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Abstract: Linear motion blur estimation 1s widely studied in the ill-posed deblur related research, but existing
methods are too complex, inaccurate or unstable. This study proposes an improved method with two novel
contributions to former frequency based method. One is a novel preprocessing step consisting of Hann
windowing and histogram equalization. Hann windowing 1s used to remove the boundary artifacts in the log
spectrum while histogram equalization is used to enhance the contrast of the log spectrum. The other is an
mnproved Hough transform based method to estimate the blur direction with cepstrum which eliminates the
effect of noise. The method incorporates a least squares line fitting into the traditional Hough transform, and
thus accurately estimates the direction. Experimental results demonstrate the efficiency of the proposed method.
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INTRODUCTION

Blur is a common degradation phenomenon in the
imaging process and has been studied for many years
(Richardson, 1972; Qureshi et al, 2003). Tt is still very
difficult today as an ill-posed problem (Cai et af., 2010,
Whyte et al., 2010, Yuet al., 2010, Bai et al., 2008). Some
researches focused on the simplified linear motion blur
(Yitzhaky and Kopeika, 1997; Dobes et al., 2010) which
greatly relieves the complexity of blur estimation. We are
also interested in this tactic and propose an improved
method in this study.

Perhaps the most successful work m the linear
motion blur estimation is the frequency based method
where the blur kernel is estimated with Fourier transform
(Cannon, 1976). This method inspects zero patterns of the
blurred image in the spectral domain and is the basis of
many researches later on. Rekleitis (1995) improved this
1dea with the motion direction estimation by the second
derivative of the Gaussian filter and the motion magnitude
estimation by the cepstrum analysis. Some complex
preprocessing steps such as windowing and zero-padding
are also used This method is also adopted by
Schouer et al. (2009) to estimate the piece-wise optical
tflow (Iffa et al., 2011). The problem of Rekleitis 1s that the
second derivative of the Gaussian filter is unstable in
finding maximum direction corresponding to the blur
direction. In addition, the complex preprocessing 1is
unnecessary for most images.

Moghaddam and Jamzad (2007) also extended
Cannon with Radon transform to estimate the motion
direction and bi-spectrum modeling to find the motion

length. But Radon transform 1n the spatial domain 1s very
unstable. Tn addition, its result is rough, or it will be very
complicated if we want to obtamn a very accurate angle
1.e., a lot of angles have to be specified explicitly if a ugh
detection precision is expected. Ji and Liu (2008) further
extended this idea to gradient domain and proposed a
hybrid Fourier-Radon transform for blur estimation.
Gradient domain is also sensitive to noise. Recently,
Lokhande et al. (2006) proposed Hough transform to
compute the blur kernel. Hough transform is adopted in
the log spectrum of the blurred image in this study which
may be unstable when there are many dark lines
corresponding to the blur direction. In addition, similar to
Radon transform, Hough transform is also very
complicated for a high precision detection (Yu et al.,
2008). However, Hough is more flexible than Radon.
Therefore, Hough transform is adopted by us and
improved in our work for the easy and accurate direction
estimation.

Some other researches try the non-frequency
solution. Yitzhaky and Kopeika (1997) estimated the
direction and extension using the Autocorrelation
Function (ACF) of the image derivatives. Rav-Acha and
Peleg  (2005)  estimated two  blured image
simultaneously though mutual re-bhuring. Recently, Dai
and Wu (2008) used alpha channel to estimate motion.
Similar 1dea 1s also adopted by Boracchi et al. (2008).
But in the blurred area alpha 13 ambiguous for
foreground and background and thus this method is
unstable.

In this study, we propose an improved frequency
based method. Our contribution lies in two aspects:
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+ A new simple preprocessing step consisting of Hann
windowing and histogram equalization is presented
with the former for anti-artifacts and the latter for
contrast enhancement

¢+ Hough transform based on the cepstrum of the
blurred image is adopted and improved with an
additional least squares line fitting for accurate
estimation of the motion direction efficiently

THE PRINCIPLE OF LOG SPECTRUM BASED
BLUR ESTIMATION

The blur model: The blured image g (%, y) is generated
due to the corruption of a blur kemnel h (%, v) to the clear
or latent image f (x, ¥) and noise n (x, ¥):

g Y= V*hxy) +rnixy) (1)

where * represents convolution. For the linear motion

blur, its general form is as the following Lagendijk and Tan
(2005).

1oty ek and 2 )
hxy)=<T 2 ¥

0 otherwise

where, . is the motion length and ¢ is the motion
direction. The purpose in this paper is to estimate the two-
tuple I., ¢ represented blur kernel.

The principle of power spectrum based blur estimation:
If taking Fourier transform of Eq. 1 without considering
the noise, we have:

Gu,v)=F{u,v)Hu,v) (2)

where, G (u, v), F (w, v) and H (u, v) are the Fourier
transform of g (x, ¥), f (x, y) and h (x, y), respectively.

Alternatively, if we consider the movement of
the camera during capturing time T in horizontal (x)
and vertical (y) directions being x (t) and y (t), we
obtain:

gy =[ T x Oy -yO)dt 3
Applying Fourier transform to Eq. 3 yields:

& @)= fex-x Oy -y @) dile P ey
[Tt -x 03 -y ) gy g (D)
=Fu, V).[UT &P g

Therefore, it can be observed from Eq. 2 and 4
that:

H@u,v) =.[DTe"2““”"”dt (5

If the movement distance during T in the x and y
directions are a and b, respectively, 1e, x (t) =/ T
andy (t) = bt/ T, Eq. 5 turns into:

_Tsin (% @+ V) oo 6
H@v) T (ua + vb) ¢ ©

The solution of above equation 1s also the parameters
of the blur kernel since A = 1COS () and B =1SIN (¢).

Assumning 0 = ucos (¢) + vsin (&) and s = W/L where
W 1s the width of the image, we can rewrite Eq. 6 as:

Tsin (n0/ 8) o (7)
B /s

H(u,v)=

It can be seen that h (u, v) as well as G (u, v) equal

zero when B = s, 2s, ..., ms. If the log spectrum of the
blurred image, LOGS (u, v), 15 defined as:

LOGS (u,v) = log 1 +]G (u,v)) (8)

this phenomenon is shown as equally and parallel spaced
dark lines in LOGS (u, v) where the distance between
neighboring lines, s , is inversely proportional to L .

Therefore, the log spectrum can be used to compute
the blur kernel. Tn the following, we discuss the proposed
estimation method in detail.

THE IMPROVED BLUR ESTIMATION METHOD

Our proposed method consists of three
Preprocessing, blur direction estimation and blur length
estimation. In the preprocessing, Hann windowing and
Histogram equalization are used to remove sudden
changes along the borders and enhance the contrast of
the log spectrum. The blur direction estimation is done
with the improved Hough transform of the cepstrum and
the blur length estimation is fulfilled with collapsed 1D log
spectrum.

steps:

Preprocessing: Two sub-steps are adopted as we
discussed before: Hann windowing and histogram
equalization.

Hann windowing: The Fourier transform treats data as
being mfimte and thus obtains an infinite periodic signal.
But the real mnage is limited in size and there will be
boundary effects (artifacts) m the frequency content. One
needs to modify the original signal with a weighting
(windowing) function to eliminate the effect of the sudden
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changes along the borders. Therefore, windowing
function is adopted first to remove the boundary artifacts
1n the spectrum.

There are several popular windowing functions such
as Hann, Hamming, Tukey, Lanczos and Gaussian
windows. In owr study, Hann function is used because it

1s very low aliasing which 1s formulated as:

) &)

2
w(n)=0.5(0—rcos ( Tml

C—

where, n € {0, 1, ..., C-1} with C being the width of the
window function.

Histogram equalization: After removing the boundary
artifacts through windowing, we also adopt histogram
equalization to enhance the dark lines and improve the
contrasts of the log spectrum. The basic 1dea of histogram
equalization 13 to re-distribute the intensities on the
histogram so that low local contrast areas will gain a
higher contrast. The key to such an equalization process
1s the transformation function which will be discussed
below.

In the histogram equalization, first the probability
density function of the source image for each intensity 1,
po (1), 18 computed and then the Cumulative Distribution
Function (CDF) for each intensity | 1s obtained by:

CDE,(h= Y0, () (10)
=0

This cumulative distribution is the transformation
function which can generate an output image whose
mntensity levels are equally likely and cover the whole
mtensity range Gonzalez and Woods (2007). The
interesting property of this intensity-level equalization
process is that the output image will have an increased
dynamic range with a higher contrast than that of the
sowrce 1umage. Therefore, Eq. 10 1s adopted to construct
the histogram equalized log spectrum for blur direction
and length estimations.

Direction estimation: Now we discuss how to compute
the blur direction. The traditional Hough transform for
blur estimation works in the log spectrum of the blurred
image but it might be weak due to the noise around
multiple dark lines. We step further to perform Hough
transform with the Fourier transform of the log spectrum,
1. e., cepstrum.

Fist the cepstrum image 1s transformed mto a binary
image and then the Hough transformation is applied to
find the best intersect line for all possible lines passing

each pixel. A line passing each pixel is normally
formulated as 1 = xcosd + ysind where r and ¢ represent
the distance of the line to the origin and the angle of the
line to x axis. However, Hough transform normally can
only return a regular direction according to the pre-
defined angle step, so its result 1s rough. To remove this
limit, we propose a new method for estimating the
accurate direction.

In owr method, Hough transform is used first for
finding the pixel set that voting the true blur direction.
Then the blur direction is re-estimated with the set. We
adopt a least squares approach with the voted pixels. The
dark line and the position of the voted pixel are defined as
and (x;, vi), respectively. The least squares method finds
the optimum and by minimizing the sum of the squared
residuals of the total q pixels:

T (1)

Equation 11 1s a typical linear least squares problem
and 1its unique solution can be obtamned by solving the
normal equations:

Xp=Y (12)
where:
x 1
x, 1
X= 7 .
Xy 1
Im
o-[)
and

The blur direction can be computed with directly
after solving Equation 12 using B = (X" X)' X" Y.

Blur length estimation: The blur length is estimated after
obtaining the blur direction. The log spectrum is first
inversely rotated according to the dwection and then
projected to the x- axis to obtain a collapsed 1D
spectrum. The local minima correspond to the dark line
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positions which are spaced with almost the same distance.
Detecting those mimma and averaging the distances
between them as s, we can compute the final blur length
by L=W/s.

RESULTS

We now discuss the experimental results which are
implemented by MATLAB 7.5. In the experiments, the
threshold of the cepstrum binarization is 0.35, the
minimum distance between two local mimma for length
estimation 18 20 and the angle step in Hough
transform 1s 1.

Figure 1 demonstrates the principle of the power
spectrumm  based blur estmation In Fig. 1, blurred
Lena images and comresponding log spectra are
computed with different blur kernels. There is no dark line
in the spectrum of the clear image but there are significant
lines 1in those of the blumred images wluch are
perpendicular to their corresponding blur directions. We
can also see that the larger the blur width, the smaller the
line distance.

Figure 2 a-f show the preprocessing step. The log
spectrum of blurred Lena Fig. 2a before windowing Fig. 2b
contains significant boundary artifacts (horizontal and
vertical bright signals). But they do not exist after
windowing Fig. 2¢. Apparently direct processing the log
spectrum Fig. 2b will lead to ambiguous blur kermnels, 1.e.,
horizontal and vertical bright signals may be taken as the
responses of the horizontal and vertical bhur kernels,
respectively.

For the other sub-step, histogram equalization, we
can see from Fig. 2 that the color intensities are more
evenly distributed after equalization Fig. 2f than before
Fig. 2e. The contrast of the whole spectrun 1mage 1s
enhanced significantly for further blur estimation
(Fig. 24, c).

Figure 3 shows the process of Hough transform for
detecting blur detection. The cepstrum of the Lena image
(Fig. 3a) is first transformed into binary format (Fig. 3b)
and then the rough blur direction is obtained from the line
voted by the largest munber of pixels according to Hough
transform. Figure 3¢ shows the pixels that are
corresponding to the detected line direction (26 degree).
The linear least squares line fitting is then applied to
those pixels and the angle finally obtained is 254218
degree which 1s closer and more accurate to the true
direction (25 degree) than the direction estimated by
Hough (26 degree).

More experiments with different blur kernels are also
undertaken (Table 1) where the blur directions are equally
separated by 5 degrees and the blur lengths are randomly
selected. (35, 15) and (17, 45) get the minimum error of
estimated length (0.0316) and the mimmum error of
estimated direction (0.0000), respectively. We can also see
from this Table 1 about half of blur lengths can be
estimated with an error below 0.1; 2), about half of blur
directions can be estimated with an error below 0.5 and 3.
There 13 no length error bigger than 0.4 and no angle error
bigger than one. These experiments show that both length
and angle can be obtained robustly for all differently
blurred mmages with our propesed method.

Fig. 1 (a-b): The log spectra of differently bhured Lena image, The clear image and its blurred series. The left most image

1s the clear image and others are the blurred images with different blurs. From left to right, the blur kernel are
(35,25), (25,60), (25,30), (25,25), (25,0) and (15,0), respectively, (b) The log spectra corresponding to the

images shown in Fig. 1a
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Fig. 2 (a-f): The preprocessing step of the Lena blurred with the blur kernel (15, 25); (a) the blirred unage, (b) the log
spectrum of Fig. 2a before Fig. 2e windowing, (¢) the log spectrum of Fig. 2a after windowing. There is no
histogram equalization, (d) the log spectrum of Fig. 2¢ after histogram equalization, (e) the histogram of

Fig. 2d the lustogram

Fig. 3 (a-c): Hough transform for blur direction detection in Fig. 2a. The angle after the least squares fitting is 25.4218
degree; The cepstrum of the blurres image, (b) the binary image of Fig. 3a and ¢ the pixels on the votes line

(26 degree) after Hough transform of Fig. 3b

Additional experiments are taken for the cameraman
and livingroom (Fig. 5). The experiments use the same bhur
kemels as Table 1 and their results are shown mn Table 2
and 3, respectively. All length errors are below 0.4 for
both images. Especially, livingroom achieves better
performance than cameraman and Lena (The length
estimation errors of livingroom are all below 0.3). The

possible reason is that livingroom is more textured than
cameraman and Lena and thus its local minima can be
more robustly obtained than the less textured cameraman
and Lena. Table 2 and 3 that each image has only
one blur estimated with an error bigger than 0.5. This
property shows both cameraman and livingroom obtain
higher direction estimation accuracies than Lena.
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Fig. 4 (a-d): Blur length computation for the blurred image in Fig. 2a. (a) The rotated log spectrum according to the
detected blur direction (25.4218 degree), (b) The binary image of Fig. 4a, (¢) Te collapsed ID spectrum of
Fig. 4a, the red circles show the local minima detected and the blur length computed is 14.9851 and {d)
The collapsed ID spectrum of Fig. 4a, the red circles show the local minima detected and apparently the
correct blur length can not be computed with too may local minima

Fig. 5 (a-b): Additional two test images
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Table 1: More experimental results with Tena. The blhur lengths are
randomty selected with blur directions equally separated by 5

degrees

True blur Estimated blur Error

(10, 60) (10.0392, 59.7110) (0.0392, 0.2890)
(11, 55 (11.2527, 54.8327) (0.2527, 0.1673)
(12, 50) (12.3373, 50.5181) (0.3373, 0.5181)
(17, 45) (17.0667, 45.0000) (0.0667, 0.0000)
(18, 40) (17.9649, 40.5346) (0.0351, 0.5346)
(20, 35) (20.1173, 34.2304) (0.1173, 0.7696)
(21, 30) (20.7919, 30.3635) (0.2081, 0.3635)
(25, 25) (25.0980, 24.1392) (0.0980, 0.8608)
(30, 20) (29.8667, 19.3234) (0.1333., 0.6766)
(35,15 (35.0316, 14.2295) (0.0316, 0.7705)
(37, 10) (37.0679, 9.7524) (0.0679, 0.2476)

Table 2: Experimental results with the same blur kernels as Table 1 for

Fig. 5a

True blur Estimated blur Error

(10, 60) (10.2145, 60.1597) (0.2145, 0.1597)
(11, 55 (11.2527, 55.2379) (0.2527, 0.2379)
(12, 50) {12.3373, 50.4434) {0.3373, 0.4434)
(17, 45) {17.0667, 45.2938) {0.0667, 0.2938)
(18, 40) (17.9649, 39.7430) (0.0351, 0.2570)
(20, 35) (20.2772, 35.0012) (0.2772, 0.0012)
(21, 30) {20.8372, 30.0555) {0.1628, 0.0555)
(25, 25) {25.1288, 24.6411) {0.1288, 0.3589)
(30, 20) (29.9415, 19.9743) (0.0585, 0.0257)
(35,15 (34.8299, 15.7316) (0.1701, 0.7316)
(37, 10) {36.7590, 10.1451) {0.2410, 0.1451)

Table 3: Experimental results with the same blur kemels as Table 1 for

Fig. 5b

True blur Estimated blur Error

(10, 60) (0.8733, 50.1980) (0.1267, 0.1980)
(11, 55 (11.0703, 55.1721) (0.0703, 0.1721)
(12, 50) (11.7029, 49.9009) (0.2971, 0.0991)
(17, 45) (16.9256, 44.2658) (0.0744, 0.7342)
(18, 40) (17.8605, 39.8074) (0.1395, 0.1926)
(20, 35) (20.1348, 34.7447) (0.1348, 0.2553)
(21, 30) (21.1134, 29.8339) (0.1134, 0.1661)
(25, 25) (25.2217, 25.1698) (0.2217, 0.1698)
(30, 20) (29.7674, 19.6711) (0.2326, 0.3289)
(35, 15) (34.9814, 14.9557) (0.0186, 0.0443)
(37, 10) (36.9231,10.2233) (0.0769, 0.2233)

Figure 4 a-d shows the process of blur length
computation for the image in Fig. 2a. In the collapsed 1D
spectrum in Fig. 4¢, averaging all minima together except
the left-most and right-most ones, we can obtain the blur
length 14.9851 which 1s very close the true value 15. We
also try to collapse the binary image of the log spectrum
mn Fig. 4b but get many noisy local mimma mn Fig. 4d. It
demonstrates that the blur length estimation using the log
spectrum directly 1s better than using its binary image.

CONCLUSIONS

This study is on the linear motion blur estimation and
presents an improvement to the frequency based method.
The proposed method adopts a new preprocessing step
where Hann windowing is used to remove boundary

artifacts and histogram equalization is used to enhance
contrast. The method also presents an improved Hough
transform which adopts a least squares line fitting to the
traditional Hough transform mn the cepstrum domain to
accurately estimate the motion direction Experimental
results show that this novel methoed 15 effective m the blur
estimation.

For the future study, we will study more complex
motion bha which is very difficult to estimate with existing
reports (Whyte et al, 2010; Gupta et al, 2010). The
patch-based method proposed by Schoueri et al. (2009)
might be helpful for such a study. Deblurring such type of
image to obtamn a clear image 1s also very interesting and
therefore, will also be researched m the future.
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