http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 10 (9): 1662-1672, 2011
ISSN 1812-5638 / DOL 10.3923/1).2011.1662.1672
© 2011 Asian Network for Scientific Information

Reliable Web Services Selection Based on Finite State Machine Model

Hongjie Shen, Zhijun Ding and Hongzhong Chen
The Key Laboratory of Embedded System and Service Computing,
Tongji Unmiversity, Ministry of Education, Shanghai 200092, China

Abstract: Dynamically selecting suitable Web Services (WSs) 1s crucial to users in Web Services Composition
(W3C). Generally, most works regard a Web Service (W3) as the basic umit and compose the composite W3
(CWS) end to end. However, a WS may comprise multiple operations that are invoked in sequence and the
selection of WSs according to the model still is a NP problem. In this study, the WSs consist of some
operations and then W Ss selection problem is formalized as a Finite State Machine (FSM) process. This study
proposed an algorithm to create the WSC Tree (WSCT), in which each path from root to leaf node 1s a feasible
WSC execution path. Then, a heuristic algorithm is proposed to realize the selection of W3s based on the
WSCT. The advantage of heuristic algorithm is that it can address the selection problem without traversing the
whole WSCT but it still spends much time m the construction of the WSCT. So, in order to further decrease the
time of selection, a backtracking algorithm 1s presented to select a feasible execution path without generating
WSCT. At last, experiments show that heuristic algorithm is more effective than exhaustive method and the
backtracking algorithm spend the less time than heuristic algorithm, the reliability of WSC execution path
selected by backtracking algorithm can satisfy the requirement of users. So, this study proposed an algorithm

to select a feasible WSC execution path within a reasonable time.

Key words: Web services, service composition, algorithm, service selection, reliability

INTRODUCTION

A WS is a software system identified by a Uniform
Resource Locator (URL), whose public interfaces and
bindings are defined and described using XML-based
specifications (or standards). Its defimition can be
discovered by other software systems. These systems
may then interact with the WSs in a manner prescribed by
its definition, using XML-based messages conveyed by
Internet protocols (Booth et af., 2004). In order to create
the actual application, developers may compose some
existing simple services provided by the system to resolve
complex user problems. In the process of WSC, suitable
candidates must be discovered and from them the most
suitable ones must be selected (Shen et al., 2010).

Generally, the Web service composition can be
viewed as a three-step process: (1) composite Web
service specification, (2) selection of the component Web
services and (3) execution of the CWS.

At the first step, the user submits the goal he/she
wants the composite service achieves, along with some
constraints and preferences that need to be satisfied
(Ding et al, 2005, 2007). Most works regard a WS as the
basic umt for composition. However, a WS may comprise
multiple operations such that their mvocation sequence

18 constrained. During the second step, component W Ss
fulfilling the user’s goal are selected among a set of
available services (Haddad et of., 2010). With more and
more WSs with similar or identical functionality become
available, the Quality of Service (QoS) attributes
(e.g., availability, response time and throughput) are
subsumed as non-functional attributes. But when more
and more WSs become available, W3s selection problem
is a complex NP-hard optimization problem. At the third
step, execute all selected component Web services.

In order to define the possible orders of calling WSs
at design time, many composition methods also have been
service composition approaches
include practical languages, such as BPEL, WSCL and
OWL-S and commercial service platforms or products,
such as the Sun ONE framework based on IZEE,
Microsoft NET, the Oracle BPEL Process Manager, the HP
WSs Management Platform and the IBM WebSphere
Application Server. At the same time, several formal
process models have also been proposed, including FSM,
Petri net, UML, activity diagram and process algebra.
They are compared among each other with respect to
some key requirements, including composition
correctness, automatic composition and scalability
(Ding et al., 2008). In fact, most works regard a Web

proposed. Current

Corrresponding Author: Zhijun Ding, The Key Laboratory of Embedded Systemn and Service Computing, Tongji University,
Ministry of Education, Shanghai 200092, China

1662

Inform. Technol [, 10 (9): 1662-1672, 2011

service as the basic unit and selection with end-to-end for
composition, however, a W3 may comprise multiple
operations that are invoked in sequence (Hwang et al.,
2008). By the comparison, FSM is a promising model and
suitable to address most of the aforementioned
requiremnents 1ssues. Moreover, a FSM 1s a formalism that
is suitable to describe reactive behaviors and has the
notion of states which 1s useful for momtoring service
executions (Yu et al., 2007). So, some works model Web
services as finite state machine.

Hu and Wang (2004) first model W3s as FSMs and
then in order to avoid some problems as deadlock, they
deliver the process of composition into three parts
according to the merging process: constraints before
composition, constraints in composition and constraints
after composition. Hwang et @f. (2008) model W3s and
CWS as FSMs, then propose a metric, called aggregated
reliability, to measwure the probability that a given state in
a composite W3 will lead to successful execution in an
error-prone environment. Although they propose a
powerful method to compute the aggregated reliabilities,
when the number of atomic WSs becomes huge,
calculating the all aggregated reliability is impractical,
because 1t may take too much time. Berardi et af. (2003)
model W3s as Finite State Automations (FSA). In order to
take time constraints into account, then they add a time
into the tuple of the FSA. At last, a new XML-based
language, namely WSTL (Web Service Transaction
Language) that integrates well with standard languages in
order to completely specify Wss 15 presented.
Considering automatic Web services composition is the
ultimate goal of most composition efforts, so, based on
their previous work, Berardi et al (2004) present a
framework that describes a Web service’s behavior as an
execution tree and then translates it into a FSM. They
propose an algorithm that checks a composition’s
existence and retuns one if it exists. In the process, the
composition 1s proved comect and the algorithm’s
computational complexity characterization is given,
ensuring that the automatic composition will finish in the
finite number of steps. But, the authors cannot further
research the WSC selection problem based on the model.

Although these articles have modeled Web services
as FSMs, only Hwang et al. (2008) introduced a selection
method to WSC based on a criterion of QoS, reliability.
However, they ignore that the number of atomic WSs 1s
huge or the WSs may comprise multiple operations will
induce WSC selection become inefficient. In other words,
when we model a W5 as multiple operations that are
mvoked in sequence, we still need to consider how to
select a feasible CWS to execute within reasonable time.
At present, some articles focus on the selection
optimization problem of WSC.

Zeng et al. (2004) proposed a method to compute an
optimal set of WSs for each possible execution path in the
process based on a weighted combination of QoS
measures, including: price, duration, reputation,
availability and successful rate. Although integer
programming 1s utilized to accelerate the computation,
with the number of possible execution paths become
huge, the selection process may become impractical

Yu et al. (2007) model the WSC selection in two
ways: combinatorial model and graph model. The
combinatorial model defines the problem as a
Multidimension Multichoice 0-1 Knapsack Problem
(MMEKP). The graph model defines the problem as a
Multiconstraint Optimal Path (MCOP) problem. Efficient
heuristic algorithms for service processes of different
composition structures are presented m this article. At
last, this study proposed a broker-based architecture to
select the QoS-based services.

Different articles have different methods for
addressing the selection problem. Jaeger et al. (2005) draw
a conclusion to some selection algorithms, including:
Greedy Selection, Discarding Subsets, Bottom-Up
Approximation and Pattern-wise Selection. But because of
the different WSC model, these algorithms are not suitable
to the problem above-mentioned.

This study extends our previous work presented by
Shen et al. (2010), where firstly an algorithm is proposed
to create the WSCT. Then, a heurstic algorithm s
presented to complete the selection of WSs based on the
given WSCT. According to WSCT features, an etfective
heuristic function is designed. Moreover, an approximate
solution 1s generated to get an execution path of W3
composition within a reasonable period of time and the
reliability of the execution path is feasible to user.

In this study, with the number of available W3s
becomes huge, constructing the WSCT will spend much
time. So, in order to further decrease the time of selecting
the execution path, a backtracking algorithm 1s proposed
to select a feasible execution path. According to the CWS
and the W3 community, a feasible execution path can be
selected without constructing the whole WSCT to satisfy
the requirement of users in reascnable time. And some
improvements are made in the heuristic algorithm in the
previous work.

PROBLEM DESCRIPTION

The selection problem about WSC has become a
focus in the filed. Generally, most works regard a WS as
the basic umit and compose CWS end to end, then,
according to various QoS measwres, such as response
time, cost and rehability, users can select the suitable
WSs (Zeng et al., 2004; Yuet al., 2007). However, a W3

1663

Inform. Technol [, 10 (9): 1662-1672, 2011

cedit card

O =D
by land

money-order
Fig. 1: A composition problem: buy a PC service

Wy

w, w, w, w, W,
0, Q, o
o, o,
0,
Q,

Fig. 2: Composite WS and WS community

=]

may comprise multiple operations in practice that are
invoked in sequence. So, the WS can be modeled as a
FSM with tuples including state, operations and others
(Hwang et al., 2008).

The state of a service (atomic service or CWS)
describes the changes of its behavior and the state can
transfer by the invocation of the operation. Depending on
specific research topics, the state can be (a) the actual
mtermnal execution state, (b) only a part of the state of
relevance to the parties connected with the WSs or (¢) the
state of the “external world”. Furthermore, different
models rely on different kinds of “operation” to change
state, these might be (1) messages, (1) activities and (1u1)
events (Gerede et al., 2004).

Here, two definitions are articulated for technical
discussions which include a FSM approach to model a
W3S and the defimtions of WSC. The defimitions come
from Hwang et al. (2008) which are not repeated here.

This study consider a CWS W, a W5 community C
consists of the atomic Wss and the WS commumty
C={W,W, ...,W.1}

Suppose we intend to buy a Personal Computer (PC)
in a commercial web site, we would like to develop a
shopping service such that users apply to buy a PC and
then pay for it, at last, the PC will be delivered to the users
and we would like to be flexible on the payment. So, users
can pay either by money order or by credit card, then
users can deliver the PC by land, the example 1s shown in
Fig. 1.

Here, a WS Community C = {W,, W,, W,, W, W.l is
given as shown in Fig. 2. W is the buying a PC service in
the Fig. 1. Consider the composition W; shown in Fig. 2,
to select the delegation to invoke for the operation o,
there are three choices: W,.0,, W,.0, and W..0,. Here,
WSs consist of a sequence operations that is say, in the
W,, after the o,, 0, and o, are mvoked successfully, the o,
can be used and after all operations are mvoked, the W3
can be invoked.

In the Fig. 2, according to the WS composite W, and
the atomic W3 community C, we can get the composite
W3s set to meet the user requirements, for example, the
set {W,} can meet the composite WS W, at the same
time, the set{W,, W} also meet the composite WS W,
So, one suitable set need to be selected for user in the
acceptable time according to the reliability criteria.

WEB SERVICES COMPOSITION
AND SELECTION

WSCT: In fact, the Web service composition can be
viewed as a three steps process, the first step is
composite Web service specification. In this study, the
composite Web service specification 1s to create the
service composition tree and the general process of
constructing the service composition tree by iterating
following operations 1s: 1) search WSs whose mputs
contain the given input, 2) attain outputs of the selected
WSs, 3) search input matched to the selected output as
the given input in the operation. At last, search the
composition result from service composition tree
(Chen et al., 2006).

According to the definition mentioned above, the
general process of combination of services actually is to
produce a tree and then select a suitable path to execute
1n order to meet the requirement. So, this study introduce
the process of building the WSCT according to service
requester’s composite WS W, and candidate atomic WSs
in the WS commumity. Different from the enumeration
method by Chen et al. (2006), m this study, an algorithm
is proposed to build a WSCT from back of WSs operation
sequence. Due to operation set is a sequence in an atomic
WS, only previous operations are selected to invoke, can
the subsequent operations be selected which can avoid
the exhaustion to all operations of WSs. So this study
builds WSCT from back which can reduce search space
shightly. For example, in Fig. 2, before operation o, in the
W, 1s invoked by the application, operation o, or o, in the
W, must be selected.

The main idea of algorithm 1 is as follows, search all
possible nodes contain the given requirement from back
of the Wss sequence and define a previous operations

1664

Inform. Technol [, 10 (9): 1662-1672, 2011

set for each candidate node. By the previous set of each
candidate node algorithm 1 know whether the candidate
node is a feasible node. When creating a WSCT, the node
of WSCT mcludes one or more operations.

Here we give some signs introduction in the
algorithm 1, S.g 18 a set to store nodes which can be
invoked that is to say, their previous node have been
mvoked and you only can invoke the needful node from
the S.; as the S, S. is the candidate node set which
include the nodes can be selected as part of the CWS. S,
is a subset of S,y A node has previous nodes set S;.
When operations i the node will be invoked, the S; of the
node must be invoked firstly and the S; can be used to
judge whether the execution path is feasible at current
state. If the S; of the node can not be selected at next
step, the S; of the node must be added mto the S;of
children of the node. S [i] is the operation node set of
the ith state in a WS. W,. So.[1] 1s a node set of ith state in
the W, for example, in W, operations set of the second
state 18 W .5, [2] = {W,.0,, W,.0,}. Pop 1s the fimetions
that gets a node from set or queue or stack and delete the
node. GetPreviousOp 1s the fimction that gets the
previous operation node. And root is the root node of the
WSCT.

The description of algorithm 1 is as follows.

Tnitialization: Firstly, create a null node root as the root
node of WSCT and push the root node of WSCT mto the
queue Queue; put all the last state operations of atomic
WSs in the WS community into the S.g, set the S; of root
node of WSCT as null, 1 1s state of CWS.

Step 1: Geta node from Queue as the parent node (line 2)
and get all candidates as S. (line 4 to 13), the process is:
if the 3; of parent node 1s null, we do not need to consider
the nodes in S, so, the S, is the mtersection of S,y and
Wi Sgs [1] (line 4 to 5), else we get the candidate nodes
from Sg. so, S, 1s mtersection of Sy and W, Sy, [1] (line 6)
and if the S; have nodes but have no suitable candidate
nodes (line 7), i other word, S; of parent node will be
used later, we still need to find the candidate nodes from
Scrn 80 Sy 18 the intersection of the set of S.p, and the set
of W. S5 [1] (line 8), meanwhile, the nodes in S;, of parent
node must be added into the previous node set of
candidate node (in fact, they are also children nodes of
parent node) in order to be used later (line 9) and remove
the unfeasible candidate nodes according to the previous
set (line 10to 11).

Step 2: Set all nodes in the S, as the children node of
parent node and push the children nodes into the Queue
(line 18) and go the next state (line 23 to 25). Iterate the
step 1 and 2 till the whole WSCT is retwrned.

Algorithm 1: CWSCT: Create the WSCT
Input: (CWS, WS Community)
Output: WSCT
Initialization: set root as the root of WSCT and push root
into the Queue, Scp, root’s Sp—(, i-state of CWS,
BEGIN
: while Queue= do
parent node~Pop{Queue)
Sp-GetPreviousOp(parent node)
il S;=0 then
Sc=SeainWo. Sos [1]
else Sp-8pnWy. Seg [d]
il 8¢ =@ then
Se=SernWo. S [il
add the S into previous operations set of each
node in 8¢
10: il there are the same operations come from
different WSs in the previous operations set
of node in S¢ then
11: remove the node from Sq
12: endil
13: end il
14: end il
151 8= then
16: remove the parent node
17 break
18: end il
19: while 8-+ do
20: node-Pop(S:)
21: set node as the children node of parent node
and push the node into Queue
22: end while
23: il all nodes in the same state are considered then
241 i-i-1
25 end il
26: end while
27 return WSCT
END

—

R I R

InFig. 2, we create the WSCT from back, firstly there
are nodes {W,.0,} and {W,0,} as the candidate nodes
and their previous set 15 {W .0, or W .0;} and {W,.0;}
each other, at the same time, we set {W .o,} and {W,.0,}
as the children nodes, then go the next step, we get W, .o,
or W,.0, as the parent node each other, if firstly we get
{W,.0,} as the parent node, the candidate nodes is
{W,.0, or W,.0,, W,.0,and W..0.}, their previous set is 0,
@ and {W,.0,}, since the previous set {W,.0,} of {W,.0,}
can not be selected as candidate node, so the previous
set {W,.0,} of {W,.0,} must be added into previous set
of its children nodes, so the previous set of {W,.0, or
W0t {W,0} and {W,o0} 18 {W,o0}, {W,o0} and
{W..0,, W,.0,} each other, here, because there are two o,
coming from different WSs in the previous set of {W..0,},
sothe {W..0,} will be delete from the candidate node set.
At last, iterate the process till returning the whole WSCT.

Figure 3 shows the WSCT based on algorithm 1
according to W, and the atomic WSs m Fig. 2. Dotted
line frame is the wrong path that is removed by the
algorithm 1. According to composite WS W, we can use
some atomic WSs from the WS community to get some
execution paths that meet the composite WS W, when

1665

Inform. Technol [, 10 (9): 1662-1672, 2011

Fig. 3: The WSCT of Fig. 2 created by the algorithm 1

the number of atomic W3s becomes large, calculating all
the reliability of all WSC execution paths may take too
much time and thereby we give a heuristic algorithm to
select the WSs for composite WS.

In Table 1 we can see that each path from root to leaf
node can meet the requirement of CWS. So we must select
a path to execute the CWS according to the QoS. Here, we
consider a QoS property, reliability. The reliability of a
service 18 the probability that a request i1s correctly
responded within the maximum expected time frame
(Zeng et al, 2004). Moreover, Hwang et al. (2008)
proposed a service metric called aggregated reliability, to
measure the probability that a given state in a composite
WS will lead to successful execution in an error-prone
environment. Although proposed powerful method to
compute the aggregated reliabilities, if the number of
atomic W 3s becomes huge, calculating the all aggregated
reliability is impractical, because it may take too much
time. So we propose a hewristic algorithm to select the
WSC based on WSCT above mentioned and difference
from Hwang et af. (2008), 1 this study, the reliability of a
whole execution path of composite WS is a product of
reliability of all operations.

Definition 3 (Reliability): Given a composite WS W, and
a WS commumty C = {W,, W,, .., W, }, the Reliability of
Wiusing Cis R (W) =ITR (W.g), 1<1, j<n, where:

* R (W) is the Reliability of CWS W,
¢ R (W,0) is the Reliability of operation o; in the
service W,

Using Heuristic Algorithm (HA) to Select the WSC
Based on WSCT: Generally, the heuristic evaluation

function will be used to evaluate and find the suitable
path from the current node to the goal node. Heuristic
evaluation function comsist of two parts, one part is
viewed as G (x), standing for known information, another
one 13 H (x), standing for the unknown information. Our
proposed seolution to select the suitable composition 1s
utilizing a Heunistic Evaluation Function (HEF) to evaluate
the reliability of the path from cuwrent node to the goal
node cwrent node and then select the suitable path
according to heuristic evaluation function.

Designing appropriate heuristic evaluation function
18 very important to the heuristic algorithm. In order to
design better heuristic evaluation function, we must try
our best to gain known information. So, we analyze the
execution tree of the WSC selection. In this study, we
define heuristic evaluation function as the function that
evaluates the reliability of the path from the current node
to the goal node. The evaluation of path from current
node to the goal node 1s divided into four parts. The
defimtion of HEF as follows.

Definition 4 (HEF): Let HEF be a function
F(x) = G, (x)*G, (x)*H, (x)*H, (x), where:

s (G, (x) 1s the current node information

s G, (x) stand for nodes information that must be
selected mto WSC according to current node

» H,(x)1s the next step node information and 1t 1s also
the children node information of current node

* H, (x) 1s these nodes information that can not be
considered in G, (x), G, (x) and H, (x) but these nodes
belong to the CWS

The wvalue of G,(x), G,(x). H, (x) and H,(x) 1s the
reliability of the part of path in the comresponding

1666

Inform. Technol [, 10 (9): 1662-1672, 2011

function. According to the WSCT we know that in atomic
WSs, execution of some operations will induce the
mevitable occurrence of a number of previous operations
1n the same atormic WS. For example, in Fig. 2, assumption
that the operation W,.0, be selected which will induce the
inevitable occurrence of previous operation W,.o, that is
to say, W,.0; must be selected into CW3S W,. Therefore,
we consider that the nformation of selecting W,.o, will be
part of the heuristic evaluation function. Here the
heuristic evaluation function includes two parts, one part
15 viewed as G (x), standing for known information and
G (x) 18 divided into two parts, G, (x) and G, (x)
(definition 3). Another part of the heuristic function s H
(x) which also is divided into two parts, H, (x) and H, (x)
(see defimition 3). For example, in Fig. 3, we consider
selecting the W, .o, or W,.0,, if the W, .0, 1s selected, the
information of W,.0, i3 the G, (x) and according to
compare with W;,, W, o, W,o0, and W,.0, must be
selected, so the information of W .0,y W .0, and W, .0,
1s the G, (x), according to WSCT, W, .0, and W .0, also
belong to the H, (x). Because there are the same
operations o, and o; in G, (x) and H, (x), the operations are
considered once. H; (x) does not have any operations
here, so the reliability of H, (x) 1s 1. If the W,0, 1s
selected, the information of W,o0, is the G, (x) and
according to comparison with W, W,.0, must be selected,
so the information of W,.0,1s the G,(x), according to
WSCT, W,.0, and W;.0; 18 the H, (x) and H, (x) 18 empty,
so, the reliability of H, (x) is 1.

After designing the heuristic evaluation function, the
process of algorithm can be designed naturally.

Here we give some signs mtroduction in the
algorithm 2 and 3. WSCT is the root node of WSCT. W,
1s a stack that 1s used to store the selected nodes. Pyis the
reliability of the execution path in Wi, S is a set that
store the children node of a parent node and node 1s a
node. F,; 18 the value of function HEF.

The idea of algorithm 2 is as follows: firstly,
calculating the reliability of each branch of according to
current nodes, then by comparing them selecting the
maximal branch and remove the other branch, at last,
finish all selection of the nodes and get the WSC
execution path and the reliability of the path.

The description of algorithm 2 is as follows.

Initialization: Set W, as null and set P, is 1:

s Step 1: f WSCT 15 not null, we get all children as the
children set S, (line 1 to 2)

¢+ Step 2: Calculate the HEF of all nodes in S,
(Algorithm 3), then push the suitable node mnto the
W (line 3 to 5)

s Step 3: WSCT point to the root of sub tree of WSCT
and the root node of sub tree is node (line &). And
repeatedly the Stepl and 2 till the WSCT has no chuld
and return the selected path Wi, and the reliability Py
of the path

Algorithim 2: HS: Heuristic Select

Input: (WSCT, Composite WS, WS Community)

Output: (Wgp and Py)

Initialization: W =@, Pr =1

BEGIN

1: while WSCT=(J do

2: 8 ~get all children node of WSCT

3: get the children node with maximal HEF by
calling CF (S)

4: Pprthereliability of nodexPy

5: push the node into Wgp

6: WSCT point to the root of sub tree of WSCT and the
root node of sub tree is node

7: end while

8: return W and reliability Py,

END

The 1dea of algorithm 3 15 as follows. Firstly, get the
Fur of all nodes in S, according to defimition of G (x),
G,(x), H(x) and H,(x) and get the children node with
maximal Fgp, then retumn the node and the reliability Py.

Algorithm 3: CF: Calculate Fypp

Input: S

OQutput: node and reliability Py

BEGIN

1: while S- =& do

2: node-Pop(8cp)

3: G(x)-the reliability of node

4: Gy(x)—the reliability of part of path in Gy(x)
5: H,(x)~the reliability of children node of node
[

7

8

1 Hy(x)~the reliability of part of path in Ha(x)
¢ Fugp- Gy (0% Gy (o< (o)< Ha(x)
: end while

9: get the children node with maximal Fyge

10: Pg ~the reliability of node

11: return the node and Py

END

The steps are as follows:

s Step 1: Get anode as node from S, (line 2) and get
the value of G,(x), G,(x), H,(x) and H,(x)

» Step 2: Get Fyr of all nodes m 3, according to G, (x),
3, (x), Hi(x) and get the children node with maximal
Fiigr 0 Sy

s Step 3: retun node and P; of the node

Consider the composite WS W, and the WS
commumty C = {W,, W,, W,, W,, W.} shown in Fig. 2.
For simplicity, like article Hwang et «l. (2008),
assume that each operation in node has the same
chance to be selected, the children nodes have the same
chance to be selected and has the same reliability 0.8,

1667

Inform. Technol [, 10 (9): 1662-1672, 2011

except for operations W,.o0, W,o0, and W,.0,, whose
reliabilities are all 0.75.

In Fig. 3, 1f W .0, 1s selected into the composite WS
W, by comparison between the W and W, we know that
W,0, W,o0, and W, o, must be selected into the
execution path of WSC, so, we can calculate the G, (x) =R
(Wyox124(R (W,.o+R (W .0,)) =0.64 W, .0, 1s the
current operation, so, G, (x) = R (W.0,) = 0.8, here,
because the next step selection operations also
belong to the G, (x), so, H; (x) = 1 and there are no
operations between W, and W,. We define H,(x) = 1. So,
Fipr = 0.8x0.64x1x1=0.512.

As discussion above, 1f W,.0, 1s selected, we have
G,x) =R (W,0) =08, G, x)=R(W,0,) = 0.8, we know
that the next step selection operations are W,.0,, W,.0,
and W,.o, according to WSCT as shown mn Fig. 3. W,.0,
and W,.0, have an equal chance to be selected, H,(x)
=1/2%(1/2x(R (W50, HR (W;.0,)) +1/2%(R (W,.0,)) = 0.75.
and the different operations set 1s null, so H,(x) = 1, then
Fopr = 0.8x0.8x1%0.75 = 0.48.

So, we select W,.0, as the next step, we can continue
till all steps are finished. At last, we can gain a feasible
execution path {W .o, W .0, or W0, W .0},

Using backtracking algorithm (BA) to select the WSC:
Although the heuristic algorithm can resolve the problem
that select the suitable the execution path, the time that
spend m the process of creating the WSCT stll is too
much. So we consider selecting a feasible execution path
without creating the WSCT that is say, according to the
merit of model, we can select a path to accomplish the
requirement of users instead of firstly spending larger of
time in creating WSCT and then selecting an optimal or
approximately optinal path.

According to the analysis above, we still execute the
WSC process from back. The process of select a feasible
path by backtracking algorithm is: firstly, we pget all
possible candidate nodes and then according to the
merits of WSs model we can attain each Selection
Function (SF) of all candidate nodes, SF is used to
evaluate the path including the current node. At last, we
sort the candidate nodes according to the SF and select
the best candidate node mto WSC according to the value
of the SF of candidates nodes, if the selected candidate
node is failed in the future process, we will backtrack and
select the second-best candidate node and iterate the
process till we get a feasible execution.

InFig. 2, for example, we consider selecting o,. Firstly
we get all possible candidate nodes, the set is
{W,0,, W,.0,} and then we calculate the SF of each node
in the set. Suppose we select the W,.0,as the part of
WSC according to the value of SF and if W,.0, 1s failed in

the future process, we will backtrack that is say, we will
select W .0, to replace the W,.0, and remove the WSs
including W,.0, in WS Community then iterate the above
process till we get a whole feasible path.

Now we introduce how to calculate the selection
function SF(x).
Definition 5 (SF): Let SF be a function
SF (x) = G, (x)*G, (x)xH (x), where:

s (G, (x) 1s the current consideration node information

s G, (x) stand for nodes that must be selected nto
WSC according to current node information

» H (x) is these operations information that can not be
considered in G, (x), G,(x)

Different from Definition 4, since we do not create the
WSCT, we can not know the next step node information,
then we can not divide the H (x) into two parts. When we
consider selecting o,, we can get all possible candidate
operations set which is {W,.0, W,0}. Assumption that
the operation W,.0, be selected into the WS3C which will
lead to the inevitable occurrence of operation W,.o, that
15 to say, W,o0, must be selected mto WSC. So, the
information of W,.0, belong to G,(x) and the information
of W,.0, belong to G,(x). Since we do not know the next
step node information, we do not know where the o, or o,
come from, so the next step nodes of W,.0, 1s all possible
nodes in the set {W,.0, or W.0,, W,o0, W.o0,}, we
denote the average value of them as the information of H
(x). At the same time, if the W,.0, 15 selected, mformation
of W .0, belong to G, (x) and according to the W, and W,
the information of set {W,.o, W.0,, W,.0;} belong to
G, (x) and H (x) 18 empty, so the reliability 15 1.

Here we give some signs introduction in algorithm 4
to 6 Qo [1] 18 an ordered queue that stores the
backtracking candidate nodes in the ith state, SF is the
value of function SF (x).

The general idea of algorithm 4 1s as follows: we still
select the switable nodes of each state from back, by
calculating SF (x) of each candidate node in the same
state, we can sort order to them, then, we select the
candidate node that has the maximal SF (x), if we need
backtrack, we select second maximal one, repeatedly till
there are no any candidate node in the same state, then
we backtrack to the previous state, repeatedly steps
mentioned above. At last, we can get a feasible WSC
execution path.

The description of algorithm 4 is as follows.

Initialization: push the root mto the W, we put all the
last state operation nodes of atomic Wss in the W3

1668

Inform. Technol [, 10 (9): 1662-1672, 2011

Community into the S, set S; of root as null. For
example, at first, in Fig 2, S.5; = {W,.0,, W,.0,, W50, or
W,.0,, W,.0, and W,.0,}:

¢ Step 1: Get anode as node from Wy (line 1) and get
candidate nodes set S, of next state (line 4 to 11)

¢ Step 2: If need backtrack, see algorithm 6, or get the
candidate node have maximal SF (x), (algorithm 5),
then repeat the process till we get a feasible
execution path W, and Py of the Wi,

Algorithm 4: BTS: Backiracking select

Input: WS Community

Output: Wer and Py,

Initialization: stack W, push root into Wgp, 1 is the

current state, Queue Qg [i]

BEGIN

:while Queue=(do

: parent node~get a node from Wee

Sp~GetPreviousOp(parent node)

i[8; = (I then

Se—SernWo. Ses [i]

. else Sc-SpnWi. Sos [1]

il 8; = @ then

Se=SeainWo. Sas [i]

add the S into previous operations set of each

node in Sq
10: il there are the same operations come from
different WSs in the previous operations set

of node in S then

11: remove the node from S¢

12: endirl

13: endil

14: il 8- =@ then

15: BT (W)

15 break

17: else Qqq [1]-SF(Sc)

18: node~Pop Qog [1] ;

19: push(Wgp, node)

END

R A A

The description of algorithm 5 is as follows:

¢ Step 1: Get all SF of candidates in S, (line 2 to) and
push all SF into Qg4 [1]

¢ Step 2: Sort order to all SF by descending and return
the QOQ [1]

Algorithm 5: SF: Selection function
Input: S¢

Output: Qqq [i]

BEGIN
: while 8.+ 0 do

: node~Pop(S¢)
: Gy(x)~the reliability of node

Gy(x) ~the reliability of part of path in the Gy(x)
H(x) ~the reliability of part of path in the H(x)
SF = Gy (x)%G, (x)<H(x)
: push SF into Qqq [i]
: end while

: sort the set Qq [i] by Descending
10: return Qqq [i]

END

The description of algorithm € is as follows.

The algorithm 6 1s the backtracking process, when
the first maximal SF (x) need to be backtracked, because
the Qg [1] is a sort order sequence, we can invocate the
second-best SF(x) in the same state, if there is not any
other node in the Qg [1] of ith state, we must backtrack to
previous state (line 5 to 6) and repeatedly till we can get
a substitute node and push node into Wgp as the
replacement of node:

s Step 1: If the Q, [i] is not null, get a node as node
from Qqq [i], (line 1 to 2)

» Step 2: If the Q, [1] is null, we go back the last state
(line 6), Wgpneed to delete a node (we need to select
the node again) and repeat Step 1

Algorithin 6: BT: Backiracking
Input: Wgp
Output: Wgp
BEGIN
1: while Wgp=(do
il Qog [i]= @ then
node-Pop (Qog [il)
break
else
i-i-1
Pop(Wee)
end il
9: end while
10: push node into Wgp
11: return W
END

[A

Similarly, we consider the composite W5 W, and the
WS community C = {W,, W,, W,, W,, W.} shown in Fig.
2. As mentioned above, assume that each operation has
an equal chance to be selected and has the same reliability
0.8, except for operations W,.0,, W;.0; and W,.0,, whose
reliabilities are all 0.75 and W,.0 ,and W ,0o, whose
reliabilities are all 0.95. We denote the R (W,.0,) as the
reliability of the operation W,.o,.

In Fig. 2, at first, we have two choices about o, they
are W .0, and W .g. Consider the W .o, .G, x},= R
(W0, = 0.8, selected mto the composite WS W, and
W0, W, .0, and W,.0, must be selected into WSC, so G,
(x) = R (W,.0)x1/2%4(R (W,.0,+R (W,.0,)) = 0.64. By
comparison between the W, and W, we know that there
1s not operation n H(x), so, H(x) = 1 and SF = G, (x)xG,
(x)*H (x) = 0.512. On the other hand, W,.0, 1s the current
operation, so, G, (x) =R (W,.0,) =0.8 and G,(x)=R (W .0,)
= 0.8, here, because the next step possible selection
operations are {W,.0,, Wi.0;, W,.0,, W.0,} according to
WSCT as shown i Fig. 3,80, H (x) = 1/3x(1/2x
(R (W,.0 R (W,.0)+1/34(R (W,.00+H1/3x(R (W,.05)
= 0.82, then SF = G, (x)xG, (x)~H (x) = 0.523.

1669

Inform. Technol [, 10 (9): 1662-1672, 2011

So, we select W,.0, as the next step operation and
then we continue to select the next step operation.
The next operation set is {W,.0, or W,.0,, W,.0,, W..0:}.
Similarly, the SF is {0.656, 0.656, 0.901}, we select W,.0,
but, in next step, because we have two optional
operations Ws.0; and W,.0,, we need backtrack and we
select W,.0, or W,.0, or W,.0, to substitute W..o,, then
continue till all steps are finished. At last, we can gain a
feasible execution path {W,.0,, W,.0,, W,.0,}.

EXPERIMENTS AND EVALUATION

In order to evaluate our proposed Heuristic
Algorithm (HA) and Backtracking Algorithm (BA), two
algorithms are compared with each other and with
Exhaustion Method (EM). Exhaustion method traverses
all the operations in the WSCT and then gets the
execution path with best reliability. Tn owr previous study,
the heuristic algorithm have been compared with
exhaustion method And then, we compared the three
methods. The experiments are run on a PC configure with
Intel Petium (R) IV 3.00 GHz CPU, 1G RAM.

Here we mainly evaluated the total reliability of the
selected path and the selection time among exhaustion
method, ow proposed heuristic algorithm and
backtracking algorithm.

In the first scenario, we firstly generated a composite
WS with six states and twelve atomic WSs into the WS
commumnity. Then, we select a suitable CW S according to
twelve atomic WSs and we carried out the experiment for
ten groups n HA and EM and each group the operations
reliability 13 generated by random from 0.8 to 1.0. Here, we
do not consider the time of constructing WSCT and only
compare the time of the selection of EM and HA. The
experimental results are shown in Table 1. The x-axis
stands for that we carry out the experiment for ten groups
and the y axis stands for the WSC reliability of the total
execution path and the data is shown in Table 1. Then on
basis of the Table 1 we generated a composite W3 with
six states and seven WS commumties with different
number of atomic WSs from 10 to 22. We carried out the
experiment according to different WS community for ten
groups and got the average time of selecting an execution
path. The experimental results are shown in Table 2 the
x-axis stands for the number of atomic W3s and the y axis
stand for the average time of the execution path is
selected for ten groups by corresponding method, the
data 1s shown m Table 2 and the umit of time 1s
millisecond. Table 1 shows that the average reliability of
the path selected by HA is about 95% reliability of the
best execution path selected by EM and from the Table 2,
when the mumber of atomic WSs is twelve, the average

time of selection by HA is about one fourth of selection
time by EM. In other word, we spend one fourth selection
time by EM but we get about 95% precision. So, the
execution path selected by ow HA can meet the
requirement of users and Table 1 shows that with the
increasing of the atomic W3s, the selection time by HA is
relatively stable and the selection time by EM increase
obviously .

In the second scenario, we evaluate the three
selection methods, we firstly still generate a composite
WS with six states and twelve atomic WSs into the W3S
commumity and then, we applied three methods to select
a CWS and considered the time of creating WSCT.
Meanwhile, we carried out experiment for ten groups and
each group the operations reliability is generated by
random from 0.8 to 1.0. The experimental results Table 3.

Then, a composite WS with six states and seven W5
commurities with different number of atormic WSs from 10
to 22 are generated. Experiments are carried out to each
WS commuuuty for ten groups and got the average time of
selecting an execution path. The experimental results
shown in Table 4.

Table 3 shows that the reliability of the path selected
by EM, HA and BA for ten groups with different
operations reliability. Results of experiments show that
the reliability of execution path selected by BA is about
84% reliability of execution path selected by HA and
about 81% reliability of execution path selected by EM.
Although reliability of the execution path selected by our
BA may be lower reliability than the best execution path
selected by EM or the path selected by HA, the feasible
path can be got in shorter ttme shown in Table 4.

Table 1:The WSC reliability of the execution path for ten groups experiment

Group EM HA
1 0.673 0.592
2 0.668 0.591
3 0.704 0.704
4 0.579 0.567
5 0.764 0.754
6 0.668 0.646
7 0.714 0.708
8 0.629 0.617
9 0.651 0.651
10 0.621 0.621
Average 0.067 0.645

Table 2: The time of selected by different number of atornic WSs

No. of atomic W8 EM (ms) HA (ms)
10 48 16
12 60 16
14 87 17
16 113 16
18 173 18
20 220 24
22 286 28

EM: Exhaustion method, HA: Heuristic algorithm

1670

Inform. Technol [, 10 (9): 1662-1672, 2011

Table 3: The WSC reliability of the execution path for ten groups

experiment

Group EM HA BA

1 0.673 0.592 0417
2 0.668 0.591 0.642
3 0.704 0.704 0.581
4 0.579 0.567 0.401
5 0.764 0.754 0.681
6 0.668 0.646 0519
7 0.714 0.708 0428
8 0.629 0.617 0.629
9 0.651 0.651 0.573
10 0.621 0.621 0.532
average 0.667 0.045 0.541

BA: Backtracking algorithm

Table 4: The time of selected by different number of atomic WSs

No. of atomic WS EM (ms) HA (ms) BA (ms)
10 98 56 21
12 138 78 32
14 192 98 45
16 224 124 67
18 326 185 48
20 443 270 36
22 565 312 143

In the community with twelve atomic WSs, Table 2
shows that the time of selecting path 15 16 ms but Table 4
shows that the time of including WSCT is 78 ms, so the
time of creating WSCT is about 80% of whole time, in fact,
when we get about 95% reliability of EM, we spend half
selecion time by EM, however, we spend one fifth
selection time of EM in BA, then we can get about 81%
reliability of EM. From Table 4 we can also see that time of
selection by BA is relatively stable and much shorter than
EM and HA. So, BA can find a feasible path with less
tine.

CONCLUSIONS

WSC has become focus in the field of WSs. Different
composition methods have different merits. This study
uses FSM to model the permitted invocation sequences
of Web operations. We
contributions to the above problem as follows:

service SUIIINAarize our

¢ WSs comprise multiple operations and their
invocation sequence 1s constrained, so we propose
an algorithm to create the WSCT from back to front
in order to decrease the space of WSCT slightly
which can avoid exhaustion to all operations of WSs

* Generally, selecting an optimal path needs traverse
the whole WSCT. For the sake of decreasing the time
of selection, we propose a hewristic algorithm to
select an approximately optimal execution path
according to the W3CT. By the heuristic algorithm,
we only need to traverse parts of the WSCT, then the
time of selection become shorter

¢ In order to further decrease the time of selecting the
execution path, we propose a backtracking algorithm
to select a feasible execution path without
constructing the WSCT. According to the merit of
meodel, each time we select a feasible execution
operation to meet the requirement of W3C, 1if need,
backtracking the previous operation selection, then
till we accomplishing the whole WSC. Tn other words,
we select a feasible execution path instead of firstly
spending a large amount of time in creating WSCT
and then selecting an optimal or approximately
optimal path

This study only comsider an attribute of QoS,
reliability, m the future works, we will use more attributes
of QoS to evaluate the WSC. Besides, the model of
describing the WSs in thus study only consider the
sequence and we will consider more complicated structure
to be better suitable for application more widely.

ACKNOWLEDGMENT

This study is partially supported by National Natural
Science Funds (No.60803032, 90718012), Program for New
Centuwry Excellent Talents in University (NCET-10-0598),
Program for Shanghai Science and Technology
Commission (No. 09JC1414200), “Shu Guang™ project
supported by Shanghai Mumcipal Education Commission
and Shanghai Education Development Foundation and
Shanghai Rising-Star Program.

REFERENCES

Berardi, D., G.D. Calvanese, G. De-Giacomo, M. Lenzerim
and M. Mecella, 2003. Automatic composition of
e-services that export their behavior. Proceedings of
1st International Conference on Service-Oriented
Computing, Dec. 15-18, Springer Verlag, pp: 43-58.

Berardi, D., F. De-Rosa, L. De-Santis and M. Mecella,
2004, Finite state automata as conceptual model for e-
services. J. Integrated Design Process Sci., 8: 105-121.

Booth, D., H Haas, F. McCabe, E. Newcomer,
M. Champion, C. Ferris and D. Orchard, 2004. Web
services architecture, W3C working group. http://
www.w3.org/ TR/ ws-arch.

Chen, 7., J. Ma, L.. Song and L. Lian, 2006. An efficient
approach to web services discovery and composition
when large scale services are available. Proceeding of
the TEEE Asia-Pacific Conference on Service
Computing, Dec. 12-15, Guangzhou, Guangdong,
pp: 34-41.

1671

Inform. Technol [, 10 (9): 1662-1672, 2011

Ding, 7.1, I.L.. Wang and C.T. Jiang, 2005. Semantic web
service composition based on OWL-S. Proceedings
of 1st International Conference on Semantic,
Knowledge and Grid, Nov. 27-29, Beijing pp: 98-98.

Ding, 7Z.T., I.1.. Wang and H. Song, 2007. AT planning for
web service automatic composition using petri nets.
Proceedings of 11th International Conference on
Computer Supported Cooperative Work mn Design,
April 26-28, Melbourne, Australia, pp: 519-524.

Ding, 7.J., I.I.. Wang and C.T. Tiang, 2008. An approach
for synthesis petri nets for moedeling and verifying
composite web Inform. Sei. Eng.,
24:1309-1328.

Gerede, C.E., R. Hull, O.H. Ibarra and J. Su, 2004.
Automated composition of e-services: Lookaheads.

service. J.

Proceedings of 2nd International Conference on
Service Oriented Computing, Nov. 15-19, New York,
pp: 252-262.

Haddad, I.E., M. Manouvrier and M. Rukoz, 2010. TgoS:
Transactional and QoS-aware selection algorithm for
automatic Web service composition. TEEE Trans.
Services Comput., 3: 73-85.

Hu, Y. and H. Wang, 2004. Constraints in web services
composition. Proceedings of 4th International
Conference on Wireless Communications,
Networking and Mobile Computing, Oct. 12-14,
Dalian, pp: 1-4.

Hwang, S.Y., EP. Lim, C.H. Lee and C.H. Chen, 2008.
Dynamic web service selection for reliable Web
service composition. [EEE Trans. Services Comput.,
1:104-116.

Taeger, M.C., G. Muhl and 5. Golze, 2005. QoS-aware
composition of web services: A look at selection
algorithms. Proceedings of the IEEE Intermnational
Conference on Web Services, July 11-15, IEEE
Computer Society, Washington, DC., pp: 807-808.

Shen, H.I., Z.I. Ding and H.Z. Chen, 2010. Reliable web
service selection using a heuristic algorithm.
Proceedings of Conference on Grid and Cloud
Computing, Nov. 1-5, Nanjing, pp: 290-295.

Yu, T., Y. Zhang and K.J. Lin, 2007. Efficient algorithms
for web services selection with end-to-end QoS
constramts. ACM Trans. Web, 1: 1-23.

Zeng, 1., B. Benatallah, AHH Ngu, M. Dumas,
I. Kalagnanam and H. Chang, 2004, QoS-aware
middlware for web service composition. IEEE Trans.
Software Eng., 30: 311-327.

1672

	ITJ.pdf
	Page 1

