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Abstract: In this study, a new fabric defect detection algorithm base on undecimated wavelet transform 1s
proposed. The selection scheme of wavelet decomposition scales is investigated to set the decomposition
scales adaptively to the fabric texture. The objective of the scheme is to enhance the energy of defective region
and attenuate the energy of non-defective region. And the performance of detection results with different
number of decomposition scales 1s alse discussed. A simple and computationally effective data fusion scheme
combined with amplitudes division of wavelet coefficients is used to fuse data from multiple scales together.

And several features based on defective energy estimation are extracted from fused image. By examining the
extracted features the proposed algorithm can provide not only the location of defects but also some detailed
information about them which can be used for defect recognition and classification. Experimental results of real
fabric defects are provided to validate the effectiveness and robustness of the defect detection algorithm.
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INTRODUCTION

Fabric defect detection 1s one of the most important
procedures effecting the manufacturing efficiency and
quality in fabric industry. Traditional mspection based on
human vision is labor-intensive and lack of consistency
and rehability. As the development of image processing
technology, many methods base on machine vision are
proposed and a good summarization and taxonomy of
those methods can be found (Kumar, 2008). Because of
the high degree of periodicity of the fabric texture, the
spectral approaches are appealing for the task of defect
detection. Fourier transform was used for this task in
(Chan and Pang, 2000, Tsai and Hsieh, 1999).
However, Fourler transform turns out to be suitable for
globe defects rather than local ones, because of its poor
local resolution in the frequency domain. Therefore,
some defect detection algorithms based on Gabor
filters were proposed to achieve optimal joint
localization in both spatial and frequency — domain
(Kumar and Pang, 2000a, 2002; Bodnarova et al., 2002,
Escofet et al, 1998). As Gabor filter banks are not
mutually orthogonal, the outputs of the filter banks are
significantly correlated. Wavelet analysis is a good
solution to this problem (Nadlim, 2006) which 1s widely
used for and image segmentation (Zhang et al., 2008),

image compression (Venkateswaran and Rao, 2007),
texture characterization (Loum et «l, 2007) and
classification (Raju et al., 2008). Several fabric defect
defection methods based on wavelet transform were
proposed using orthogonal wavelet basis (Jasper et af.,
1996; Sari-Sarraf and Goddard Ir., 1999; Yang et ol., 2001,
2002).

In this study, fabric defect detection using wavelet
transform 1s firther investigated. The undecimated
discrete  wavelet transform is used to achieve
shift-invariant property. Multi-scale analysis of wavelet is
used to provide multi-resolution representation of defects.
And an adaptive selection scheme of decomposition
scales is proposed to enhance the energy distinction
between the defective and non-defective regions. The
performance of different decomposition scales for each
kind of popular defects 1s also evaluated. Several features
based on the energy estimation are extracted and used to
discrimmate the defect from normal texture.

UNDECIMATED DISCRETE WAVELET
TRANSFORM (UDWT)

Standard discrete wavelet transform (DWT) is not
suitable for detect detection, as 1t 1s not shift-invariant. A
defect in different displacement of a fabric image may
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Fig. 1: 2D undecimated wavelet transform

result in different wavelet coefficients which possibly lead
to different detection results. So UDWT 1s used in this
study. Tt gives a complete but redundant representation
of signal (Unser, 1995). The most important advantage of
UDWT is its shift-invariant property which is desirable for
fabric defect detection. Compare to DWT, UDWT does
not down-sample the wavelet coefficients, instead it
up-samples the high-pass and low-pass filters of the
wavelet by inserting zeros. The mnplementation of 2D
UDWT is illustrated in Fig. 1, where A; denotes wavelet
approximation at scale j. W, denotes wavelet coefficients
at scale j along orientation i, where i = 1,2,3 denote
horizontal, vertical and diagonal orientation, respectively.
h[n] and g[n] denote the low-pass and high-pass filters
at scale j, where:

h =[h]12 (1)
g~ [gll2 (2)
T denotes up-sample by inserting zeros.
DEFECT DETECTION ALGORITHM

The block diagram of defect detection is shown
m Fig. 2. In the proposed algorithm the defect is
assumed to be local, not global. The essence of the
proposed algorithm 15 to discriminate the defect from
normal texture by examining the defective energy within
a sub region. Preprocess 1s used to make the original
fabric image zero mean so that both the dark pixels and
bright pixels which defects are usually made up of,
have larger energy than the normal background.
UDWT, amplitude division and data fusion are used
to enhance the energy of the defect and attenuate
the energy of normal background. Then the energy
features are extracted and defects are detected by
thresholding.
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Fig. 2: Block diagram of defect detection

Wavelet selection scheme: For every preprocessed fabric
image, UDWT 1s used for multi-scale decomposition. For
almost all the defect detection tasks using wavelet
transform, the most important issue 1s the selection of
wavelet. There are two fundamental problems with
selection of wavelet. The first 15 selection of wavelet
basis. The second is selection of decomposition scales.
Wavelet coefficients at different scales contain different
parts of information of fabric image. It is needed to select
some scales which can best represent defects in the
image. The larger mumber of scales selected corresponds
to higher computational costs, on the other hand
insufficient or improper selection of scales may lose some
information of certain defects which makes them difficult
to detect.

To detect defects of different kinds, Yang et al. (2001)
designed an adaptive wavelet basis for each kind of
defects and a set of wavelet bases were used for multiple
kinds of the defects which greatly increase computational
load. Jasper et al. (1996) and Yang et al. (2002) designed
an adaptive wavelet basis to characterize fabric texture
and only one scale was used so that multi-resolution
representation of the defect was not provided. Sari-Sarraf
and Goddard Tr. (1999) used Daubechies D2
(Daubechies, 1988) wavelet selected
decomposition scale manually by human observation. The

basis and
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scale at which the normal textwre is significantly
attenuated while the defect is still visually intact is
selected. This involves participation of human vision
which may not deswable. In this study we also use
Daubechies D2 wavelet basis, because of its low
computational complexity as well as its similarity of
corresponding 2-D kernel with the fabric weave pattern
and the decomposition scale is set adaptive to the fabric
texture. The proposed scale selection scheme is based on
the following two conceptions. First, the defect, within its
boundary, tends to have lower mtensity variation than
normal texture (Sari-Sarraf and Goddard Ir., 1999) which
means the main energy of the defect lies in lower
frequency region than the normal texture in the frequency
domaimn. Second, the objective of wavelet transform is to
enhance the energy of defective region and attenuate the
energy of non-defective region.

Because the normal texture of fabric exhibits high
degree of periodicity, it has large energy nearby a certain
frequency point which we claimed as Textural Inherent
Frequency Point (TIFP), along each orientation in the
frequency domain. TIFP is located at the reciprocal of the
texture periodicity along each orientation. As the
decomposition scale increases, the passband of high-pass
filter of UDWT decreases by a step of an octave which is
shown in Fig. 3. Let the upper cut-off frequency of
high-pass filter of Daubechies wavelet be FC at scale 1,
then its upper cut-off frequency at scale | will be FC/A2™").
In order to enhance the energy of defective region and
attenuate the energy of non-defective region, the
frequency region of defects should be in the passband of
high-pass filter and the TIFP of normal texture should be
in the stopband of high-pass filter along each orientation
which means the desirable scales to be selected must meet
the following condition:

FC (3)
21
which can be written as:
. FC 4
>log, —+1 ( )
17 108 g,

where, | denotes scale level, FP, denotes TIFP along
orientation 1. Equation 4 gives a lower limit of advisable
decomposition scale along each orientation. We claim the
smallest scale satisfies Eq. 4 as initiation scale, where we
start to calculate the wavelet coefficients; the previous
scales are ignored to reduce computational load. Different
orientations may have different initiation scales
depending on TTFP (or texture periodicity) of fabric texture
along that orientation. Figure 3 illustrates the relationship

Scale 3 Scale 2 Scale 1

Magnitude of the spectral

0 1
Defect frequency
region

Fig. 3: Relationship among the frequency responses of
Daubechies wavelet, the defect frequency region
and TIFP in one dimension

among the frequency responses of Daubechies wavelet
from scale 1 to scale 3, the defect frequency region and
TIFP in one dimension. In Fig. 3 only scale 3 satisfies
Eq. 4, so the initiation scale 1s scale 3, at which wavelet
coefficients are calculated. Wavelet coefficients at
scale 1 and 2 are 1ignored.

Because any scale can only capture the information
of certain categories of defects, wavelet coefficients at
several successive scales beginning from the initiation
scale are used to detect various detects. The number of
decomposition scales is an important parameter which
greatly affects the detection results. The large number of
scales selected corresponds to high computational load,
while insufficient number of scales may lead to failure of
detection. Proper mumber of decomposition scales for
each kind of defects will be discussed here. The output of
UDWT 1s a set of wavelet coefficients listed as W, W,,.
Wt Wi s Woager 1 Wi nya - » Wi gm0 W agenat) and Wty
where 1, 2, 3 denote horizontal, vertical and diagonal
respectively, h, ¥ their
corresponding initiation scales and n denotes the number

orientation and d are

of scales selected.

Amplitude division: Tt is found that defects, within their
boundaries, tend to have more dark pixels (e.g., big-knot,
dirty yarn, etc.) or light pixels (e.g., mispick, broken varmn,
etc.) than the normal texture. In turn large quantities of
dark pixels or light pixels within a local region indicate a
defect n that region. Preprocess 15 used to make the
original fabric image zero mean so that the dark pixels
within a defective region have larger negative amplitudes
than normal texture while light pixels within a defective
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region have larger positive amplitudes than normal texture
and UDWT is used to enhance both positive and
negative amplitude distinctions while keeps the output
zero mean. In order to know whether the defect 1s made up
of dark pixels or light pixels the output of UDWT is
divided into two parts, each of which contains only
positive amplitudes or negative amplitudes, respectively:

Wi, y) W.(x,y)>0
WPy (X,¥) = { 0 WUJ (3 <0 (5)
W, (x,y) <0 5
WM@m{wﬁm) oo ©)

where, WN denotes the negative coefficients containing
the energy from dark pixels, WP denotes the positive
coefficients contaiming the energy from light pixels. Both
of two parts are further processed separately.

Data fusion: UDWT decomposes the original image into
wavelet coefficients of several scales and orientations.
Each scale and orentation only captures parts of
information of defects in the fabric image, so it is needed
to fuse the information gathered from different scales and
orientations to provide relatively complete representation
of the defects which makes them easy to discriminate from
normal texture. Some data fusion schemes were used by
Kumar and Pang (2000b) and Sari-Sarraf and Goddard Ir.
(1999} to fuse the mformation from different scales and
orlentations into a single image. In this study only data
from different scales are fused and a simple fusion scheme
is used:

CNi(x,7)= Y Wy (e, 3)- Wi g0 (X, ) (7
]

CPi(x,¥) = 3 WPi(x,y)- WPit; +1(x,¥) (8)

The fusion scheme is similar to Kumar and Pang
(2000a), except that data from different orientations are not
fused, because different orientations may have different
initiation scales, it is not proper to fuse them together.
Besides it i1s found that most defects are horizontal,
vertical or diagonal and wavelet coefficients of the UDWT
along a certain orientation are enough to detect the
defects along that orientation. For a defect along a certain
orientation, the output of UDWT along other orientations
give little information about it, so fusing data from
different orientations will not notably mmprove the
detection result but add extra computational load The
positive and negative amplitudes of wavelet coefficients

are fused separately for the same reason discussed here
and geometric mean 1s used to fuse the data at adjacent
scales. Since lots of elements in CN, and CP, are set to zero
by amplitude division, only the real defects which emerge
on both adjacent scales are preserved and random noise
is depressed. This is useful to reduce false alarm.

Energy feature calculation: The fused images of each
orientation and of both positive and negative amplitudes
are subjected to the energy estimation to extract energy
features. And these features are used to discrimimate the
defects from normal texture. The fused images are
divided into non-overlapping subregions. Within these
subregions six energy features are computed as:

EHP:EX‘I:E;{CH(X,)J):E (%)
megm@wz (10)
EVP:zy::;CPz(x,y):g (11)
EVN:Ey::Ex:CNz(x,y):E (12)

EDP:E{ 3 CPa(x,y)T +%‘{ ¥ CP3(x,y)T (13)

M | x+y=M F=x+M

EDN:E[ 3 CNs(x,y)TJr M{ ¥ CNa(x,y)T (14)

M| xty=bL y=x+M

In the symbols of six featwres H, V, D denote
horizontal, vertical, diagonal orientation, respectively and
P, N denote positive and negative amplitudes,
respectively, e.g., EHP denotes the energy of horizontal
positive amplitudes in the subregion.

The extraction of the features can be explamed as
following procedwre: The amplitudes within a subregion
are accumulated along each orientation which can be
considered as a 2D-to-1D projection toward that
orientation, to form an accumulation vector and then the
energy of the accumulation vector is calculated and used
for defect detection by thresholding. Compared with
direct calculation of energy of wavelet coefficient matrix,
the proposed method uses more addition operations
instead of multiplication operations which needs less
computational time on most computational platform
(except some specialized DSPs). More important, because
the accumulation vector of comresponding feature
accumulates the defective amplitude a long a certain
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Fig. 4 (a-c): (a) Sample fabric without defect, (b) CP,and (¢) EVP of a

orientation, so if the subregion containing a real defect
along that orientation, the amplitudes of accumulation
vector will be greatly enhanced which makes the defect
much easy to detect by thresholding. The size of the
subregion 1s an important parameter. Large size
corresponds to less detection error while small size
provides more precise location of defects. In this study
the size of 32x32 subregion 1s used to achieve a desirable
result.

Thresholding: The six features measure the defective
energy of positive and negative amplitudes along
horizontal, vertical and diagonal orientations within a
subregion, respectively. If any of them exceeds the
thresholding limit, then the subregion is considered as a
defective region. The thresholding limits are determined
from defect-free sample fabric images. The features of
sample images are calculated. Figure 4 illustrates a sample
image, its fused image CP, (x, y) and the feature EVP. The
thresholding limits of features are set to pu+Ao, where u
and ¢ are mean and standard deviation of features
extracted from sample fabric images, A is a parameter
compromising between false positive and false negative
rate and set to 4 in this study.

Different from most defect detection algorithms which
can only detect the defect giving its location, this method,
by examimng which feature exceeds the thresholding limit,
can also provide some detailed information of the defect:
whether the defect is horizontal, vertical or diagonal,
whether the defect is mainly made up of dark pixels or
light pixels.

RESULTS AND DISCUSSION

Samples of fabric image, in which the defects are
considered to be most difficult to detect, are used to
evaluate the performance of the detection algorithm. All

of the images are acquired by line scan CCD camera with
a spatial resolution of 0.2 mm/pixel against backlighting
illumination and digitalized into 256x%256 pixels. The
subregion size 1s set to 32x32. Figure 5 shows the
detection results of twill fabric samples with defect
dirty-yarn, slack-end and wrong-pick with two
decomposition scales. And several samples of plain
weave fabric with defect broken-pick, misyarn, triple-weft
and Big-knot are illustrated in Fig. 6. Misyam uses only
one decomposition scale, while broken-pick and Big-knot
use two scales and triple-weft uses three scales. The
fused images and features which are used to detect the
defects are presented, as well as the final thresholding
results.

In Fig. 5 and 6, different number of decomposition
scales are used to detect different kinds of detects. Larger
number of decomposition scales corresponds to better
detection result but more computational load. In
order to investigate the relationship between detection
performance and the number of decomposition scales, a
criterion function is used as follows:

y- (15)
U.

where, U, 13 an average feature value calculated from
quantities of defective subregions with defects of the
same kind. The feature is selected from the six features in
Eq. 9-14, by which the defects are detected. U, is the
counterpart of U, calculated from non-defective
subregions. J denotes the ratio of average feature values
defective
subregions and 1s used to evaluate the performance of the

between subregions and non-defective
algorithm. Some similar criterion functions based on the
ratio of average feature values between normal textire and
defects were also used by Kumar and Pang (2002) and
Yang et al (2001). The ligher magmtude of J indicates
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Fig. 5 (a-1): Twill fabric samples with dirty yarn, slack-end, wrong pick in (a-¢), corresponding CNy, CP, and CP; in
(d-f), EHN, EVN, EHP in (g- i) and detection results in (j-1)

)
0
|
®
||
|

Fig. 6 (a-p). Twill fabric samples with broken pick, misyarn, triple-weft and big-knot in (a-d), corresponding CP,, CP,
and CN;, CNzin {e-h), EHP, EVN, EHN, EDN in (i-1) and detection results in (m-p)
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Table 1: Performance of detection result with different number of
decomposition scales for each kind of defect

Defect Figure Fabric No. of

category No. type Feature scales J

Dirty-yard 5(a) Plain EHN 1 1.37

2 813

3 29.51

1 332

2 23.80

3 31.85

1 1.57

2 834

3 33.87

1 3.601

2 1896

3

1

2

3

1

2

3

1

2

3

Slack-end 5 Plain EVN

Wrong-pick 5(c) Plain EHP

Broken-pick 6 (a) Twill EHP

44,52
14.10
15.62
1571
1.13
1.61
9.51
1.24
15.87
31.88

Misyam 6 () Twill EVP

Tripe-weft 6 (c) Twill EHN

Big-knot 6(d  Twill EDN

larger Euclidean distance between the features of defects
and normal textuwre which means it is much easier to
discriminate the defects by thresholding. Table 1 presents
the magnitude of criterion fimction of defects illustrated
in Fig. 5 and 6 with different decomposition number of
scales. The features which are used to detect the defects
are also presented. In Table 1 it 1s suggested that with the
mcrease of scale number, T of nearly all categories of
defects (except misyarn) increases which means better
detection results at expense of more computational load.
Only one scale 1s sufficient to defect misyarn. This can be
probably explained as that the frequency respond of the
misyarn is quite close to that of normal texture. So it
needs only one scale (imitiation scale) to get a desirable
result. The power spectrum of other kinds of defects lies
i lower frequency regions in the frequency domain, so
they need some further scales to detect. The defects dirty
varn, slack-end, wrong pick, broken pick and Big-knot
require two scales while triple-weft requires three. We can
see from Table 1 that the triple-weft 1s hardest to detect by
the proposed algorithm, as compared with other kinds of
defects with the same number of scales J of the triple-weft
1s smallest. This 13 because the gray values of pixels of
defect triple-weft are close to a constant which means
long distance from TIFP of normal texture thus needs
largest number of scales to detect.

CONCLUSIONS

In this study, a new fabric defect detection method
was demonstrated. Multi-scale analysis property of
wavelet was provide

used to multi-resclution

representation of defects. The wavelet decomposition
scales were selected adaptively to the fabric texture.
Wavelet coefficients of only several selected scales were
calculated and the others were omitted. This greatly saves
the computational power and improves the real-time
performance which is required in on-line inspection. The
detection performance using different number of
decomposition scales for different kinds of defects was
also evaluated. Users can appropriately select the number
of decomposition scales depending on the tradeoff
between detection precision and computational load in
their systems. Experimental results were shown to validate
the effectiveness and robustness of the algorithm. The
proposed algorithm can provide not only the exact
location of the defect but also some detailed mformation
about the defect: whether the defect 1s horizontal, vertical
or diagonal and whether the defect is mainly made up of
dark pixels or light pixels. Andthis can be used for further
investigation on the defect such as defect recogmition and
classification.
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