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Fuzzy Process Neural Network based on Orthogonal Basis Function
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Abstract: In order to widen the range of processing signals for fuzzy neural network, a kind of fuzzy process

neural network based on orthogonal basis function 1s proposed. By mducting the orthogonal basis function

mnto input space, the input function can be featire expanded. Meanwhile the weight vectors are also expanded
under the same orthogonal basis function. The operation process of space aggregation and time cumulative
can be simplified by using the orthogonality of basis function. The back propagation algorithm is used as
learning algorithm. Simulation results show the great approximation ability of the fuzzy process neural network.
And further experiments show that the network is semsitive to the number of fuzzy rules. The best
approximation accuracy can be obtained only by choosing the proper values, such as k = 4 in this study.
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INTRODUCTION
Fuzzy Neural Networks (FNNs) have been

widely used 1n economic and industry (Amjady, 2006;
Pindoriyva et al., 2008; Lin and Chou, 2009) that require
modeling uncertain and imprecise system in recent years,
due to the merge of Fuzzy Interference System (FIS) and
Neural Network (NN) (Lin et al., 2005). Because of its logic
inference and adaptive learning ability, FNNs have
attracted a lot of attention. For example, A novel FNNs
approach 1s proposed and it can adjust the structures by
growing and pruning fuzzy rules during the learning
process (Han and Qiao, 2010). In order to improve the
computational efficiency, the record of each neuron’s
firing strength for all data previously clustered was used
(Coyle et al., 2009). Evolution computation was also
applied to the parameters and structures of FNNs, such as
the order of polynomial, the mumber of membership
function (Roh et al., 2007).

Whle facing with practical problems, system outputs
usually depend on spatial aggregation and temporal
cumulative of input signals. However, FNNs of all the
above models can only deal with spatial related inputs. To
solve the issues In a tme-varying system, cominon
method has to be replaced by spatial relation (time series)
methods. Tn the year 2000, a Process Neural Network
(PNN) model (He and Liang, 2000} was proposed which
can deal with spatial-temporal information synchronously.
Later, a PNN and traditional neural network combined
model (He and Xu, 2003) was presented with time-varied
mput and output function Because of the good

localization property of the wavelet transform in time
domain and frequency domain, a wavelet process neural
network (Gang et al., 2008) was introduced and applied to
the time series prediction.

In order to improve the ability of dealing with
time-varying system, this paper proposed a kind of fuzzy
process neural network based on orthogonal basis
function. The inputs of the new network could be the
fuzzy process information, the time-varying numeric, or
the combination of them. Meanwhile, the network can
recelve the time/space signals or sequences directly. This
means that the mput signal scopes are enlarged. Because
the computation of time cumulative is complicated, a set
of the orthogonal basis functions in the mput space was
used. By the nature of the orthogonal basis functions, it’s
easy to sunplify the computation and the aggregation
operation process.

PROCESS NEURON

Process neuron 1s similar to the traditional neuron, it
consists of three parts: weight function, converge and
activation threshold. The differences between them are
that the weight function, activation threshold of the PN
are time-varying and the converging operation includes
not only the multi-inputs space aggregation but also time
cumulative. The topology of single process neuron is
shown in Fig. 1.
where, X (t) = (x, (1), X, (t),..., X, (1)) is the vector of inputs,
y is the output, W (t) = (w, (), w; (t),..., W, (t)) is the vector
of comnection weighting fimetion and £ (.) is the activation
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Fig. 1: Topology of single process neuron

function, [0 T] is the sample range and the symbols %
and [ denote spatial and time aggregation operation,
respectively. According to the topology, the relation
between inputs X (t) and output v can be written as:

y=f{ > ([, w0 (t))} (1)

i=1

In a function space, there are many sets of
orthogonal functions (infinite dimensional), such as the
trigonometric function space system in 17 (0, T) function
space, the Legendre pelynemials in L’ (-1, 1) function
space, Walsh function systems in 1.7 (0, 1) function space
and so on.

[0 Tl
{b, (t)}"_, is a set of orthogonal basis function which is

If the mput space of process neuron 1s
also included m the input function space of the model, the

input vector X (t) can be feature expanded into the
following form:

X :{iaﬂbl (t),iazlbl(t),---,iambl (t)} (2

where, a; is a corresponding coefficient in the expanded
equation. Let:

Z{t) :{lz_}zllbl (t),;:zzlbl (t),...,;zmbl (t)}

which 1s also in the input function space. According to
the natwre of the orthogonal functions, the flowing
equations can be established:

L L L
X2 {Eaubl W), Y azb (©,... Y ayb, (t)}
1=l 1=l 1=l

’{Ezubl(t)sEzmm (t),---sEZmbKt)} 3)
=2

i=1
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STRUCTURE OF FUZZY PROCESS NEURAL
NETWORK

Here, introduces the structure of the FPNN. The
proposed network structure is shown in Fig. 2 which has
a total of five layers. The following sections present
mathematical functions of each layer in detail.

Layer 1 (input layer): No computation is performed in this
layer. Each node in this layer corresponds to one input
variable. The input vector is X, (t) = (X, (1), %o (1), X
(1), where k =1, 2,..., k is the number of the samples and n
1s the number of mput variables. And one of the mput x,,
(t) can be feature expanded as followed:

x,, (= ia; b, () (5

where, &' is a corresponding coefficient in the expanded
equation. The mputs of this layer can be numerical time-
verified function or the fuzzy variable with process
information.

Layer 2 (fuzzification layer): Layer 2 acts as the
fuzzification layer of the PFNN, where the values of the
activated fuzzy Membership Functions (MFs) for a
given current values are calculated. Each node in this
layer represents a membership function. For input
variable xy, the following Gaussian membership function
15 used:

MOETA()
p‘q(xk‘):exp[_(x ()Gzc ©) ]

i=1,2,..0; j=12....m (6

where, ; (x;) is the output of this layer, ¢,(t) and o
denote the center and width of the Gaussian membership
functions, respectively and m is the number of rules. Only
one width ¢, is assigned to each fuzzy rule j, so the
network size could be reduced.
With the same orthogonal basis functions 1P (t)}'lL:n

of mput vector, the center ¢; can be feature expanded to
the following form:
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Fig. 2: The structure of fuzzy process neural network
L
SICEPANG: (7
1=1

where, d is a corresponding coefficient in the expanded
equation. The Eq. 5 can be rewritten as:

L
(ay; — g’
) | ®)
ulj(xkl):exp[—iz]1:1,2,...,n;J=1,2,...,m
g

i

Layer 3 (rule layer): Each node in this layer performs a
t-norm operation on inputs from Layer 2 using an
algebraic product operation to obtain a spatial firng
strength. The number of nodes m this layer equals the
mumber of fuzzy rules. So there are m nodes. The output
of the jth node is ¢, which can be written as:

n

260 — gy ()’ _
& = exp[~—— 1= exp[~—————]
cJ GJ

n L
EE(aL - Q}J)z (9)

Layer 4 (normalized layer): This layer consists of
normalized nodes. The number of nodes is equal to that of
Rule layer:

¢,
PR

=1

v, = j=1,2..,m (10)

where, 'V, is the output of the jth node in this layer.

Layer 5 (output layer): This layer performs defuzzification
(weighted average) of the output as follows:

yk(t):iij] (11)
=

where, y, (t) 1s the cutput of the network, w, denotes the
connecting weight between the output layer and the
normalized layer. The weight can be expressed as follows:

0 = oy (1) + 0y (0, (6) + -+ oy, (D%, (1) (12)
= (uju (t)70;]1 (t)=' : -,O!jn (t)) * (Lx]q (t)""=xh. (t))T

Suppose (c; (1), o (t),..., o, (t)) are also in the input
space, each of them can be feature expanded into:

oy (1) = iw‘h b, (t) (13)

where, w,, 1s a corresponding coefficient in the expanded
equation. The corresponding coefficient ¢ in Eq. 5 is

replaced by &¢”,. The weight can be rewritten as:

B 0t (1), 05, (D) * (L, @), %, 0)

—_

(%
1

o

(14)

n

T

[
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= Wi dy
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Equation 11 can be rewritten as:

n L 1
n n EE (allﬂ - q:J)2 wl L n EE (ailu - qllj)z
i (0= Yoy = 3y exp- T ¥ Fwhal Dempl-
=1 =1 Gj i=1 Uf
(15)

LEARNING FOR FUZZY PROCESS NEURAL
NETWORK

The back propagation algorithm 1s used as leaming
algorithm. Assume that we have K leaming functions
samples and each learning function has n inputs:

Xy (0,25 (00 %, (1), ¥ (1)

Xy (0 Xpeg (o Xy (B, ¥ ()

where, the input function or sequence is x;; (t), y; (t) is the
desired output. Suppose ¥, () 1s the corresponding actual
output function of the FPNN, then the mean square error
of the FPNN output can be written as:

K
=180 m-s )
243
n L a L o
1& = PIPNCIEL . . 386 -l
:EE ACED) EXP[_%]{Ezw;a;] Eexp[—%]
k= = i i1 P ;

(16)

According to the gradient descent method, the
modifications of the network connection weights and
corresponding coefficient are:
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wh = witPAW, a7
q = dytnAg, (18)
0, = 0;+AAG (19

where, P, y, A are the leaming rates constants and the
modifications Aw';, Aq',, Ao can be calculated as follows:

JdE X .
Aw, =T :,Q vy — d)w,a; (20
,E & R . R
Agy == 20 (3, ~d) (0,36~ D)o @) —ap) /| o, 28,
i k=1 j=1 j=1 j=L
(21)

Ag; = 7%:722@1« - dk)(w]itbj - i“’]q’j)‘b] /("?[iq’jJ ](22)
k=1 =1 i=1 i

j =1

In general, the major steps of the FPNN learning
algorithm are as follows:

Step 1: Select the standard orthogonal basis fimctions in
the input space. If the inputs vectors are
continue variables, the number of basis function
should make the expansion of the basis function
satisfy the required precision. Otherwise, divide
the input interval [0 T] equally and determine the
partition points ty, t,..., t;

Step 2: Initialize the connection weights, the center and
the width of the Gaussian functions, the maximal
learning times is MaxGen, the learning time is gen
which 1s equal to 1 at the beginning

Step 3: Calculate the error function according to Eq. 16.
If gen>MaxGen, go to step 5

Step 4: Modify the connection weight, the center and
the width of the Gaussian functions according to
Eq. 20-22. Then gen = gentl1, go back to step 3

Step 5: Output the learming result and stop the progress

SIMULATION

To validate the proposed fuzzy process neural
network algorithm, this section gives some numerical
results.

In Fig. 3, continuous process neural networks are
used to validate the effectiveness of the FPNN. The input
internal is [0 1]. The sets of simulated input signals are
generated by the following function: {sin (2kmt); cos
(Zkmt)t. Where k=1, 2..., 10 1s the number of the input set.
The output 1s k for the corresponding kth input set. Using

1517
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Fig. 3: Learning error curse

the FPNN shown in Fig. 2 and taking n = 2, m = 4, the
number of each FPNN layer 1s 2-8-2-2-1, respectively. The
learning rate constants are § = 0.005, y = 0.07; the maximal
learning time is 200. The basis function is the Walsh
orthogonal function and the number of basis function is
32. The mean square error of the FPNN output is
5.7732¢-007 after the 200th iteration. The learming error
curse is shown in Fig. 3.

The result shows that powerful
approximation ability of the fuzzy process neural network.
As shown m the Fig. 3, there is a little glitch at the
beginning of the curve. This means that the fuzzy process
newral network may be sensitive to some parameters and
this will be verified in Fig. 4.

In Fig. 4, discrete process newral networks are used
to validate the mumber of fuzzy rule’s effect on the FPNN.
Construct 9 mput sample function belonging to 3
sequences with process input interval [0 1]. The
first sequence has 4 sample fimetions: sin (21 (t-0.5)),
sin (2.1m (t-0.5)), sin (2.2 (t-0.3)), sin (247 (t-0.5)).
Suppose that the corresponding expected output is
0.3333. The second sequence has 4 sample functions:
1.2 sm (3m (t-0.667)), 1.2 s (3.2n (t-0.667)), 1.2 sin
(3.4n (1-0.667)) and 1.2 sin (3.67 (t-0.667)). Suppose that
the corresponding expected output is 0.6667. The third
sequence has 4 sample fimctions: 1.4 sin (4 (t-0.25)),
0.14 sin (437 (-0.25)), 1.4 sin (4.67 (t-0.25)) and 1.4 sin
(4.8 (t-0.25)). Suppose that the corresponding expected
output is 1.0000. The sample function are dispersed as
{sin (2km (t-0.5)0, where t, = /128 fori1=0,1,.., 127. Use
the FPNN shown in Fig. 2. The number of the input and
output are 3 and 1, respectively. The learning rate
constants are } = 0.006, y = 0.055, & = 0.08; the maximal
learmng time 15 200. A Walsh transform is implemented for
discrete data and the transformed data are submitted to

there 1s
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Fig. 4: Learmng error curse with different number of the

fuzzy rules
Table 1: The mean square error of the FPNN output
No. of the fuzzy rules Mean square error
k=2 2.52e-15
k=4 1.50e-15
k=7 19.27

the network for training. FPNN with the different number
of the fuzzy rules are trained. After the 200th iteration, the
mean square error of the FPNN output is shown in
Table 1. The learming error curses are shown m Fig. 4.

The results show that the number of fuzzy rules is
very important to the generalization ability of the FPNN
model. Tf the number of the rules is large (k = 7), the
learning error may decrease at fist but at some point it
would increase. If it is small (k = 2), the amplitude of the
oscillate part on the learming curse may be large. This
indicates that the FPNN is sensitive to the number of the
fuzzy rules. So we can choose suitable number of the
fuzzy rules to optimize the performance, for example, here
we choose k = 4.

CONCLUSION

In this study, fuzzy process neural network is
proposed which combine the advantage of fuzzy neural
network and process neuron, so the fuzzy neural network
has the ability of achieving space aggregation and time
cumnulative. The network structure 1s mtroduced in detail,
the orthogonal functions are used as time integral
operators and the learning algorithm 1s given. Simulation
results show that the fuzzy process neural network has

strong approximation ability and the network is sensitive
to the number of the fuzzy rules. Finally some issues
which the FPNN may have are discussed, such as the
unequal signal duration, rule extraction and the possible
solutions are also considered.
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