http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 10 (9): 1830-1835, 2011
ISSN 1812-5638 / DOL: 10.3923/1t).2011.1830.1835
© 2011 Asian Network for Scientific Information

A Memory Path Index for DOM Tree Queries

'Qing Yang, Huibing Zhang and %Jingwei Zhang
'Electronic Engineering and Automation Institute, Guilin University of Electronic Technology,
Guilin, 541004, China
*School of Computer Science and Engineering, Guilin University of Electronic Technology,
Guilin, 541004, China

Abstract: Large amount of content with similar structures are being integrated into one big XML document,
for example, the product records crawled from Web, on which users requires a quick retrieval. DOM tree is a
memory model for HTML and XMT. documents. There are three basic queries on this model, (1) search content
located by a given absolute path, (2) search content located by a given relative path, (3) get the path locating
the given content. For an XML, document with great width and depth, those queries often have a long response
time because of time loss on tree traversal. It will be very helpful for Web applications and XML query
processing to improve the query efficiency on DOM trees. Present study proposed three index structures to
deal with the three basic queries, every of them can give a quick response for corresponding queries with
backward search strategy. The experiments on different XMI. documents show that these index structures can

reduce the query time effectively.

Key words: Backward search, forward search, absolute path, relative path, XML query

INTRODUCTION

With rich Web applications, Web pages are hosting
more and more valuable content, such as product list
pages and micro-blog pages. Web pages are not friendly
for data analyzers to access because of their presentation-
oriented. Many researchers are trying their best to
integrate content on similar Web pages into (W3C, 2008)
documents to get neat data sources, on which they can
query what they need easily. A big advantage of XML is
that it allows users to define flexible document format
with their own tags which makes XMI. documents to be
widely used in today’s Web applications, for example
(Ykhlef, 2009) used XML to represent cube data for
OLAP, Wu (2008) replaced relational Database with XML
documents to integrate personal information and improve
mnformation portability. Users hope to have a quick
response on those XMI, documents though some of them
are becoming larger and larger.

Some query languages on XML documents have
been proposed, such as Xpath (W3C, 2007), Xquery
(W3C, 2010y and Quilt (Chamberlin et &, 2000). XPath is
a functional subset of XQuery, both of them use path as
the query fundamentals, for example (Wang et al., 2007)
made full use of XPath’s characteristics to realize some
agpgregation functions of XML data. Quilt can group
information from multiple data sources in one query. More

detailled mformation about different XML query
languages can refer to swveys provided by (Gou and
Chitkova, 2007; Nath and Batanov, 2005, Bonifati and
Ceri, 2000). Many valuable research on XML query
processing are covered by Park et al (2002), Lian et al.
(2005), Al-Khalifa and Jagadish (2002) and Florescu et al.
(2000), whose study mostly focus on query optimization.
All above work adapt forward search strategy, a search
process from root node to leaf nodes which often needs
some extra search to assure accurate location.

DOM (W3C, 2004) is amemory model for HTML and
XML, documents which requires to load the whole HTMI.
and XML documents into memory and to orgamze them
into tree structures. In a DOM tree, every branch node
corresponds to a tag in the XML document and every leaf
node corresponds to a value. DOM tree provide one-to-
one mapping between paths and values. DOM is a
compact and popular model for query processing, on
which much research have been done for XML queries,
for example, Ng and Cheng (2007) and Brenes et al. (2008)
tried to improve query speed by establishmg different
indexes, Al-Khalifa et al. (2002) provided two structural
join methods for XML query processing, Haw and Rao
(2007) combined path expressions with index for queries
by substructure matching. In fact, it 1s a permanent work
to improve query performance of XM documents on
different situations.

Corresponding Author: Qing Yang, Electronic Engineering and Automation Institute, Guilin University of Electronic Technology,
No. 1, Jinji Road, Qixing District, Guilin, 541004, China Tel: 86-773-2291522
1830

Inform. Technol J., 10 (9): 1830-1835, 2011

Tn today’s Web-related research, there are often three
kinds of queries applied on DOM trees, (1) locate content
according to the given absolute path, (2) find content
according to the given relative path, (3) give out the
corresponding paths according to the given content.
These queries do not need complex query language
expression but a quick query response can give users
good experience. In order to carry out these queries well
with limited resources, three index structures are proposed
to improve the query efficiency on DOM trees; these
indexes are adaptive to XMI, documents with different
width and depth.

PROBLEM SETTING

A HTML or XML document can be transformed into
a tree structure according to the parent-child relationship
between the tags. Figure 1 shows a simple DOM tree, in
which every circle represents an element node and every
rectangle is a text node. FEvery node can be uniquely
identified by its parent and its own tag and index. The
index of a node is an integer which begins from 1 and
increases from left to right on the same tag with the same
parent. A node can be denoted as tag[index], for example,
the two nodes in the second level can be denoted as B[1]
and B[2]. If dom 1s a DOM tree, n1s a node and p 1s a
path, then the width and depth of a DOM tree can be
formalized as:

Width (dom) = Max {Childs (n)|¥n, nedom}
Depth (dom) = Max {Length (p)|vp, pedom}

Childs(n) 1s a function that denotes the number of
n’s children, Length(p) denotes the number of p’s steps.

Fig. 1: An illustration of DOM tree(forward search: blue
bold line; backward search: red dotted line)

Every node corresponds to one step. A path is a
series of ordered steps which are concatenated by “/”, for
example, “/R [1]1/B [2)/T [1]”. *//” 1s used to denote zero
or multiple steps. A relative path 1s a path with “//”,
otherwise, the path 13 an absolute path. According to the
above description, some functions can be defined to deal
with those three kands of queries,

Problem definition: Given a DOM tree dom, pis a path of
this tree, C is a piece of text, a query on DOM tree is to
find their own counterparts when given p or C. The three
queries formalized as following,
absoluteSearch (dom, p): return the content located by p

basic can be
if p1s an absolute path. relativeSearch (dom, p): return all
content located by p if p 15 a relative path. Locate (dom,
C): return the absolute path which locates content C.

For example, the query results on the DOM tree of
Fig. 1 are:

s AbsoluteSearch (“/R [1 /B [2)/T [1]") = {C4}
s RelativeSearch (“/R [1]/T [1]7)y = {C1, C4}
» Locate (C2)={*R[1)VB[1VANVF[1]}

INDEX STRUCTURES

In this section, three index structures are mtroduced
that can be applied on the above three kinds of queries to
improve query efficiency, the individual index structure
and search process are presented.

Index for absolute path search: Givenna DOM tree and an
absolute path, the search process often begins from root
node, then goes from parent node to child node and
reaches the last location according to the given path
which is called forward search strategy. The search
process of “/R [1]/B [2]/T [1]” is presented by blue bold
dotted line. For the above method, if the XML documnent
has a big width, it will need to scan many nodes in the
wide level, for example, you must access “B [1]” node
before you armive at “B [2]”node which consumes much
time to scan some useless nodes before you stop at the
specified node.

In order to avoid scanning useless nodes, the
forward search is transformed into backward search by an
aided index structure. A backward search begins from the
last step of a path which often corresponds to one leaf
node and then goes back to the path head along the
reversed path.

Unlike forward search, backward search 1s based on
the child-parent relationship. An index holding the child-
parent relationship 1s necessary to realize the backward

1831

Inform. Technol J., 10 (9): 1830-1835, 2011

search. Tn this index, every node is represented by its
layer, tag and index, such as layver:tagrindex. Hash
structures are used to organize the ndex. Every node 1s
hashed to its parent so that child-parent relationship can
be reserved and every leaf node is also hashed to its
value. The basic index structure is shown in Fig. 2, in
which every node is mapped to its parent and value by
two hash functions.

Algorithm 1: Absolute path search index establishing
Input: DOM tree, dom

Output: Tndex stnicture reference

1: Initialize two list structures 11 and 12

2: While (breadth-first raversal on dom)
3: Get the next node n
4: Getn’s parent np
5: Insert (n, np) into 12
6: If (nis aleaf node)
7
8
9

Get n’s value v
. Insert (n, v) into 11
: Endif
10: End while
11: Establish two hash structures according to 11 and 12,
v=hs1(n), np=hs2(n)
12: Return hsl, hs2

In order to establish the index, the whole DOM tree
will be traversed through breadth-first order, every node
is mapped to its parent and its value through two hash
functions. Every node 1s characterized by its layer, tag
and mdex, a hash function 1s used to hold their child-
parent relationships. In a DOM tree, every node has only
one parent except root node which assures the efficiency
of backward search. The detailed process to establish
indexes 1s presented n algorithm 1, an accompanying
exaniple is shown in Fig. 3.

When searching the content by a given absolute
path, the path is firstly transformed into triple form (layer:
tag: index) and then are reversed. A backward search
process is executed on the index structure, for every step
in the reversed path, hash function is used to find its
parent and then verify whether the hashed parent node
and the real parent node in given path are consistent, if
they are not sanie, the search process will stop, otherwise,
the search process continues until reaching root node.
Our mndex has two advantages to improve search
efficiency, one 1s that the clild-parent relationship is

Inverted index

A reference to
parent node

A reference to
node content

Fig. 2: Index structwre (graph lines denote absolute
search mndex, dotted line denotes inverted content
mdex)

exploited which is one-to-one mapping, more compact
than the one-to-many mapping in parent-child
relationship, the other is that our indexes keep nodes’
index information directly which must be obtained
through a count process in original DOM tree. The above
two improvements help to reduce greatly the search time
than forward search on parent-child relationship. Because
of hash structure, hash conflicts still exist n our index
structure but it does not influence the search results for
the uniqueness of complete absolute paths. The time
complexity of backward search only depends on the
length of the given path and 1s not affected by document
width. The detailed search process is presented in
Algorithm 2.

Algorithm 2: Absolute path search

Input: DOM tree dom, absohite path p

Output: text content C

1: Transform every step of p into the form,
“layeritagrindex’” and reverse these steps into rp

2: Fetch the first step of rp into leafNode

3: Fetch the last step of rp into rootNode

4: While (i<ip. length-1)

5: fNode=the iy, step of rp

6. cNode = the (i+1)y, step of rp
7. If (cNode not in hsl (fNode))
8: Retumn null

9 Endif

10: End while

11: Tt (cMNode! = rootNode)
12: Return null

13: End if

14: C = hs2(leafNode)

15: Retum C

Index for relative path search: The significant difference
between relative paths and absolute paths is that relative
paths permit fuzzy match by “//”. *//” represents zero or
multiple steps which causes a relative path to be mapped

Null

Fig. 3: A part of index of the DOM tree in Fig. 1

1832

Inform. Technol J., 10 (9): 1830-1835, 2011

to zero or multiple absolute paths and has a great
influence on queries on XMI, documents with big depth.
Since the layer information 1s uncertain, the exact index for
absolute path search 1s mvalid for relative path search.
The time complexity of forward search on a relative path
is just the tree’s traversal complexity. For the relative path
can have zero or multiple instances, forward search can
only traverse the whole DOM tree to find all matching
paths with it.

In order to improve the time complexity of relative
path search, the index structure for absolute path search
1s adjusted to adapt relative path search. In the new index
structure, every node is represented by “tag:index” and
hashed to its parent with the
representation. In this index, child-parent relationships are
possible to be one-to-many mapping since layer
information is lost. Obviously, the index structure
introduces some conflicts because of the incompleteness
of node representation, some extra search operations are
needed to elimmate conflicts but the search space of
backward search is still less than the forward search.

The query strategy for relative path search is that all
possible absolute paths matching with the relative path
are constructed through accessing the mdex for relative
path search, then remove those illegal paths and use
filtered absolute paths to locate content under the help of
absolute path mdex. When query processing, the given
path 1s still transformed into a series of steps, tag: index
and then all steps are reversed. The backward search is
carried out to combine all possible paths which means
that “//” are nstantiated by one or multiple steps
according to the child-parent information held in indexes.
Because some extra paths can be generated for hash
conflicts, a final path verification 1s executed to assure the
accuracy of queries through the absolute path index. All
confirmed absolute paths are then used to locate their
corresponding content. The index for relative path search
can avoid the whole tree traversal to find all answers for
a given relative path.

then are same

Inverted index for content: The third type of queries are
time-consuming since only traversal on the whole DOM
tree can be used to find all matching paths for a given
content, just like the forward search solution for a relative
path. Here, the inverted index is introduced to speed up
those queries. Every value is mapped to its corresponding
leaf node through a hash function. When to get the path
of a given value, the hash fimction will be applied on this
value and get the leaf node, a backward process on DOM
tree can easily get the corresponding path. In fact, fuzzy
queries can also be supported through establishing some
indexes for hot terms.

EXPERIMENTS

In this section, experiments on XML documents with
different width and depth are carried out to evaluate the
query performance on the mdex structures. All
experiments are run under Core Duo 2.2 GHz CPU and 2G
merory.

Absolute path search on XML documents with different
width: The index for absolute path search is very suitable
for absolute path queries on XML, document with large
width. A group of XML documents are constructed
whose width varies from 100 to 3000. The 10000 queries
are randomly choosed on those documents and the query
time are compared between forward search on DOM tree
and backward search on the index. The experimental
results are reported in Fig. 4. The index takes on an
excellent performance for these queries because it avoids
a large number of invalid search. The mvalid search in our
method is only caused by hash conflicts which has been
reduced greatly by the accurate child-parent relationship
representation. Because of the child-parent relationship
and backward search, the search time is hardly influenced
by the document width which is a primary complexity
factor for forward search. The time complexity of
backward search on indexes only depends on the average
length of query paths but the complexity of forward
search are decided by both the average width of DOM
tree and the average length of paths. With the increase of
document width, our method has a good scalability.

Path locating by inverted index: In this group of
experiments, the above dataset 1s still used and 10000
values are generated randomly for test which are used to
find all paths locating the given values and compute the
search time. The query time comparison is presented in
Fig. 5. Inverted index does not show advantage on XMTI,

120004~ DOM tree
—eo— Index

10000+

Query time (ms)
- (= x
S S S
(=3 (=4 (=1
(=] (=} j=]

1 1 1

2000+

T T T T T T
0 500 1000 1500 2000 2500 3000
DOM tree width

Fig. 4: Query time compearisen for absolute path search

1833

Inform. Technol J., 10 (9): 1830-1835, 2011

6004 DOM tree
—e— Index

500+
= 400

ime (m

=300

Query

200 1

°

N ¢ N
01—

T T T T T T
0 500 1000 1500 2000 2500 3000
DOM tree width

100

Fig. 5: Query time comparison for content search

documents with small width. With the mcreasing
document width, the time on tree traversal shows a great
mnfluence on search performance because there 1s not any
proof to tell us that all paths related with the given
content have been found before reaching the end of DOM
tree. The inverted index has a steady performance which
are not constramed by the document width. The time
complexity of query on inverted index are only decided by
the average length of searched paths but the time
complexity of forward search 1s proportional to the scale
of DOM trees because of traversal requirements.

Relative path search on XML documents with different
depth: The index for relative path search has a big
advantage for relative path queries on XML documents
with great depth. Another group of XML, documents are
constructed whose depth varies from 4 to 30. These
documents are used as test data and 1000 relative paths in
those documents are generated randomly for query time
evaluation. Those paths cover different relative path
characteristics, such as “a [2]/b [1]7, “/a [1]7, “//a [2]/b
[3)//c [2]” and so on. All paths are applied on the relative
path index and use backward search to query their
corresponding values, the query time 1s compared with
the direct query on DOM tree, the comparison is
presented in Fig. 6. The relative path index and backward
search reduce the query time effectively than the direct
query on DOM tree. Because of lack of nodes’ index
information and hash conflicts, some nvalid paths will be
generated when instantiating those relative paths, a
disambiguation process must be carried out to remove
those false paths, in fact, most of query time are
consumed on the generation of the invalid paths and
identifying those false paths. The direct query time
complexity on DOM tree is decided by the size of DOM
tree since the traversal on the whole tree 1s the only way
to find all matching paths with the given relative path, the
index can reduce the search space effectively.

800 7w DOM tree

700 -{mmmm Index
600
500
400
300
200
100
0 - T
5 20 25 30

T
0 5 10 1
DOM tree width

Query time (ms)

Fig. 6: Query time comparison for relative path search
CONCLUSIONS AND FUTURE WORK

In present study, three index structures are proposed
to improve the query performance on DOM trees. Based
on those index structwes, a backward search process
could deal with less search space than the forward search
which token on great advantages especially for those
XML documents with large width and depth. A big
advantage of the indexes was that the nodes’ index
information was embedded into the tree index explicitly
which could avoid some invalid search effectively for
absolute path search and relative path search. The
backward search made full use of the child-parent
relationship, a one-to-one mapping and showed better
performance than forward search which must compute the
node index through traversal operations. The index for
relative path search still has some conflicts because of the
uncertainty of nodes” index information which maybe
need some other measures to reduce those conflicts and
improve query performance firther.

ACEKNOWLEDGMENTS

We gratefully acknowledge the support of Education
Department Foundation of Guangxi under grants No.
201010LX154.

REFERENCES

Al-Khalifa, S. and H.V. Jagadish, 2002, Multi-level
operator combination in XML query processing.
Proceedings of the eleventh international conference
on Information and knowledge management,
(CIKM’02), ACM New York, NY, USA., pp: 134-141.

Al-Khalifa, 3. HV. Tagadish, N. Koudas, I.M. Patel,
D. Srivastava and Y. Wu, 2002, Structural joins: A
primitive for efficient XML query pattern matching.
Proceedings of the 18th International Conference on
Data Engineering, Feb 26, San Jose, CA, USA.,
pp: 141-152.

1834

Inform. Technol J., 10 (9): 1830-1835, 2011

Bonifati, A. and 8. Ceri, 2000. Comparative analysis of
five XML query lenguages. ACMSIGMOD
Rec., 29: 68-79.

Brenes, S., Y. Wu, D. Van Gucht and P.S. Cruz, 2008. Trie
indexes for efficient XMI. query evaluation.
Proceedings of the 11th International Workshop on
Web and Databases, June 13, Vancouver, BC,
Canada, pp: 1-6.

Chamberlin, D., I. Robie and D. Florescu, 2000. Quilt: An
XML query language for heterogeneous data
sources. Proceeding of the Third International
Workshop WebDB 2000 on the World Wide Web
and Databases, (TTIWWWWD’00), Springer-Verlag,
London, UK, pp: 1-25.

Florescu, D., D. Kossmann and I. Manolescu, 2000.
Integrating keyword search mto XML query
processing. Comput. Networks, 33: 119-135.

Gou, G. and R. Clurkova, 2007. Efficiently querying large
XML data repositories: A Survey. Transact.
Knowledge Data Engineer, 19: 1381-1403.

Haw, S.C. and G.8.V.RK. Rao, 2007. Path query
processing in large-scale XML databases. J. Applied
Sci., 7: 2736-2743.

Lian, W., N. Mamoulist, David W.L. Cheung and
S.M. Yiu, 2005. Indexing useful structural patterns for
XML query processing. IEEE Trans. Knowledge Data
Eng., 17: 997-1009.

Nath, UK.D. and DN. Batanov, 2005 Comparative
analysis of three promising XML query languages
and some recommendations. Inform. Technol.
I, 4 439-444,

Ng, W. and I. Cheng, 2007. An efficient index lattice for
XML query evaluation. Proceedings of the 12th
International Conference on Database Systems for
Advanced Applications, (DASFAA?07), Springer-
Verlag, Berlin, Heidelberg, pp: 753-767.

Park, S, Y. Choi and H.J. Kim, 2002. XML Query
processing using signature and DTD. Proceedings of
the Third International Conference on E-Commerce
and Web Technologies, (EC-WEBR'02), Springer-
Verlag, London, UK, pp: 162-171.

W3C, 2004. Document Object Model (DOM) Level 3 Core
Specification (1.0) W3C Recommendation. http://
www.w3.org/DOM/

W3C, 2007, XML Path Language (XPath) 2.0 W3C
Recommendation. http://www.w3.0rg/TR/2007/REC-
xpath20-20070123/

W3C, 2008. Extensible Markup Language (XML) 1.0 W3C
Recommendation. http://www.w3.org/TR/2008/REC-
xml-20081126/.

W3C, 2010. XQuery 1.0: An XML Query Language W3C
Recommendation. http: //www.w3.org/TR xquery/.

Wang, H., I. Li and H. Gao, 2007. Flexible and effective
aggregation operator for XML data. Inform. Technol.
I, 6:697-703.

Wu, C.F., 2008. Design of portable personal information
management system with XML techmque. Inform.
Technol. I., 7: 615-622.

Ykhlef, M., 2009. On-Line Analytical Processing Queries
for eXtensible Mark-up Language. Inform. Technol.
1., 8:521-528.

1835

	ITJ.pdf
	Page 1

