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Abstract: Tn this study, the stability analysis of the PID-like adaptive fuzzy Sliding Model Controller (SMC) for
a class of nonlinear uncertain MIMO systems is presented. The upper bounds of structured uncertainties and
external disturbance are not needed to be known and approximated by a fuzzy inference system. To overcome
the chattering problem in the conventional SMC scheme, an adaptive Proportional Tntegral Derivative (PTD)
controller is designed to replace the switching part of the SMC scheme. The approximation and estimation errors
are also assumed to be unknown and estimated online by using adaptive laws. The global stability and
robustness of the closed-loop system is ensured by the derivation of the stability criterion based upon
Lyapunov’s direct method. Finally, munerical simulations for an two-link rigid robot under different controllers
are provided and the results show that the proposed approach achieves satisfactory performance from the
viewpoint of chattering removement and tracking accuracy.

Key words: Multi-input multi-output (MIMO) systems, fuzzy control, shding mode control (SMC), proportional
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INTRODUCTION

Research on Variable Structure Control (VSC) was
originated in early 1950s for single input systems with
high order differential equations (Utkin, 1977). Recently,
the VSC control with Sliding Mode Control (SMC) was
widely researched for uncertain Multi-Input Multi-Output
(MIMO) systems in the continuous domain and discrete
time domain (Chen et al., 2008). SMC 1s an efficient tool to
complex high-order dynamic plants with
structured or/and unstructured uncertainties due to its
order reduction property and low sensitivity to external
disturbances and plant parameter variations. In SMC, the

control

states of the controlled system are first forced to slide to
a designed surface (1e., the sliding surface) with a
equivalent control law in state space and then keepimng
them there with a switching law (Perruquetti and Barbot,
2002). There has been a wide variety of applications of
SMC in classical MIMO systems such as mduction
machines, power control, aerospace and process control
(Lasaad et al., 2007; Zribi and Al-Rifai, 2006). However, its
major drawback in practical applications is the chattering
problem. Numerous techniques have been proposed to
eliminate this phenomenon in SMC.

Conventional SMC methods used to eliminate the
chattering are to replace the relay control by the neural
network based SMC (Kang and Tin, 2010), integral sliding
control (Choi, 2007) and boundary layer technique
(Chen et al., 2002). The boundary layer method was
introduced to eliminate the chattering around the
switching surface and the control discontinuity within
this thin boundary layer. If systems uncertainties are
large, the shiding-mode controller would require a high
switching gain with a thicker boundary layer to elimmate
the higher resulting chattering effect. However, if we
continuously increase the boundary layer thickness, we
are actually reducing the MIMO system to a system
without sliding mode.

To tackle these difficulties, Fuzzy Togic Controllers
(FLC) are often used to deal with the discontinuous sign
function in the reaching phase of SMC (Feng, 2006).
Recently, Adaptive Fuzzy SMC (AFSMC) methods are
also used for this purpose which is shown to be quite
effective (Wai et al, 2008). Desigmng adaptive fuzzy
controllers by the integration of fuzzy logic and the SMC
for ensuring stability and consistent performance has
been widely researched. Many new algorithms have been
proposed based on the mtegration of these control
methods (Yufeng et al., 2011; Zhang et al., 2011). These
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approaches are similar in the aspect that they directly
approximate the sliding mode control law by fuzzy
approximator. To  overcome  these limitations,
Hamzaoui et al. (2003) and Essounbouli and Hamzaoui
(2006) applied an adaptive Takagi-Sugeno fuzzy system.
Alow et al. (2008) and Ho et al. (2009) proposed a method
to eliminate the chattering phenomenon by using an
adaptive Proportional Integral controller for a SISO
nonlinear system. However, the discontinuity function
15 still there and the chattering 13 not completely
eliminated.

In this study, for the purpose of simultaneously
reducing the chattering phenomenon as well as to enswre
a faster convergence to zero of the tracking errors, a novel
PID-like AFSMC control algorithm is developed by
combining the fuzzy SMC approach with the Proportional
Integrate Derivative (PTD) control method. To the best of
our knowledge, 1t was the first time for the i1dea to appear
in the literatures. Thus, we obtain a faster convergence to
the shiding surfaces. Moreover, in the controller design,
we do not need to know the upper bounds of both of
external disturbances and the structured uncertainties.
The robustness of the closed loop system is ensured by
Lyapunov arguments and simulation results verify the
correctness and effectiveness of the proposed method.

PROBLEM FORMULATION

Consider the following square MIMO system with p
mnputs and g outputs:

X, =X,

Koty = Xy
xm =fx)+g,xu, +---+ glp(x)up +d, (x)

Koty = Xny2)

Faprngt) = Ftuphn) 1
Kinpang = 12 (X) + 8 DUy +--- + gy (x)u, + dy (x)

%, =5,00+ g, (00U, +---+ g, (O, +d, ()
Y1 =%

Yo = Ky

Yo = X

where, the number of states m = n,+n,+..+n, and the state
vector xeR™ is assumed to be measurable, u (t) = [u,, ...,
u]" is control input, f;(x) is smooth system finction, g; (x)
is unknown but bounded nonlinear function, i=1,..,p,
i =1, ... q the external disturbance d (t) = (d,, ... d,)" and
|d;| <D, where D=0, ¥i=1, ... p.

For the desired tracking trajectory v, (t), i=1, .., q, if
its 1~n; order difference exists, define the tracking error
vector as:

€= XYs (2)

Where:

T
e=(e, e,
, a
e = (g8, e,
€ =X ~¥,,
] ) } (o105 T
SFEVINS SRR SRR IS SN S

For the square nonlinear system, we have q = p.
Differentiating y,, y,, ..., ¥, in (1) with respect to time for
n,, n,..., n, times, respectively, until the inputs appear,
one obtains the input/output form of (1) as:

P
YW =0+ Yg,Gou, (1) +d,
j=1

¥ 6,00+ 3e, (0u, (1) + d, (3)
j=l

¥ =1 6o+ Ve, (ou, 0+,
=1

Let:

Fx) =[£ G GO £, (T
Y=y T

x=[y, ¥y, Ly Y]
gu(x) g[p(x)

G(x)= : :
gy (x) - g (x)

then the equality (3) can be represented as:

y(“) =F )G (x) utd (x, 1) (4

Consider the parameters m the nommal condition
without all the uncertainty deviation, the nomimal model
of the nonlinear dynamical system given by Eq. 4 can be
written as follows:

y¥ =Fy ()G, () u
where, F; (x) and G; (x) are known system functions.
Equation 4 can be rewritten as:
vy =F, (x)HAF (x)HG, (O+AG () utd (xt)  (5)

where, AF (x) and AG (x) are the unknown uncertainties.
Thus, the term AF (x)+AG (x) u 1s not only unknown, but
also depends on the value of the control mput u (t).
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Assumption 1: G (x) is bounded away from singularity,
thus G (x) exists and has a bounded norm over a
compact set =R™

Assumption 2: Let D (x, t) = AF (x)HAG (x)utd (x, t), it
means that D (x, t) contains the whole uncertainties and
ID (x, t)l<d (x), where & (x) is unknown positive function.

CONVERTIONAL SLIDING MODE CONTROL

Design of the conventional SMC controller involves
two important phases. The first phase 1s to design a
suitable sliding swiace function s so that once the system
enters the hyper-plane s, the deswed dynamic
characteristics can be realized. The second is to design a
proper controller u (t) so that it can drive the system’s
dynamics imto the designed hyper-plane and stay
thereafter.

We first define the linear sliding surfaces as follows.
The proposed sliding mode function is:

(n-2)

(n;-1) '
s =e¢ + Oy 1y & oot O €+ O e (1) (6)

where, «; 1s the designed SMC coefficient and «;
should be properly choiced so that the polynomial
s oy, 7 +-+ays 18 Hurwitz. The sliding mode
vector S =[S, ... S,]".

In the case that the system functions and the
parameters are all known and mnvariant, the conventional
SMC controller can be designed as:

u=G"" ) [-F xHv-ug] (7)
where, the switching control part of SMC 1s:

1, sgn(s;)
u, = :

n,sen(s,)

and the switching gain n>=|d|, ¥i = 1, ., p. v is the
feedback linearization centrol law and defined as:

v=y® -0, " - @ (8)

where, ¥ = (y&",y& -y, the diagonal matrix ©, = diag

{04, 0y, -, 0 ), Oy = diag oy, oy, -, 0 ), e =(e1(l)segﬂs”'>e;l))T> 1
=1,2,.,n-2

IfF (x)and G (x) are exactly known and the switching

gain 1, satisfies the sliding condition, the system

trajectories will enter the sliding mode and the tracking

error converges to zero, thus the control objective can
be achieved by the control law designed as Eq. 7 and
8. However, there always exist the unknown
functions AF (x) and AG (x), the control law Eq. 7 1s not
applicable generally and not robust to the uncertainties D

(x, t).
ADAPTIVE PID-LIKE FUZZY SMC CONTROL

Approximation of the upper bound: Since the umcertamties
D (x, t) imposes adverse impact on the control
performance of SMC controller and cannot be exactly
known, a fuzzy system is designed in this section to
onlinely approximate D (x, t). The inputs of the designed
fuzzy system are chosen as x = [x,, X,, ..., X,]', by using the
singleton fuzafier, product inference and weighted
average defuzifier (Feng, 2006), then the outputs of the
fuzzy model can be expressed as:

S(x)=y=6](x) ®)

where, 8,7 is the adjustable parameters vector and
ET (x) = [£, &, .., Eq]" is the vector of Fuzzy Basis
Functions (FBF) defined as:

H;“A? (x;) (1 0)

N e
' ELHM“A? (xl)

where, k = 1,2,.. N is the index of the rule, u,(x) denotes
the fuzzy sets assigned to x; i = 1,...,5).

The parameter 6," belongs to the compact set £, that
is defined as €, = {0,eR"|I0,l<m,}, where m, is finite
positive constants. According the fuzzy sets theory, there
exists the optimal parameter 0,7 to deduce a minimal
approximation error as following:

6, = argmin [sup

Byells | el

S(x) - S(x)ﬂ (1)

B, =6 - 9,6 =58 -5(x) (12)

where, 6, and e, are the approximation error of the
parameter and the upper bound, respectively. Obviously, 6,

and e, will be arbitrary small and e, cannot be directly
computed. In the controller design, e, should be replaced
by the estimation &.

Adaptive PTID-like SMC control: In the conventional SMC
design, the presence of the signum function in the
switching term leads to the chattering phenomenon which
can excite the lugh frequency dynamics. To avoid this
problem and to achieve the previous control objectives,
an adaptive PID term 1s added to the control law and
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replaces the discontinuous term ug. In fact, the derivative
action, by compensating the inertia due to dead time,
accelerates the response of the system and improves the
stability of the closed loop by allowing fast oscillations
due to the appearance of a disturbance or a sudden
change of the reference signal. Thus, we want a faster
convergence to the sliding surfaces.

To replace the term ug, after used the sliding function
S, 1ts derivative s, and mtegration 1y = f;sl(f)dl' as the

variables, the PID controller 1s designed as:

k5 (0 1k, 8 O+ k s, (1)
: (13)

Upp = :
kp‘7 s, (0 + kd? 5,0+ k‘p Is, (1)

where, k, kyand k1= 1, .., p. are adaptive proportional,
differential and integral coefficients, respectively.

Approximate ug by using Eq. 13 and rewrite it in matrix
form, one can obtain:

U, = Upp :(CAT CRCHREN g; 6, (Sp ))T = g(s)ek (1 4)
where, the adjustable parameter vector 0, = 0, (5) =

(k. ki, k)", the regressive vector ] (s))=(5,I8:8), j=12-p
T
and ekz(e:v'”ﬁ:p) :

Le) 0
L= - :
0 - L)

Define the optimal parameter:

J

where, €,.Q, belongs to the compact sets for 8, and S,
respectively. Let ©,_=6, -6, denote the parameter
approximation error, thus ey, = { (s) 6,-u; is the minimal
approximation error for the switching control term.
Obviously, the value of ey, is directly affected by the
adjustable parameters 6, and should be replaced by its
estimation &yp.
The global PID SMC control law is designed as:

@, = argmin [sup|t_,(s) 8, —u,
Toaem | =

u=G'(-F +v-u,, tu +u)
Uy, =5(3) 0,
__ S
u, = HSTHS(X 19} (15
u, :_ﬁéa +&p

with the following adaptive laws:

8, =7, 5 |57
6, =1.L(8)8 (16)
& =[5

€pp = Ve S

where, the adaptive rates y;>0, v,>0, vpp>0.

In the control law Eq. 15, the global controlled
composes four terms, i1e., the first term (-Fy+v) 1s the
feedback linearization one to deal with the nominal system
(1), the second term 1s the fuzzy PID control to
approximate the switching part of SMC; the third term is
the fuzzy robust control to counteract the model
uncertainties; the last term 1s the compensation for the
approximation error of PID controller and robust
controller.

Stability analysis: The following theory gives the
stability condition for the control system (5).

Theorem 1: Consider the nonlinear system (5), suppose
that the upper bound is approximated by the fuzzy
system, the sliding swface S is given by Eq. 6 and the
control law is designed as Hq. 15 with the adaptive laws
given in Eq. 16, then the resulted closed-loop system is
asymptotically stable and the trajectories will enter the
sliding mode motion, thus the tracking error will converge
to zero.

Proof: Consider the following Lyapunov candidate:

1. 1 zr% 1 1 zr % 1 ¢ .
V(X)=—8 S+—0,0,+—8& +—0. 0 +—=&, _&_>0
( ) 2 2'\/5 3 8 QYE 3 ka k Yk ZYPID FID “FID

(17)

The derivative of V(x) can be obtained as:

V=881 L8 B 8,8 + B B, +——&T 5, (18)
hf Vi b

) w FID

Also, the derivative of the shiding function can be
computed as:

S=y™ —v=F)+G,u+D(x,t)—v=u, +u, —uy, + D(x,t)
(19)
Simee § =-§ 8, =-0,,8, =—&.8,, =—&,, Dold, Eq. 18

can be rewritten as follows:
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1 1 5

o Som

\3’(7():S1'(ur +u, —u,, +D(x,t)) +ié§ és +iESéS +ié: éh +
Ts . T Yom

:ST(“r tu, —ugg +D(x,t)) ’Lég 95 ’iesés 7lé: ex 7LElT7[D épm
s T T Yo

=S7(u, +u, +D(x, 0) - S O L(S) - 8] B ~ 8y &5~ B @ ~—— 3y by
Y 1. o

=8§7(u, +u, +Dix,ty) ~STE(S) - STEIL(S) - —aTh - Lad - Llare
s 7, %

LT A
- Srp S
Yem

(20)

Substitute the adaptive laws Eq. 16 into 20, one can
obtain:

V=85 (u, +u, + D00~ S B C(s) - BT 6 — g b b
Y3 Y. Y,

P

2D

Notice the Assumption 2 that ID (x, t)ll<d (x) holds,
Eq. 21 can be further transformed as following:

V(x)£8T(u, +un)+\|sT\|-8(x)—sTé:c(S)—;—ség'es—Yiesés —Yie:m
] PID

PRI
Sop Smp

(22)

<87{u, +un)+\|sTH.(e5+8(x))—sTé;g(s)—YLé§65—YLesé5 1
B e

2113

Substitute the control laws u, (t) and mto Eq. 22, one
can have:

T <5 (es - &)+ |5 (Bex 0 -S x| &) - 5T C(S)—%ég & —Yiésés
5 e
SLIF: S S T
Yo

S R L L R

< [HST [ —%55 és}nsT san(3) -5 ey, +|:HST |- & o —Ylég és}fsT .
w 5

L

Yo

el La sl re- e -t L [orsmnc
w &

(23)

Notice the adaptive laws Eq. 16 again, we have
Vix)s-nS sgn(8)=-n|s<0. Thus, the sliding function
ultimately converges to zero with finite time and the
tracking error will also converge to zero.

Based the above analysis, the design procedure of
the PID-like fuzzy SMC can be summarized as following:

Step 1: Obtain the measwed feedback states x, then
compute the tracking error e

Step 2: Choose proper coefficients o; and design the
sliding surface as Eq. 6

Step 3: Choose the fuzzy basis functions £ (x) and
construct the fuzzy system Eq. 9 with specified

initial values to approximate the upper bound § ;
Compute the regressive vector { (s) and
approximate the PID control term ugy, according
toEq. 14

Give the adaptive rates and compute the
parameters 0,, 6, the estimated errors &.&;
Update the weights 6,, 6, and the switching
gains 1) as Eq. 16

Apply the PID-like fuzzy SMC controller as
given by Eq. 15 to control the nonlimear system

Step 4:
Step 5:

Step 6:

SIMULATION RESULTS

In this section, a nonlinear system is applied to verify
the effectiveness of the proposed approach. The
dynamics of a two-link rigid robot with rotational jomnts
can be described as the following:

M@§+Ca.9q+G@+F@+r7=1

where, q is the 2x1 vector of the joint coordinates;
M (q)eR* is the inertia matrix which is symmetric and
positive definite; C(q.9)eR*® takes into account the
Corielis and centrifugal forces, G (q)eR™ is the vector of
the gravity forces, F(4) is the friction vector; T is the
vector of the applied torques; T, i3 the external torque
disturbance.

We first lList the properties and the physical
parameters owned by the simulated robot mode] as:

M(g)= p, +p, +2p,cosq, p,+p,cosq,
p, +p;co8q, D,
Clqq| Pedsing Pa@ +a)sing, |
quISlnqz 0
p,gcosq, +psgeos(q, +q;)
Glg) =
psgeos(y; +q)

F(q)=0.02sgn (@),t, =[0.2sin(t) 0.2sin(t)]",
p=[p. P; Ps P Ps]=[29 076 087 3.04 0.87]

The initial states of the robot is x = [0.1,0, 0.1, 0]" and
the desired trajectories for the two links are q;, = sin (7t),
(z¢ = sin (mt). In simulation, the adaptive rates are set as
Y= 0.5, v, = 0.25, v, = 0.02 and ¥z, = 0.1. The mutial values
for the adjustable vector 6, are set to zero.

To formulate the fuzzy basis functions, six Gaussian
membership functions are chosen for each of the robot
states and the fuzzy memberships are selected as:

My (x)=1/Q+exp(5(x+2)), My (%)= exp(—(x +1.5%),
B ) =exp(-(x+ 0.5, (x) =exp (-(x —0.5)"),

By (5) = exp (—(x —1.5)), e () =1/ (L+ exp(=50¢ ~ 2)
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Position
tracking of link 1

Position
tracking of link 2

Position
tracking of link 1

Position
tracking of link 2

Time (sec)

Fig. 1: The position tracking for joint 1 and 3 the
proposed method without (a) and with (b) the
compensation term 1,

Speed

tracking of link 1

Speed

, tracking of link 2

=

Speed

tracking of link 1

Speed

tracking of link 2

Time (sec)

Fig. 2. The speed tracking for joint 2 and 4 the proposed
method without (a) and with (b) the compensation
term u,

@

- I I I I 3 3 3 3
6.3 -0.25 -0.2 -0.15-0.1 -0.05 O 0.05 0.1 015

el
20 T T T T

de2

-0.1 -0.05 0 0.05 0.1 0.15

de

- 1 I 3 I
Ol%.OZ 0 0.02 0.04 0.06 0.08 0.1
e2

Fig. 3: The phase diagram of the tracking errors el and
e2: the proposed method without (&) and with (b)
the compensation term u,

Figures 1-6 show the simulation results under the
proposed adaptive PID-like fuzzy SMC algorithm. For
comparison, two methods, the proposed control with and
without the compensation term w,, are simulated,
respectively. Figure la and b show the position tracking
curves of joint 1 and joint 2 for the proposed method and
the proposed method without the compensation term u,,
respectively. Figure 2a and b show the speed tracking
results of joint 1 and joint 2 for the two methods. Since the
compensation term 1s added, it can be seen that the
proposed method has better tracking performance. The
phase plane trajectories are also shown in Figure 3a and
b and we can see the convergence to zero of the system
and the attractiveness of the sliding swfaces.

The main contributon of our proposed method
comparing to the other one is that not only the
asymptotical stability of the system is guaranteed
but also the chattering phenomenon i1s elinmated
as well. Figure 4a and b give the control mputs
of the proposed method and the classical
SMC  method, respectively. Due to the PID
approximation to the switching term, it 1s obvious
that our proposed method has low chattering
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Fig. 4: Control inputs: the classical SMC method (a) and
the proposed method (b)
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Fig. 5: The adaptive parameters of the proposed method

while serious highly chattering exists in the classical SMC
method.

Figure 5 illustrates the behavior of adaptation
parameters. After a short-time adaptation process, all the

70

ot T DX
50 1

40

30

Estimation of the bound

20 1

10 1

01T 2 3 4 5 6 7 8 9 10
Time (sec)
Fig. 6: The whole uncertainties D (x, t) and the estimated
upper bound d(x,t)

parameters will be bounded and converge to some
constants. Tn addition, the application of the control
scheme developed (Zhang et al., 2011) 1s more difficult
than our proposed approach. In fact, the robustness of
the closed loop system (Zhang et al., 2011) is ensured by
an HE supervisor and an off-line approach based Riccati
equation, thus, these lead to a complicated and high
computation of the control algorithm. Figure 6 gives the
estimation of the upper bound and it can be that the
inequality 8(x)z|E(x.t)| always holds.

Therefore, compared with other existing fuzzy
methods (Chen et af, 2008, Zhang et al, 2011), our
sachem has a faster speed response and high control
performance.

DISCUSSION AND CONCLUSIONS

The main contribution of this study 1s to propose the
PID-like fuzzy sliding mode controller for a class of
uncertain and nonlinear MIMO system. The unknown
uncertainties are estimated by using a fuzzy logic system.
In order to eliminate the chattering phenomenon brought
by the conventional variable structure control, the signum
function is replaced by an adaptive PID term m the
proposed approach. By added the compensation control
term, the resulted errors from the estimation and the
approximation are deduced. A stability criterion as well as
the adaptive laws 1s derived from Lyapunov’s direct
method to ensure stability of the nonlinear system.
Finally, we discuss an example by providing a numerical
simulation. The results demonstrate that the control
methodology can rapidly and efficiently control a complex
and nonlinear MIMO system.

Compared with existed control scheme, the proposed
PID-like AFSMC controller has the following merits and
novelties:
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s  TUnlike the traditional model-based controller, the
proposed approach does not need the upper bounds
of structured uncertamnties and external disturbance
which are approximated by a fuzzy mference system
in this study

¢+ In order to alleviate the chattering of the
conventional VSC, for the first time, the PID control
15 introduced to replace the switching part of the
SMC scheme

+ Also, the approximation and estimation errors are
also assumed to be unknown and estimated online by
using adaptive laws
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