http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 10 (1) 201-206, 2011
ISSN 1812-5638 / DOL 10.3923/1t).2011.201.206
© 2011 Asian Network for Scientific Information

Efficient Algorithm for Overlap-Join

MH. Saheb
Department of Information Technology, Administrative Sciences and Informatics College,
Palestine Polytechnic University, Palestine

Abstract: This study introduces Overlap-Join which i1s non-equi self join that joins a table to itself with a
non-equal condition for joining. Overlap-Join arises in real word queries that deal with time. Time scheduling
and time tabling applications are clear examples for time overlapping, this in addition to its usage in temporal

databases. JOIN is the most expensive operation in relational databases. For this reason an efficient algorithm
1s needed. Overlap-Join and two parameters for Overlapping, Overlap Coefficient (OC) and Span Coefficient
(SC) have been defined. Three properties for overlapping has been developed and discussed. Two algorithms
have been proposed. These algorithms are modified versions of two known join algorithms; the block
nested-loop join and the Sort-merge join. Models for joining costs have been presented and analyzed The
modifications take advantage of the fact that overlap-Join 1s self-join and the sc concept. The study shows that
performance of sort-merge join 1s not better than the performance of block nested loop join for Overlap-Join

when the SC is high.

Key words: Overlap-join, non equi-join, temporal database, span coefficient, algorithms analysis

INTRODUCTION

An SQL JOIN clause combines tuples from two tables
to produce the joined table. Join operations and Cartesian
product are the most expensive operations frequently
occurring in a database system (Noh and Gadia, 2008). So,
all query optimization algorithms primarily deal with joins
(Sinha and Chande, 2010). Join operation is more critical
in temporal databases (Gao et af., 2005). During the last
three decades many approaches have been developed for
processing join operations efficiently. For a survey see
Graefe (1993) and Soo et al. (1994).

There are many types of join; they mclude inner join
and outer join. Equi-join and non-equi-join are types of
inner join. Joining table to it is called self-join.
Overlap-join 18 a class of non-equi self join.

There are many jom algorithms for joimng. However,
they focus on joining different inputs rather than an
identical input leading to multiple scans for the identical
mput (Noh and Gadia, 2005).

Overlap-Jom arises in real word queries that deal with
time. Time scheduling and time tabling applications are
clear examples of time overlapping. Time overlapping is
not allowed in scheduling problems, such as Airport
runway assignment (Saffarzadeh et @l., 2008). This in
addition to its usage in temporal databases.

Here, we will concentrate on reviewing related works
to Overlap-Jom and not the general join operations. Many
methodologies for join operations can be found n
literature (Noh and Gadia, 2005, 2008). Gao et al. (2005)

201

summarized join operations in temporal databases to
include nested-loop join, sort-merge join and
partition-based join.

Join operation m the temporal database literature 1s
more concentrated on jomn operations for heterogeneous
relations rather than self-join.

Range join, band join and bound join are special case
of non equi-join. De Witt et al. (1991) presented algorithm
for Band jom. Band join 1s a class of non-equijoins. A
band join between relations R and S on attributes R.A and
3.B 1s a join in which the join condition can be written as
R.A-Cl< 8. B<R. A + ¢, The constants ¢, and ¢, may
equal and one of the two may be zero. We use the term
band because a tuple r in R joins with a tuple s in S only
if r.A appears within a Band of size ¢, + ¢, about 5. B.

Shen (1995) presented an algorithm for Range join.
Range join of sets R and S 1s defined to be the set
containing all tuples (r, s) that satisfy e, < | - 3| < e, where
rc R, s € S, e, and e, are fixed constants.

Band joins and range join is not self join, while
overlap-join 1s self jomn. Band and renge are fixed, but
overlap has variable ranges depending on the start and
the end in each tuple as we will see in the definition of the
overlap-join. So, general join algorithms cannot be used
directly and they are not efficient.

Overlap-join definition: Join operation is a binary
operator in relational algebra. It is written as (Rea, S)
where R and S are relations and theta 1s a condition for
joining. The result of Join is a relation that contains all the

Inform. Technol. J., 10 (1):201-206, 2011

combinations of tuples in R and S that satisfy theta. Tf
the conditon m theta 1s = operator, then we call it
equi-joir, if not, then we call it non equi-join. If R and
S are the same relation then the join 13 self-join
(Elmasri and Navathe, 2007).

Overlap-Jom 1s a class of non-equi
Assume that we have a relation:

self join

Ra,a,,...,a,8,....)
where, a, is the primary key, a, attribute represents
start time and a, attribute represents the end time, the
overlap-join 1s: self jon of R where (R.a, between R'.a, and
Rla)andR.a, <> R'a,

We can represent this jon using the following SQL
SELECT statement syntax:

SELECT R.a;, R'.a
FROME, R ASR'
WHERE R.a, BETWEEN R'.a, and R'.a,
AND R.a; <> Rla

The FROM clause produce Cartesian product of R to
itself. The first condition in WHERE clause converts the
Cartesian product to JOIN by joimng each row of R with
any row of R such that the start (a,) between any start and
end (R'.a,and R'.a,) in any row in R. The second condition
prevents joining any row to itself, assuming that R.a, 1s a
candidate key.

Overlapping Coefficient (OC), defined as the average
density of overlapping, used as a measwe of overlapping
of each tuple in the relations with other tuples in the same
relation.

Overlap occurs 1 the following cases assuming that
P 1s a period starts at s and ends at e:

1 pi s=—=
p s———e
2 pi s——=e
pi 5—=e
3 pi ——"e
b ———¢
4 pi s—e
pi s—e
5 pi s——e
o e
pk Br———

From these cases we can see that the following
properties are hold for overlapping:

Reflexive: If picpj, then pi overlaps with pj
(Schikuta, 2003; PostgreSQL, 2002)

commutative property: If pi OVERLAP pj, then pj
OVERLAP p1

202

If P is set of ordered periods sorted on p.s, such that
pis < pj.s for all i<g then p1 will not overlap with any
period after pj if pi.e<pj.s

Span overlapping occurs when a tuple overlaps with
more than one tuple and these tuples have no overlapping
as in case 5. Spanning can occurs between blocks of
tuples. We will define Span Coefficient (SC) as the
average of overlapping of tubles in a block with the tuples
in previous or next blocks. If SC =1, then in average the
tuples in any block overlapped with tubles from one block
surrounding that block. If SC = n then, in average, the
tuples in the cwrrent block can overlap with any tuple in
the next n blocks or n previous blocks.

Overlap-join in SQL: We can define a hypothetical
SELECT statement to address this overlap join. A simple
BNF for this statement can be expressed as follows:

SELECT <List of attributes>
FROM <List of relations= [, R OVERLAP Al and A2];

The optional part of this statement means that there
is an Overlap join for the Relation R on the two attributes
Al and A2

Postgre SQL (PostegreSQL, 2002) supports: OVERLAPS
operator:

s (startl, endl) OVERLAPS (start2, end2)
s (startl, lengthl) OVERLAPS (start2, length2)

This expression yields true when two time periods
(defined by their endpoints) overlap, false when they do
not overlap. The endpoints can be specified as pairs of
dates, times, or time stamps; or as a date, time, or time
stamp followed by an interval. This is an operator and it
1s not used for JOIN operation.

ALGORITHMS FOR OVERLAP-JOIN

Many approaches can be used for joining operation;
the following are the most popular approaches:

Nested loop Join

Block Nested Loop Join
Partitioned based join
Sort-merge based join
Hash Join

The last three algorithms cannot be used directly
since these algorithms are for equi-join and Overlap-join
1s non equi-join. The first two algorithms can be used with
some modifications, but all these algorithms will not work

Inform. Technol. J., 10 (1):201-206, 2011

Table 1: Models parameters and derived terms

N No. of hiples of relation R

Outerbufter Buffer used as outer loop Tnput.
Innerbuffer Buffer used as inner loop Input

OBuffer Buffer used as join output

Mb No. of available memory blocks

Rb No. of Relation blocks in R

Oc Overlapping coefficient in the relation R
Sc Span coefficient

Roc OC of relation R

Rsc SC of relation R

efficiently since they do not take advantage of the fact
that this is self-join. Three algorithms and performance
model will now be presented and discussed.

Access complexity: Here, we discuss the access
complexity of the proposed moditfied algorithms. We will
discuss the disk mput complexity rather than I/O
complexity. Output operation will not be ncluded since it
depends on the Roc and the Rsc of the overlapping.
Table 1 defines some notations to be used in our analysis.
Tt is clear that the size of the relation and the buffer size
will have the major effect on the derived complexity.

In Table 1 we specify several parameters and a few
derived terms which describe the characteristics of the
model environment and build the basis for the derived
cost functions.

Nested loop join: Algorithm 1 represents nested loop join,
it 18 a brute force jom and each tuple in relation R 1s
checked for possible join with all other tuples in R.

It 15 clear that the access complexity (Input
Complexity) of this algorithm is O(n?).

Algorithm 1: Naive algorithm (nested loop algorithim)

n = cardinality(R)
Fori=1tondo
Forj=1tondo
Tf (. >=t.s And t.s<=.eand i < =j)
Mive t: and t: to Result
Endif
End j
End i

Modified block nested loop join: This algorithm starts by
reading the first partition of R in the main Outerbuffer,
each partition of the relation R consists of Mb blocks.
Each tuple in the Outer buffer 1s checked for overlapping
with all the other tuples m Outer buffer. For each
overlapped tuples we put the joined tuples in Obuffer we
check if the OBuffer 1s full, we write it to the result
realtion. The second stage; marked as inmer loop in
Algorithm 2, starts by reading each block of R after the

last block which was loaded in the outerbuffer and putting
itinthe imerbuffer. Then each tuple in the outerbuffer 1s
checked for overlapping with all the tuples in innerbuffer.
For each overlapped tuples we put the joined tuples in
Obuffer checking if the Obuffer 15 full, we write it to the
Result relation. This process will be repeated for each
partition of the relation R. Figure 1 represents the first
loop of the outer loop.

Block nested-loop join complexity: The complexity (T/O
Complexity) of this algorithm is composed of two parts;
the number of input blocks and the number of output
blocks from OBuffer to the Result relation.

The number of mput blocks includes:

» Reading all the blocks m R; Mb block each loop of
the outer loop = Rb

» Reading the blocks after the partition which 1s in the
outerbuffer

Algorithm 2: Modified block nested loop join
1: p#¥=Rb/Mb

2:Forp=1top#

3: /% Outer Loop */

4: Begin

5 Read Partp of R into OuterBuffer

6. For each ti in OuterBuffer

7. Begin

8: For each tj in OuterBuffer

9: Begin

10: If ti overlap with tj

11: Then put ti.tj OBufter

12: Tt OBufter is full then

write Obuffer to Result Relation

Endif

13: Endif

14 End

15: End

16: /* Inner Loop */

17: Fork=p * Mbto Rn

18: Begin

19: Read Bk of R to InnerBuffer
20: For each ti in OuterBuffer

21: Begin

22 For each tj in InnerBuffer

23 Begin

24: If ti overlap with tj

25 Put ti.tj in OBuffer

26: If OBuffer is full then

write OBufter to Result Relation

Endif

27 Endif

28: End

29 End

30: End /* InnerLoop*/

31: End

= Mb*(((Rb/Mb) * (Rb/Mb +1))/2)

= Mb*((p*(p+1))/2)

Inform. Technol. J., 10 (1):201-206, 2011

Main memoty Table R
Outerbuffer — 1
—
1 —
—/

=

Innerbuffer

]

Obuffer

Fig. 1: First loop in the block nested loop join

where, p 1s the number of partitions (Rb/Mb). So, the
complexity of blocks readings is :

BNLc = Rb + Mb*(((Rb/Mb) * (Rb/Mb +1))/2)

The number of blocks to be written depends on the
Overlapping Coefficient (OC) in the relation.

Modified sort-merge based join: The conventional
sort-merge based join algorithm is used for equi-join of
two relations, R and S. Tt starts by sorting the two
relations on the joimng attribute in each relation. As first
stage, we can use an external sorting algorithm. The
second stage merges the two relations on joining
condition. This method of joiming works very well for
equi-join since all participating tuples in joining each
relation are sequenced.

Algorithm 3: Modified sort-merge join algorithm
0: SortRonts

1: p#=Rb/MB

2: Forp=1top#
3: S*Chiter Loop */
4: Begin
5
6
7
8

: Read Partp of R into Chiter Bufter

: For each j in Outer Buffer

: Begin

. For each tj in Outer Buffer
9: Begin
9.1: MaxEnd = maximum end time in the Outer Buffer
10: I ti overlap with tj
11: Then put ti tj on O Buffer
12: Tt OBufter is full then

write O Buffer to Result Relation
Endif

13: Endif
14: End
15: End

Algorithm 3: Contimie

16: /* Tnner Loop™/

17: Fark=p *Mb to Rn

18: Begin

19: Read Bk of R to Inner Buffer
20 For each ti in Outer Bufter

21: Begin
22 For each j in Inner Buffer
23: Begin
23 I tj.s » Max End Exit Inner Loop
24: I ti overlaps with tj
25: Put ti.tj in O Buffer
26: If O Buffer is full then
write O Buffer to Result Relation
Endif
27 Endif
28: End
29: End
30: End/* Tnner Loop */
31: End

The joined tuples in overlap-join will be scattered in
the sorted relation, the joining algorithm will be in general
the same algorithm for Nested Block join. We will take
advantage from the sorting and property-3 of overlapping
properties, this means no tuple can overlap with all the
tuples that started after the end of that tuple. Tuples in R
are sorted on the start time.

Algorithm 3 15 a modified version of Algorithm 2.
Three lines has been added; line-0 sorts the relation R on
the start time, line 9.1 finds the maximum end time for all
tuples in Outer Buffer to be used for limiting the search for
overlapping tuples in line 23.1.

Modified sort-merge bases join complexity: A sort-Merge
base join algorithm always performs better than
Nested-Block join algorithms for equi-join. This is clear in
the literature of jomning operation. But as we will see in our
analysis of Overlap-Join, it 1s not quite true for overlap
jomn. The reason behind that related with elements order.
In equi-join elements participating in the joiung will be
sequenced in each participating relation, but for
Overlap-Toin the tubles participants in one jon will be
scattered over all the relation even whether the tuples are
ordered on start time or end time.

The worst case complexity for algorithm 2 has two
components; the sorting component and the merging
components:
¢+ The worst case two way sorting complexity
(Elmasri and Navathe, 2007) using external sorting is

Esc = (2*Rb)+(2*(Rb*(log,Rb))

» The second component complexity 1s the same as
block nested loop complexity which 1s:

Inform. Technol. J., 10 (1):201-206, 2011

5000+
—e— BNLc
80007 —w— SMc best
70001 —®— SMe worst
.E 6000
§ 50004
9 4000
£ 3000
20001
1000+
il 20 40 60 B8O 100 120 140 160 180 200
No. of blocks in R
Fig. 2: Block nested loop and sort-merge join

BNLc = Rb + Mb*(((Rb/Mb) * (Rb/Mb +1))/2)

and so

worst-case

Sme ESc+ BNLc

The worst case occurs when we have one tuple at
least 1n each sorted bock overlap with one or more tuples
in the last block of the sorted relation.

The best case occurs when the SC = 1, in this case,
for each outer loop we only read one block in InnerBuffer.
So, the merging complexity will be:

Rb + (Rb/Mb)
and so
SIMNC, o1 = ESC + (Rb + (Rb/MbY*sc)
SMCy o caee={ 2 ¥ ROH(2*(Rb*(log,Rb)) + (Rb + (Rb/Mb)*sc)
SMEy s cae= (3*RD) + (RB/MbY*sc + (2*¥(Rb*(log,Rb))

Note that we have considered SC in our formulation
for SMec, but we did not mclude SC in BNL¢. This 1s
because the tubles in BNL are not sorted.

Performance evaluation: Here, a graph showing the
performance of the proposed algorithms will be presented.
Fig. 2 shows the cost of the modified block nested loop
join and Modified Sort-merge Join. We are using 2-way
sort merge for external sorting and outerbuffer = 5.

From the cost formulas and the graph, three facts can
be seen.
* Sort-merge join for overlap-join in the worst case 1s
worse than the block nested loop overlap-join

205

Sort-merge join for overlap-join in the best case is
better than the block nested loop overlap-join, but
this is true when the relation r is big enough to
overcome the sorting cost

SC and OC have big effect on the cost function in
addition to the available buffer size

CONCLUSION

Overlap-Join is an important operation in many
applications and the cost of joimng operations is very
high in general. The standard algorithms cannot be used
directly with acceptable performance for overlap-jom.
Modified nested block jom and modified sort-merge
join algorithms has been presented and cost function
has been developed. Overlap coefficient and span
coefficient has been developed and used in the cost
functions. The study showed that using sort-merge is
not more efficient than the nested block jom especially
when the span coefficient is high.

REFERENCES

De Witt, D.J., I.F. Naughton and D.A. Schneider, 1991. An
evaluation for non equi-join algorithms. Proceedings
of the 17th International Conference on Very Large
Data Bases, Sept. 3-6, San Francisco, CA, TJSA.,
pp: 443-452.

Elmasri, R. and S.B. Navathe, 2007. Fundamentals of
Database Systems. 5th Edn., Addisen-Wesley, USA .,
ISBN-10: 0321369572, pp: 1168,

Gao, D., C.S. TJensen, R.T. Snodgrass and M.D. Soo,
2005. Toin operations in temporal databases. VL.DB
T.,14 2-29,

Graefe, G., 1993. Query evaluation techniques for large
databases. ACM Comput. Swveys, 25: 73-170.

Noh, S.Y. and SK. Gadia, 2005. Efficient self-join
algorithm m interval-based temporal data models.
Technical Report, Department of Computer Science,
Iowa State University, Ames, Iowa, USA.
http:/farchives.cs.iastate. edw/documents/disk0/00/0
0/03/86/index.html.

Noh, 5.Y. and S.K. Gadia, 2008. Benchmarking temporal
database models with interval-based and temporal
element-based tunestamping. J. Syst Software,
81:1931-1943.

PostgreSQL, 2002. PostgreSQL 7.3.2 user’s guide. The
PostgreSQL Global Group.
http: /fwww.postgresql.org/files/documentation/pdf
/7.3ser-7.3.2-Ad pdf.

Development

Inform. Technol. J., 10 (1):201-206, 2011

Saffarzadeh, M., IN. Kamal Abadi, A A. Kordam and
E.A. Gangraj, 2008. A new approach in airport
capacity enhancement based on integrated
runway assignment and operations planmng model.
I. Applied Sci., 8 4040-4050.

Schikuta, E., 2003. Performance modeling of the grace
hash jom on cluster architectures. Proceedings of the
17th International Symposium on Parallel and
Distributed Processing, April 22-26, Washington, DC,
USA., pp: 276.2-276.2,

Shen, H., 1995, An efficient permutation-based parallel
algorithm for range-join in hypercubes. Parallel
Comput., 21: 303-313.

206

Sinha, M. and S.V. Chande, 2010. Query optimization
using genetic algorithms. Res. I. Inform. Technol.,
2: 139-144.

Soo, M.D., R.T. Snodgrass and C.S. Jensen, 1994. Efficient
evaluation of the valid-time natural join. Proceedings
of the 10th International Conference on Data
Engineering, Feb. 14-18, Washington, DC, USA |
pp: 282-292.

	ITJ.pdf
	Page 1

