set all tasks in
ready state, which tasks are in Task Waiting list of this
semaphore, the ECB management module clears the
semaphore information in ECB cell and release the cell; the
Task Manager triggers a task scheduling.

The hardware implement of P/V operations: The mamly
part of the Semaphore management are P/V operations,
the hardware implementation of P/V operations are shown
inFig. 6.

P operation, when a task applies for a semaphore, the
input signal pend sem is in high level, the Control
Module judges whether the task is an interrupt service
routine (in pC/OS-I1, the interrupt service routine does not
allow to apply for a semaphore), if it 1s return back error
signal (pend err in high level), does not carry out the
following operations;, Otherwise the Control Module
enables the read cnt signal, reads the value of Cnt from
ECB management modules, judges Cnt value when it 1s
read back, if the Cnt>0, the cuwrent task gets the
semaphore and continue to run, the Control Module
returns a successful signal (the signal pend err in low
level); if the Cnt <0, the Control Module sends the signal
pend err in high impedance, then according to application
type the signal Pend type (there are two kinds of
application types in nC/OS-II | no wait application ,with
wait application) to decides whether to modify the Cut

Inform. Technol. J., 10 (1): 158-163, 2011

Sm_EddI | | Adl'_()llth
. lr1 i

Cotin =N T [l Cnt_out
- S a—

OsTntm estify —

OSt_sem % Read_cnt
Pend_sem J d
m__typeﬁ » 1 "1 Pend eq:

Invatid p—>
I~ Wr cnt
T] Selecth
Al -
‘Wr_prio
o
Task_prio . Task_prio

Fig. 6: Hardware implement of P/V operations

value, to set the task apply for the semaphore in waiting
state.

V operation, release a semaphore, the Control Module
gets the signal post sem in high level, then the Control
Module enables the signal read cnt , sends out the ECB
semaphore address at the same time, reads back and
judges the value of Cnt at the next clock; if Cnt> =0, 1t
means that there 13 no task waiting for the current
semaphore, modifies the Cnt value; else if Cnt <0 ,it means
that there are tasks waiting for the current semaphore, the
Control Module modifies the Cnt value, enables the signal
select h; the ECB management module gets the signal
select_h in high level, first it finds out the highest priority
task from the task waiting list in the ECB and sends to the
Task Manager, informs the Task Manager sets the task in
ready state, then the Task Manager triggers a task
scheduling.

THE RESULT OF SIMULATE AND TEST

In order to verify the accuracy and highly effective of
the hardware realization, the entire design is described by
the hardware language of VHDL and the ISE 8.2 software
15 used to camry on the succession simulation
confimmation. The simulation results of the P/ V operation
is shown in Fig. 7.

As 1t 15 shown in the Fig. 7, the signal pend sem or
post_sem 1s still effective during the P or V operations.

¢ The pend sem signal is in high level (P operation),
the task with priority 0x01 applies for the semaphore
with address 0x05. The Control Module reads

semaphore value Cnt according to the address has
given, the value returned from the ECB management
module 15 0x0002>=0x0000; The task gets the
semaphore and continues to run; the Control Module
minus one Cnt value and writes it back to the ECB

¢ The post sem signal in high level (V operation), the
Control Module reads the Cnt value according to the
address has given, the Cnt value 15 OxFFFE <=0x0000
(the Cnt value store in the form of complement). At
next clock the Control Module plus one Cnt value
and write 1t back to ECB, enables the signal Select_h;
the ECB management module selects the task with
the highest priority in the task waiting list, sends to
the Task Manager and informs it sets the task in
ready state and triggers a task scheduling

» Apply for a semaphore, the task with priority 0x03
applies for the semaphore with the address 0x09. the
Control Module reads back the Cnt value OxFFFD
<=0x0000 at next clock, the application type s 1 lugh
level (it 15 with wait application), so modifies the Cnt
value, writes the priority of current task to waiting
list, notifies the Task Manager sets the task in
waiting state and triggers a task scheduling

» Apply for a semaphore, the Control Module reads
back the Cnt value OxFFFA <=0x0000, but the current
application type is in low level (no wait application),
the Control Module does not carry out any operation
but returns failure signal.

The simulation results of creating and deleting a
semaphore are shown in the Fig. &, the signal sem_create
{(del sem) and data are maintain two system clocks when

Inform. Technol. J., 10 (1): 158-163, 2011

| ostntnesting o

Lo S I 0 W B N
tpendtppe o [1 1
I pend_sem o _I—l—l |_
L task_prio[5:0] G'hix (5'h0x, B'hi01 E'h02 E'h032 E'h0S

I pend_addr[5... B'h0x {Hhox B'hi05 E'hO7 B'hOS B'ho4
lent_in[15:0] 16"h... 16 h000x 16'h0002 16'"h... 16'hFFFE 16'h... 16'hFFFD 16'h...% 16hFFFA

| post_sem o |—|

Ipend_addr_... B'h¥x Hhi 6'hi05 G'hO7 6'hOS

lont_out(15:0] 16 1B O3 16'h0001 ¥16'hx. % 16'hFFFF X16'h. 4 16'hFFFC

[task_prio_o.. B (BHHGT &ho1 b4 B hR EE]

| select_h 1} ,—|

| wir_cnt 1]

| wer_sid o u |

| read_cnt 1} |_
| pend_err o IT‘ | |_

Fig. 7. Apply for or release a semaphore

20l osintesting u}
20 cik 0
2 de u]
& addr_de[5:0] B'hO 0 1 12 B
2l sem_create u}
¥ sem_type[z:0] 3hu £ 1 o Thi
4 ont[15:0] 16'h... {0 5 5 1EhO00X
B¢ addr_to_ech[5:0] B¢ £ 0 q B
B sem_type_out[2:0] IhuU Eh 1 id hu
& serm_chi_out[1 5:0] 16h. dB. 5 W B % 16 000X
2l e a
2l de_sem u}
2 err u] H—
3N de_er o] oy
Fig. 8: Create/delete a semaphore

Ak . R R) .))) .)

M reset 0

Mler 0 e

Mlde 0

+ @ table_addr(5.. &0 { fhix W 1z

Ml require 1]

M de_er 0 t

% @ event_addrs . B0 G Gh00_ Bho1 X Bt

Fig. 9: The changes in the mapping table when create or delete a semaphore

a semaphore 1s creating (deleting), it 1s to make sure that
data can be send to the ECB cell errorless.

In the Fig. 8, two semaphores with the initial values
0x05 and 0x06 are created from the beginning of first clock
to the end of forth clock; the Control Module gets the
sem_create signal in high level, it looks up the mapping
table to gets address of an ECB unoccupied, the data
changes 1n the mapping table are shown in the Fig. 9, the
Control Module gets the ECB cell address and marks it;

162

the Control Module sends the address and the value of
the semaphore to the ECB management module at next
clock.

At the fifth and sixth clocks, the Control Module gets
the de signal in high level and gets the semaphore’s
address 0x01, the Control Module searches mapping table,
makes sure the existence of the semaphore, then removes
the semaphore, clears the record of semaphore in the
mapping table and sends a signal to inform the ECB

Inform. Technol. J., 10 (1): 158-163, 2011

Table 1: Resources required of hardware semaphore realization in

XC2VP30FF896C

Logic utilization Used Available Utilization (%6)
No. of slices 1443 13696 10

No. of slice Flip Flops 1701 27392 6

No. of 4 input LUTs 2202 27392 8

No. of bonded IOBs 129 556 23

No. of BRAMs 2 136 1

No. of GCLKs8 16 50

management module to set all the task which are waiting
for the semaphore in ready state.

At the seventh clock, the semaphore with address
0x12 18 being removed, the Control Module searches the
mapping table, finds out that the semaphore is not exist
and then it returns the signal remove error.

Table 1 shows the utilization of the resources to
achieve the semaphore management modules which based
on the component XC2VP30 of Xilinx Virtex 1T pro.

DISCUSSION

This study provides hardware-software partitioning
of the hardware RTOS and the implementation semaphore
management. In the traditional RTOS, user’s application
applies for a semaphore, the P/V operation will be
executed as follow, at first the execute state would
transform from user state to system state, the semaphore
value 1s read out, calculated, compared, judged and then
when the appropriate program 1s finished the execute state
retrn to user state from the system state; However, in the
hardware RTOS, one read or write command 1s needed
which nstruction is necessary in the software and other
operations are implemented by hardware logic to simplify
the operational process.

The simulation results in Fig. 7 indicate that three
internal clocks of FPGA is needed to execute the P/V
operation implemented by the hardware and the
simulation results in Fig. & indicate that two internal
clocks of FPGA is needed to execute the operation,
creating or deleting a semaphore, implemented by the
hardware. All of these operations needed much less steps
and little time than the traditional operation implemented
by the software. The Storage structures of semaphore
management are realized by IP core of FPGA and
resources required of hardware semaphore realization in
XC2VP30FF896C is shown in Table 1.

The high speed and efficient hardware semaphore
management reduces the time to execute a system call and
mcreases the overall of RTOS. There are numbers of
semaphores and the semaphore management runs
frequently in common RTOS, so it speeds up the system

163

a lot when realizes the semaphore management by
hardware, particularly in the system with resources
varieties and quantities. On the other hand, the reliability
of the operating system 15 improved because of the

reliability of the hardware far more than the software.
ACKNOWLEDGMENT

This study was supported by Natural Science
Foundation of Heilongjiang Province of China
(No. F200805)and the national innovation experiment
program for university students (No. 081021413).

REFERENCES

Hemalatha, M. and K. Vivekanandan, 2008. A semaphore
based multiprocessing k-mean algorithm for massive
biological data. AsianJ. Scientific Res., 1. 444-450.

Tianhua, C., S. Hongsheng and W. Baojn, 2008. The
design and realization of hardware real-time operating
system. Appl. Comput. Technol., 5: 34-37.

Labrosse, J.T., 2001. MicroC/OS-?The Real-Time Kernel.
2nd Edn., CMP Books, Gilroy, USA., pp: 178-185.

Muneer, H. and K. Rashid, 2006. SPE architecture for
concurrent execution OS kernel and user code.
Inform. Technol. T, 5: 192-197.

Nakano, T., U. Andy, M. Itabashi, A. Shiomi and M. Imai,
1995, Hardware mmplementation of a real-time
operating system. Proceedings of the 12th TRON
Project Intermnational Symposium, Nov. 28-Dec. 2,
Tokyo, Japan, pp: 34-42.

Nakano, T., Y. Komatsudaira, A. Shiomi and M. Iimai, 1997.
VLSI implementation of a real-time operating system.
Proceedings of the ASP-DAC '97 Asia and South
Pacific Conference on Design Automation, Jan. 28-31,
Chiba, pp: 679-680.

Ramadass, N., S. Natarajan and TR.P. Perinbam, 2007.
Dynamically reconfigurable (Self-modifiable)
architecture for embedded system-on-chip
applications. Inform. Technol. T., 6: 66-73.

Yan, L., L. Xian-Yao, G. Pmng-Ping, 7. Hong-lie and
C. Ping, 2010. Hardware implementation of pC/OS-11
based on FPGA. Proceedings of 2nd International
Workshop on Education Technology and
Computer Science, March 6-7, Wuhan, Hubei, China,
pp: 852-858.

Yugui, Q. and 7. Baohua, 1990. Firmware of semaphore
management in operating system. Comput. Applied
Software, 6: 29-33.

	ITJ.pdf
	Page 1

