http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan




Information Technology Jownal 10 (11): 2024-2033, 2011
ISSN 1812-5638 / DOL: 10.3923/1t).2011.2024.2033
© 2011 Asian Network for Scientific Information

A Study on H-GEP: Gene Expression Programming with Homneotic Genes

Liu Yijun, Zhu Mingfang, Tang Jiali, Zhu Guangping and Jiang Hongfen
School of Computer Engineering, Jiangsu Teachers University of Technology,
Changzhou 213001, China

Abstract: Homeotic Gene Expression Programming (H-GEP) 1s a kind of Gene Expression Programming (GEP)
which infuses homeotic genes into the chromosome to achieve a new mapping from the biological mechamsms
to the GEP coding. Present study makes a further study on H-GEP. At first we analyze the expression space of
the H-GEP individual. Secondly, an algorithm named HNEC is presented which computes the value of the
expression encoded by an H-GEP individual without building an expression tree and expression. Thirdly, the
performance and characteristic of the H-GEP method for function discovery are studied. Providing a complex
and flexible way to link sub functions to form the target function, H-GEP is superior in discovery of complex
functions. Fourthly, we study the effect of normal gene number on H-GEP performance. Finally, one application
of H-GEP 1in the area of environmental quality assessment 1s presented.
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INTRODUCTION

Gene Expression Programming (GEP) proposed by
Ferreira (2001), is a novel evolutionary algorithm
developed from Genetic Algorithm (GA) and Genetic
Programming (GP). They are all computing models
simulating biological evolution but have the distinction of
their own encoding method and representative form of
results. With simple, linear and compact chromosomes
and easy genetic operators, GEP 15 a powerful global
search tool. It has become an active research area of
evolutionary computation and has been applied in many
fields such as regression, classification and time series
prediction (Tang et al., 2006, Zhu et al., 2010, Cheng and
Zhi-hua, 2007, Zuo et al., 2004).

In Ferreira’s works (Ferreira, 2006), there are three
typical GEP methods according to individual expression
ways. We call them Single-gene GEP(S-GEP), Multi-genes
GEP (M-GEP) and Homeotic-gene GEP(H-GEP). An S-GEP
chromosome comprises a single gene coding for an
expression. An M-GEP chromosome comprises multiple
genes whose corresponding functions are linked by a
preset link fimction to form an ultimate expression. In
recent years numerous researchers have investigated GEP
and propose a series of improved GEP methods which
may process data i specific fields with more
effectiveness and efficiency. Zuo et al. (2004) discuss two
GEP-based methods for time series prediction: One is
called GEP-SWPM (GEP-Sliding Window Prediction

Method) combining traditional  sliding window
prediction method with GEP and the other 1s GEP-DEPM
(GEP-Differentia Equation Prediction Method) which
mines differential equations from training data and predict
future trends based on specified initial conditions.
Inspired by the biological nature known as “seek
advantage, avoid disadvantage” Duan et al (2004)
present a Weak-adaptive Model (WAM) based on GEP
and a Relative Error Fitness Algorithm (REFA) to mine
functions from data with noises. Xiaodong et al. (2004)
propose the method of UEM (Uniform Expression Mimng)
which deals with complex functions having n expressions
{(n>1) in different domains as well as those having only
one umform expression. Lin et al. (2008) present a hybrid
GEP algorithm with niching. Combimng a k-means
clustering method and genetic mechamism, the algorithm
adjusts the minimum clustering distance to decide the
niching number
these improved GEP methods, the expression way of an
individual or chromosome use that of S-GEP and M-GEP.
Some researchers also propose GEP variations which
have novel individual structures and expression ways.
Peng et al. (2005) propose an evolution algorithm named
M-GEP (note here M-GEP is not Multi-genes GEP
mentioned above) based on the new concept of multi-
layer chromosomes in GEP which builds a level-call model
and storage structure between the different chromosomes.
Shucheng et al. (2008) propose an algorithm called MEGP
(Multi Expression Gene Programming) which builds a

to avold premature convergence. In
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multi-level encoding and decoding model within one
chromosome. Although, these GEP variations are more
effective for some problems, their individuals are complex
structured and difficult to decode. Besides there seems no
biological explanation for their chromosome structure and
working mechamsm.

In Ferreira’s work (Ferreira, 2006), a special kind of
gene called homeotic gene i1s mfused into GEP
chromosome. Homeotic genes are in charge of controlling
appearance of biclogical body. Normal genes, ie.,
downstream  regulatory
characteristics and forms of a single orgamsm, whereas
homeotic genes determine the overall appearance of
biclogical body by wvarious permutations and
combinations of normal genes. Mutations of either normal
genes or homeotic genes will affect biological appearance.
In the process of biological evolution with the multiple
factors arising from gene expression systems and

genes, determine  the

complexity of mechamsms and structures increasing, gene
expression system 13 possible to have a rapid upheaval
and big transformation, leading to leaps in biclogical
evolution (Qichang, 2005). An infusion of homeotic genes
mto GEP achieves a novel mappmg from biological
mechamsm to GEP encoding: Normal genes in
chromosome encode sub functions called by the function
encoded by a homectic gene. Consequently the individual
codes for a relatively complex function.

GEP with homeotic genes 13 named Homeotic Gene
Expression Programming, H-GEP for brevity. H-GEP has
been applied to the fields such as regression,
classification, function discovery, etc. (Ferreira, 2006).

DEFINITIONS AND METHODOLOGY

Here, the definitions of several terms, such as gene,
chromosome and population are given below.

Definition 1. (Normal gene): A normal gene G is a 3-tuple,
denoted by G = (S, F, T), where S (String) 1s a string with
fixed length, F (Function) 13 a set of computing
functions, T (Terminal) is an alphabet, a finite set of
labeling symbols.

Definition 2. (Homeotic gene): A homeotic gene G'1s a
3-tuple, denoted by G' = (3, F', T"), where 3' 13 a string with
fixed length, F' 15 a set of computing functions and T'1s a
set of functions encoded by normal genes.

The S or 8, also called gene for simplicity, is
composed of two different domains of a head and a tail
domain. The head domain contains symbols representing
both functions and terminals whereas the tail is composed
of only terminal.

When the head length h is chosen, the tail length t is
evaluated by the Eq. 1:

t=h(m, -1 +1 Y]

where, n . 18 the maximum numnber of arguments of the
function in function set, also celled maximum arity. Thus,
the gene encodes a legal program.

Although, S or ' is of fixed length, it is composed of
two parts of variable length: The useful part and the
useless part. The useful part is referred to as the Open
Reading Frame (ORF) and the useless part 1s called the
non-coding region.

Note that this study focuses on the GEP methods
with a single output. Thus the chromosome is defined as
below.

Definition 3. (Chromosome): An S-GEP chromosome C,
is a 1-tuple, denoted by C; = (G) where, G is a normal gene.
An M-GEP chromosome C,; 13 a 2-tuple, denoted by
Cy = (U,, f) where, U, is a set of normal genes and f is a
link function which 18 used to link genes to form an
expression. An H-GEP chromosome Cy is a 2-tuple,
dencted by Cy = (U, HG) where, U, is a set of normal
genes and HG is a homeotic gene.

Definition 4. (Population): A population is a set of
individuals which comprise a chromosome.

The expression encoded by a normal gene in an
H-GEP chromosome 1s referred to as the Automatically
Defined Function (ADF). A normal gene gene; is decoded
into an ADF,.

Example 1: To illustrate terms above, function set
F={+ -, x,/} and terminal set T = {a, b} are used.
Assume .= 2 and h = 5 and hence, tail length t = 6.

(a+axb)a
Fig. 1: ET of an S-GEP chromosome
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a. ET of geng, b. BT of pene,
(at+axbya a/(a/b-b)
((atax b)l')'*(ﬂf(ﬂa'b-b))

Fig. 2 (a-b): ETs of an M-GEP chromosome

b. ET of gene,
ADF;: a/(a/b-b)

NG
(0 @D
(o) gy Coon)

¢.ET of gene,
(ADF +ADF,¥ ADF -ADF,

{(a+axb)yaH{a+axbya)({a+axb)a)-(a (ab-b))

& ET of gene,
ADF;: (at+a x b)a

Fig. 3 (a-c): ETs of an H-GEP chromosome

An S-GEP chromosome, with the tail shown in boeld,
is given below:

/4aaxabbbaa

Figure 1 shows the Expression Tree (ET) encoded by
the gene. The nodes of the ET correspond to the gene
ORF, 1.e., Haaxab.

An M-GEP chromosome comprising two genes is
given below:

/Haaxabbbaa/a-/bababba

Let gene, be the first gene and gene, be the second
one. Figure 2 shows the ETs and expressions encoded by
two genes. The function “+” 18 used to lmk sub
expressions to form an ultimate expression.

Example 2: Here, function setF =F = {+ -, %, /}, terminal
set T = {a, b} and T' = {ADF,, ADF,} are used. Let hand
h' be head length of the normal gene and the homeotic
gene, respectively. Assume n,,.= 2, h=35andh' =4 and
hence, their corresponding tail length t = 6 andt' =5

An H-GEP chromosoeme comprising two normal genes
and one homeotic gene 13 given below:

/+aaxabbbaasa-/bababba-/2+11121

Let gene, be the homeotic gene, 1.e., -/2+11121, gene,
be the first normal gene, i.e., Haaxabbbaa and gene, be
the second one, ie., /a-/bababba. The 1 and 2 in gene,
represents ADF, and ADF, which are encoded in gene,
and gene,, respectively. Figure 3 shows the ETs and
expressions encoded by genes.

ANALYSIS OF EXPRESSION SPACE

Definition 5. (Expression Space, ES): Let E, be the
expression encoded by the individual 1. The expression
space of I 1s denoted as ES (I) which 13 length of the
expression B, 1.e., the number of symbols of functions and
terminals in E,.

For the individual T in example 2, E, = ((ataxb)/
at{ataxb)/a)/((ataxb)a)-(a/{a/b-b)). Length of E, 15 31
and hence, ES (I) = 31.

For 5-GEP genes, M-GEP genes and H-GEP normal
genes, let h be head length and t be tail length. For an
H-GEP homeotic gene, let h' be head length and t' be tail
length. Assume that an M-GEP individual has k genes and
an H-GEP individual has k normal genes and 1 homeotic
gene.

Lemma 1: For an S-GEP mdividual I, its maximum
expression space max (ES (Ig)) = h+t.

Proof: In S-GEP method, an mndividual contains one
normal gene. In best case, the gene is fully expressed.
Hence, max (ES (I,)) = h+t.

Lemma 2: For an M-GEP individual T, its maximum
expression space max (ES (T,)) = k (h+t) + k-1.

Proof: [t follows from Lemma 1 that the maximum
expression space of a normal gene 13 h+t when the gene
1s fully expressed in best case and as such, the maximum

2026



Inform. Technol. J., 10 (11): 2024-2033, 2011

—e— S.GEPInd
9004 —— M-GEPInd
—»— H-GEPInd

Maximum expression space

Head length of genes

Fig. 4: Maximum expression space of individuals

expression space of k genes 1s k (h+t). The k-1 function
connectors are needed to link k genes to form an ultimate
expression. Hence, max (ES (Ty)) = k (h+t)+k-1.

Lemma 3: For an H-GEP individual T, its maximum
expression space max (ES (T,;)) = (ht+t) t+h'.

Proof: Consider that in the best case the homeotic gene
and normal genes of I are all fully expressed. The
homeotic gene’s head contains h' function symbols and
the tail contains t' functions enceded by normal genes. It
follows from Lemma 1 that the expression space of a
normal gene 1s b+t Hence, the length of the expression
encoded in I, 1s (h+t) t'+h'. As such, max (ES (I)) = (h+t)
t+h'.

Note that by Lemma 1-3, max (ES (1)) only relates to
the gene length, max (ES (I,,)) relates to both the gene
length and number of genes and max (ES (I,;)) relates to
the length of normal genes and the homeotic gene but not
the number of normal genes. To facilitate comparison,
here we assume n,,, in Eq. 1 15 2, k = 5, h' = h and hence,
t'=t=htl. Figwre 4 shows maximum expression space for
three kinds of individuals in the case of variable head
length. With head length increasing, the H-GEP individual
exceeds the S-GEP individual and the M-GEP individual
fast in maximum expression space when head length 1s
greater than 5, the value of k.

HNEC: NON-EXPRESSION COMPUTATION FOR
H-GEP INDIVIDUALS

A key step to implement GEP algonthm 15 to translate
a chromosome of linear symbol string to a nonlinear
struchwed ET and math expression. Ferreira (2001)

proposes the hierarchy method to build an ET. Datong
and Qiaoyun (2008) propose two decoding methods for
GEP to build an expression. One obtains the expression
on genotype of GEP and the other obtains it by stack.
Hang et al (2006) propose a Gene Read and Compute
Machine (GRCM) which directly computes value of an
expression without building an ET or expression but
does not indicate how to compute ORF length of a gene.
Mo and Kang (2008) present the algorithm of computing
the ORF length. However, this algorithm is for genes
having 1-place, 2-place and 3-place functions only. Here
we present a umversal algorithm to compute the ORF
length, together with its computing prnciple. By
extending the algorithms by Jiang et af. (2006) and
Mo and Kang (2008) we present a algorithm named HNEC
(H-GEP Non-Expression Computation) which computes
the value of the expression encoded by an H-GEP
individual without building an ET or expression.

Computation of ORF length: In an H-GEP chromosome
Cy = (U, HG), Let U = {gene, gene, ..., gene }, the
homeotic gene HG be gene,. Let T={t, t, ..., t}, T' =
{ADF| ADF, 1s encoded by gene/A1=1,2, ... ,n} and F =
Fr={f.f, .. £} Thef isad (f)-place function, e.g., d
(t)=2,dog)=1.

Let t (f) be the number of f in the gene ORF and
such as:

sum_d = Yd (£)t(£)

i=1

is the number of arguments needed by all functions in the
gene ORF.

Theorem 1. The gene ORF length 1 and sum_d above
satisfy the equation ] = sum_d+1.

Proof. A gene ORF corresponds to an ET and hence,
the number of nodes in the ET is 1. Except the root in
the ET, each node is an argument of its father node
which a computing function and hence, the mumber of
nodes as function arguments is 1-1. Whereas sum_d is
also the number of arguments needed in a gene ORF or its
corresponding ET. Hence, 1-1 = sum_d, 1.e., | = sum_d+1.

The process to compute the ORF length of a gene 1s
described in Algorithm 1.

The chromosome in Example 2, 1.¢., /+aaxabbbaa/a-
/bababba-/2+11121, 15 used to illustrate Algorithm 1.
Table 1 shows computation of the ORF length of gene,,
l.e., /raaxabbbaa. Fially, length 7 1s obtamned and thus
the ORF 1s Aaaxab. In the same way, the ORF length of
gene, is 7 and its ORF is /a-/bab and the ORF length of
gene, 18 7 and its ORF 15 -/2+111.
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Table 1: An example of computing the ORF length of a gene

Step

1 2 3 4 5 6 7 8
1 0 1 2 3 4 5 6 7
[} ! + a a p a b
d (e) 2 2 2
sum d 0 2 4 4 4 6 6 6

Table 2: An example of computing @, (xX)

m [ Sy q 5 = (81,8,....57)

7 7 (/,+, 10, 10, =, 10, 20)

6 b 7 (/,+, 10, 10, =, 10, 20)

5 3 200 5 /,+, 10, 10, 200, 10, 20)

4 a 5 /,+, 10, 10, 200, 10, 20)

3 a 5 /,+, 10, 10, 200, 10, 20)

2 + 210 3 (/, 210, 10, 10, 200, 10, 20)
1 ! 21 1 (21, 210,10, 10, 200, 10, 20)
Algorithm 1 ORF_length

Input : A gene gene

Output ORF length | of gene

1 : 1-0; sum_d~0

2 : Repeat

3 1-1+1

4 If g reprsents £}, then sum_d-sum_d+d (f)

5 /1 & is the 1% bit of the gene gene

6 Until 1 =sum_d+1

7 Retun |

Computing value of expression for instances: Tett=(t,,

t3, ..., toJ and the function expression encoded by
individual I be y (t). For each normal gene gene,cU, (1= 1,
2, ..., n), it encodes the function expression ¢; (t).

Homeotic gene gene, encodes the function expression ¢,
(8), 8 =081, -8 = (£) (1=1, 2, ..., n). Substituting
¢, (1) forg, v (1) = (. (0, @,(t)..... @, () is obtained. For
an nstance X = (X, Xz, ..., Xo), ¥ (X) = @@, (x), @, (x), ...,
$,(x)).

The global algorithm HNEC for an H-GEP Individual
is outlined in Algorithm 3, in which v (%) is attained. Each
@ (x)(1=1,2,...,n)1s computed by lines 1 to 3 firstly and
then @4, (X), @, (X), ..., @(x)), iL.e., ¥ (X), is computed by
lines 4 to 5.

Algorithm 2 describes the computation of ¢,(v). The
varablevisxfori=1, 2, ..., nand {(@,(x), @,x),.... ¢ x)) for
1 = 0. The intermediate variable v unifies evaluation of
normal genes and homeotic gene.

Similar to Algorithm 1, 2 and 3 are illustrated by the
chromosome in Example 2.

Assume t = (a, b) and an mstance x = (10, 20). Thus
v =x = (10, 20) according to line 1 of Algorithm 3. For
gene, the ORF length is 7 and as such the ORF
e,e,8,8,8.8.8,=/taaxab. According to lines 3 to 6 of
Algorithm 2, s = (/,+,10,10,%,10,20) is obtained by
substituting v, and v, for a and b in ORF, respectively
Table 2 shows the computation of ¢,(x) on s according to
lines 7 to 12 of Algonthm 2. Finally, s, = 21 and as such ¢,
(x)=21.

Algorithm 2 Gene_value

Input : A chromosome C, i, v
Output. value val of q; (v)

1: [-ORF length (gene)
: ff eje;... g is ORT of gene gene;

3 s-ee... e/ s=(5, 8, ...5), 5 g
4 form=1to/

5: if e, reprsents t; then s, v

6: if e, reprsents ADF| then s, - v;

7: q-1

8: for m={ downto 1

9 if e, reprsents f; then

10: S~ £ (Sqagyttse - » St Sy)

11: q-g-d (f)

12: val-s,

13: return val

Algorithm 3 HNEC

Input : A chromosome C, x

Output Value val of v (x)

1: VX

2: Fori=1ton

3: Gi~Gene Value (C, i, v)

4 veg g =g, g o 8) = (g G0, 92 (X, ., (XD
5: Val-Gene_value (C, 0, v)

[iX Retumn val

Similarly ¢, (x) = -0.513 and hence, g = (@, (x), ¢, (x))
= (21, -0.513), v = g = (21, -0.513). For gene,, the ORF
length is 7 and the ORF -/2+111. Substituting v, and v, for
1 and 2 in ORF, respectively; s= (-/,-0.513,+,21,21,21). By
Algorithm 2, ¢, (v) = 2.513 and as such y (x) = 2.513.

Complexity analysis of the algorithm HNEC: In
Algorithm 3, each ¢, (x) ing = (¢, (X), @, (X),.... ¢, (X)) is
computed by callmg Algorithm 2. In Algorithm 2 of
computing @, (x), Algorithm 1 is called to compute ORF
length of gene,. Scanning the gene, a string with length
h+t, Algorithm 1 has computing time O (h+t). Thus,
Algorithm 2 also has computing time O (h+t). Hence,
Algorithm 3 HNEC has computing time O (nx(h+t)) to
compute ¥ (x).

A COMPARATIVE STUDY ON S-GEP, M-GEP
AND H-GEP

Function discovery is one of the most successful
applications of GEP. Here we study the performance and
of H-GEP in function discovery. All
experiments are conducted on computers with an INTEL

characteristic

Core 2DuoProcessorE2160 with 2G memory, ruming
Windows XP. All algorithms are implemented in C and
programs are executed on VC++ 6.0,

Experiments and results
Experiment 1: Discovery of function f; (x, v) = x’y +x%y
xy- xfy +1.
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Let the 2-place function f, (x, y) be the test function.
30 fitness cases are randomly generated in the interval
(-10, 10). The link function of “+” 1s used to link M-GEP
genes.

Here the absolute error function with selection range
is used as fitness function (Ferreira, 2006):

Fit= Y (R -|P—T|) (2)

where, Fit, 1s the fitness of the ith individual, R is the
selection range, P, is the value predicted by the ith
individual for fitness case j and T; is the target value for
fitness case j.

Individuals are selected according to fitness by
roulette-wheel sampling. This kind of selection together
with simple elitism and the fitness function Eq. 2 are used
in all problems of this study.

In GEP, genetic operators except selection and
replication are referred to as modification operators.
Modification operators of normal genes comprise
mutation, inversion, insertion sequence, root insertion
sequence,  two-point  recombination, one-point
recombmation, gene recombination and gene
transposition. Modification operators of the homeotic
gene comprise mutation, inversion, insertion sequence
and root insertion sequence. The parameter setting for all
GEP methods are shown m Table 3. For mformation on
how to set these parameters (Ferreira, 2006).

Table 4 presents the performance of three methods in
1000 executions, respectively. In a successful run, the
generation, in which for the first time the target function
1s discovered, 1s referred to as success generation.

The results showed that H-GEP outperforms S-GEP
significantly on the test function f,. The success rate of
H-GEP 1s 17.2 times that of S-GEP. Minimum success
generation of H-GEP 1s 39.2% of that of 3-GEP. Average
and maximum success generations of H-GEP are close to
that S-GEP. However, M-GEP outperforms H-GEP with
higher success rate and the success rate of M-GEP 15 8.26
times that of H-GEP.

Experiment 2: Discovery of function f; (x, v) = (x5 )/(2x+y)
-y

The parameter setting in Experiment 2 remains
unchanged as Experiment 1.

Table 5 shows that both S-GEP and M-GEP fail to
discover the target function f, and H-GEP discovers it
with a low success rate of 0.2%.

Analysis and discussion: Note that M-GEP shows
significantly different performance in Experiment 1 and

Table 3: Parameter setting in experiment 1

Parameters 3-GEP M-GEP H-GEP
Number of 1000 1000 1000
Generations

Population size 51 51 51
Function set of +, -, 5 + -, %,/ +, -, %/
Normal genes

Terminal set of X, ¥ Xy XY
Normal genes

Number of 1 7 6
Normal genes

Function set of - +, -, %/
A homeotic gene

Terminal set of - ADF|—ADF;
A homeotic gene

Head length of 38 5 5
Normal genes

Head length of -- - 5

A homeotic gene

Chromosome 77 77 77
Length

Modification rate 0.1 0.1 0.1

In normal genes

Modification rate 0.1 0.1 0.1

In a homeotic gene

Selection range 1002% 100% 10006

Table 4: Success rates and success generations in experiment 1
Success Average success Minimum success Maximum success

Gene rate (%) generation generation generation

5-GEP 0.5 611 176 1000
M-GEP 71.0 436 46 999
H-GEP 8.6 667 69 995

Table 5: Success rates and success generations in experiment 2
Success Average success Minimum success Maximum success

Gene rate (%) generation generation generation
3-GEP 0 -- - --
M-GEP 0 -- - --
H-GEP 0.2 636 278 994

Experiment 2. The reason is that the sub functions of f,
e.g., X'y, X'y, etc. are linked in a simple way of addition
which is consistent with the preset connector “+” of
M-GEP. M-GEP in experiment 1 obtains a high success
rate of 71%. However, the sub functions of f;, e.g., x-y,
2x+y, x*/y*, ete. are linked by multiplication and division
but not the preset link function. Tt’s not amazing that
M-GEP fails to discovery function f,.

In addition, for both S-GEP and H-GEP methods, the
results of Experiment 1 are more satisfactory than that of
Expeniment 2. In Experiment 2, S-GEP fails to discover the
target function f, and H-GEP discovers it with a low
success rate of 0.2%. Besides the randomness of
algorithm execution we think the reason 1s that the
function f; has more equivalents than f,. By commutative
law of addition, equivalents of f, such as x’y'+ xX'y+xy’-
xfy +1, 1+ x'y +x%* +xy’- x/y, etc., can be attained. By
distributive law of multiplication, equivalents of f,, such
as xy (x* txy H - xAy 1, % (xy H7) Fxy - ¥y L xy ()
+x*y* - x/y +1, etc., can be attained. Hence, f, has a greater
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Fig. 5: Evolving curves of H-GEP on {2

probability to be discovered than f, for both S-GEP and
H-GEP. In limited times of runs, it’s acceptable that S-GEP
fails to discover the function f,.

Figure 5 shows the progression of average
fitness of the population and the fitness of the best
individual for a successful run of H-GEP on the test
function f,.

With a relatively high genetic diversity maintained in
evolving, the H-GEP system 1s healthy and strong. The
evolved solution appears in the 994th generation. The
chromosome of the best individual 1s shown below:

¢ -t YT TYYXXXY-XYXXXYYXYXT-

Ry XY HY KOOy Ty Y Y Y XY YXY X XYY XY KXY XYY -
/121366111

The expressions encoded in genes are presented in
Table 6. Normal genes are gene,-gene; and the homeotic
gene gene,.

The homeotic gene gene, is decoded into the
function expression of ADF,/ADF, —ADF./ ADF, With
substituting the corresponding expression for each ADF,
the target function (x-y)/(2x+y) — x*/y’ is obtained.

Table 6 shows that normal genes of gene,, gene,,
gene, and gene discover the sub functions of 2x+y, x-y,
x* and y ] respectively. Normal genes have powerful
capability of searchung sinple problem spaces. The
homeotic gene is capable of searching complex problem
space. Compared with S-GEP and M-GEP methods, H-GEP
15 a more powerful global search tool.

Conclusions: The results of all experiments allow us to
draw some characteristics of the three algorithms
discussed in previous sections. An S-GEP chromosome

Table ¢: Genes and their corresponding expressions

Gene String Expression

gene, -ty Hhyyooy ADF: 2xty

gene; -XYRCO Y XYY ADF;: x-y

gene; XXXy XY ADF;: ¥2

gene, +y20000000 ADF,: xty

genes TyyyyRyyxyx ADFs: 2y

geneg XYYXY Y XYY ADF;: ¥

geney -/21366111 ADF,/ ADF, —ADF+/ ADF;4

that comprises a single gene coding for an expression is
simple in structure. But for complex problems, such as
complex function discovery, the S-GEP mdividual’s
expression space and search capability i problem spaces
are limited by the characteristic that the single gene codes
for one recusive function independently. An M-GEP
chromosome  comprises multiple genes
corresponding  functions are linked by a preset link
function to form an ultimate function. The M-GEP method
attains satisfactory results in case that the target function
15 formed by lnking sub functions with the preset
function of M-GEP. However, note that the link function
is predetermined and the sub function encoded by a
gene appears only once in the ultimate function. When
the sub functions are linked mn a sophisticated way to
form the target function, the M-GEP method is
outperformed by the H-GEP method. H-GEP provides a
sophisticated and flexible way to link sub functions. In an
H-GEP chromosome, normal genes search simple problem
spaces and the homeotic gene 1s capable of obtaming the
solution of a complex problem space.

whose

EFFECT OF |U;| ON H-GEP PERFORMANCE

Experimental results: In an H-GEP individual, the
chromosome comprises two kinds of genes. Here we
study how the normal gene number n = [U] affects the
success rate of H-GEP.

Experiment 3: Effect of |U | on the H-GEP success rate.

|
g

Here, the test function in Experiment 1 is used and the
parameter setting remains unchanged. Figure 6 shows
success rate for each n of 1-10 in 1000 runs.

When the normal gene number n 1s set to 1, H-GEP
fails to discover the test function. When n is set to 2-6,
H-GEP succeeds to discover the function and success
rate increases with n. When n 1s set to 7, the best success
rate of 9.9% 1s obtained. When n is set to 8-10, H-GEP also
succeeds to discover the function but success rate
decreases with n.

Analysis and discussions: Let f be the target function.
Assume f = g (0, Wy,..., 0,), theset S={w;|i=1,2, ...,
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Success rate (%)
T

Number of normal genes

Fig. &6 Effect of |Ug| on the success rate

m} is a set of sub functions of f. Let ¢, be the function
encoded mn gene gene, of the individual I. As such, §' = {g,
i=1,2, .., n}is aset of functions encoded in normal
genes of gene -gene, and the homeotic gene gene,codes
for @, When Sc&8', the set U, of normal genes
successfully discovers 3. When @, (¢', ¢'5,.... @',) = g (v,
W,,..., W), Where gy =g and @ieS'A @l =w, (1=1,2, ..., m),
the homeotic gene successtully discovers g. In H-GEP,
normal genes are used to discover S and the homeotic
gene discover g and as such f 13 discovered by the
individual T.

The mtuitive reason is as follows. In evolution normal
genes discover simple sub functions, such as x'y, x/y
etc., so the increase of normal gene mumber n help
increase the probability to discover sub functions.
Hence, at first the success rate is improving. However,
with increase of i, it becomes difficult for a homeotic gene
to search more normal genes to find out the ones coding
for sub functions. Then the success rate decreases.

A simple mathematical illustration is given below.
In time interval (t, t;), let p, be probability of normal
genes discovering 3, p, be probability of a homeotic
gene discovering g and p be probability of an
individual I discovering f. Here p=p,p,. The normal gene
number n = [U | = [S'].

On the one hand, with larger n, 1.e., larger size of
normal gene set, comes the larger probability of normal
genes discovering S by parallel search. As such, p,
should be an increasing function of n and let p= « (n).
When n~0, p,~0 and when n~+8, p,_1.

On the other hand, with larger n, |S|/|S'| decreasing,
comes the smaller probability of the homeotic gene
discovering g. As such, p, should be an decreasing
function of n and let p,= P (n). When n-0, p,~1 and when
n-+es, Py,

For simplicity, assume p,+p,=1 and as such & (n}p
(n) = 1. Hence:

p = PP (P () = e (m)<(1-a () st o (me(0,1)
(3

Since ¢ (n) is an increasing function, I n = ny, Ph.=0
(m)=(1-¢¢ (r)). (0, ny) 15 an 1increase mterval where p
increases with n increasing and (0, n,) is a decrease
interval where p decreases with n decreasing.

The performance of the H-GEP method cormrelates with
the normal gene nmumber more or less but there s no
rigorous theory indicating how to set n The above
empirical result and analysis shows that for a concrete
problem, there should be an optimal value range for n,
with which the H-GEP algorithm has a high success rate.
In  conclusion, the  algorithm has the best
performance when the normal gene number matches the
problem space.

APPLICATION CASE

Definition of the problem: Here, one application of
envirommental quality evaluation built on H-GEP are
briefly presented which show that H-GEP and its
implementation described mn this study work well in real
domain.

Let P={p.ps ... Pt besetof momtoring points,
X = ix, X, ..., X} be attribute set. For attribute value
vector (X, X, ... .%,) of each momtoring pont p,, there 1s
a corresponding evaluation score y, of p. Hence there is
a mapping { between them and as such v, = £ (x;, x;;, ....x).
Here H-GEP algorithm is used to discover f, an
approximation of f. For a monitoring point to be assessed,
the input of f 15 its attribute value vector and output 1s the
evaluation score.

Results and comparisons: In this study, attribute set X =
{atmosphere (x,), surface water (x,), groundwater (x;), soil
(x,)}. Environmental quality 1s divided into 4 classes of A,
B, C and D where A represents no pollution, B light
pollution, C moderate pollution and D signifies heavy
pollution. Each evaluation score in the interval (0, 10) is
mapped to one class. The interval (0, 1) 1s mapped to A.
(1, 2.5), (2.5, 5) and (5, 10) are mapped to B, C and D,
respectively.

Twenty samples are tabulated in Table 7 which are
from 20 different monitoring points in a certain region
(Yong et al., 2009). The samples of monitoring point 1-8,
14 and 15 are fitness cases and the rest are test cases.
These attribute values have been normalized to a
relatively small range (0.1, 1) by using a linear mapping
below:
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Table 7: Normalized data set in the environmental quality evaluation

Monitoring point Atmosphere Surface water Ground water Soil Evaluation score Environmental quality
1 0.1010 0.1000 0.2171 0.1130 0.9 A
2 0.1000 0.1024 0.2220 0.1130 0.9 A
3 0.2173 0.2156 0.2951 0.1000 1.8 B
4 0.2000 0.1094 0.2366 0.1097 1.6 B
5 0.2168 0.1496 0.1000 0.1173 1.7 B
6 0.2284 0.2864 0.9000 0.1336 2.2 B
7 0.6198 0.1755 0.4220 0.1227 4.4 C
8 0.3554 0.2864 0.5732 0.1195 2.9 C
9 0.4322 0.2628 0.2463 0.1217 33 C
10 0.2067 0.1590 0.2951 0.1152 1.7 B
11 0.9000 0.5224 0.3537 0.1314 6.6 D
12 0.5880 0.3336 0.2902 0.1758 4.5 C
13 0.2775 0.1496 0.2951 0.1173 2.1 B
14 0.6082 0.1330 0.5878 0.4735 52 D
15 0.5329 0.5224 0.3439 0.9000 5.9 D
16 0.5243 0.1850 0.7049 0.1693 4.1 C
17 0.2896 0.1519 0.3098 0.1227 22 B
18 0.5637 0.9000 0.7146 0.3349 54 D
19 0.3073 0.1684 0.8951 0.1520 2.7 C
20 0.5030 0.7442 0.5878 0.1671 4.5 C
, A= Table 8: Parameters for the environmental quality evaluation
a= mx 08+01 Number of generations 1000
Population size 51
Function set of normal genes +, -, %,/
where, a is the value to be mapped, the minimum value, Terminal set of nommal genes Xy, X, K, Ky
the maximum value and a' the normalization of a. Number of normal genes 7
. . . . Function set of a homeotic gene +, -, %,/
The basic parameter setting for environmental quality Terminal set of a homeotic gene ADF, —ADF,
evaluation 18 shown in Table 8. Head length of normal genes 5
After 1000 generations, the chromosome of the best Head length of a homeotic gene 5
L. . .. Modification rate in normal genes 0.1
ndividual in populatlon 15 as follows: Modification rate in a homeatic gene 0.1
Selection range 10006
LR PO 020 0O O HAS A Rp A OO OO OLS G005 S 56058
Table 9: Test results of H-GEP, 8VM and LM-NN
B AREP OO0 O8I OO EOAN A6 H6.0.5.6 Predictive value
IR KXo X X X XX o 2165477 Monitoring ~ Ewvaluation
point score H-GEP SVIM LM-NN
The chromosome codes for f: 6x, 45,45, %, X %x,42x.%,. 9 3.3 3.1761 3.2730 3.0548
. Table 9 tabulates the test resul§ of H-GEP together 1? é:g éggg é:;g?g égfg
with that of Support Vector Machine (abbr. SVM) and 12 45 43687 44721 43065
neural networks (abbr. NN). There are numerous types of 13 21 2.1006 21530 21916
: 16 4.1 4.1397 4.0048 44872
neural netwo.rks and we choose the widely used BP neural 17 22 21966 5 2524 22636
networks with the fastest Levenberg-Marquardt (abbr. 18 54 5.8000 52250 4.9802
LM) learming algorithm. The prediction of SVM and 19 27 2.7370 2.6127 2.9165
20 4.5 4.5458 4.3763 4.8181

LM-NN are from Yong et al. (2009) and Yijunet al. (2010)
respectively. According to Table 9, average relative error
of H-GEP, SVM and TLM-NN prediction are attained 2.09,
2.19 and 6.13%, respectively. According to predictive
values, all test cases are labeled with right quality classes
in H-GEP and SVM. In LM-NN, the 18th monitoring point
with heavy pollution is labeled with the wrong quality
class of moderate pollution. These three methods are all
effective in environmental quality evaluation because
their predictive accuracy is all beyond 90%. Nevertheless,
the results of H-GEP and SVM are significantly better
than that of LM-NN with a lower average relative error
while the result of H-GEP 1s shghtly better than that of
SVM. Superior in predictive accuracy to SVM and

LM-NN, H-GEP also presents an easy understood explicit

expression between independent variables and the
dependent variable. Hence, this function discovery task
1s successfully accomplished by H-GEP.

CONCLUSIONS AND FUTURE WORK

Inspired by the phenomenon of biological evolution
and modern genetics, GEP 1s a heuristic stochastic search
method and has been proven to be a powerful global
search tool. Furthermore, for H-GEP method, homeotic
genes are infused into the chromosome. The artificial
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evolutionary system of H-GEP is driven by two types of
genes, normal genes and homeotic genes.

Analysis and experiments show that homeotic genes
not only expand expression space of individuals but also
make the evolution of linking functions possible and
H-GEP methed 1s more capable for function discovery. An
algonthm called HNEC 1s presented to compute the value
of the expression encoded by an H-GEP individual
without building an ET and expression. Algorithm HNEC
has computing time O (nx(h+t)) to compute the value
predicted by an individual for an fitness case. Hence, the
gene number and gene length affect the time performance
of the algorithm. In addition, although we find out the
normal gene munber has a great effect on performance of
H-GEP we can’t present rigorous rule indicating how to
set the number. To improve the performance of H-GEP
algorithm, it’s necessary to make a further study on how
the gene length, gene number, genetic operators, etc.,
affect the evolving of H-GEP systems.

A weakness of our study on H-GEP is that, although,
we apply H-GEP to environmental quality evaluation, the
data set 1s still small. In most real world tasks, both the
traiming set and the test set are very large, comprising
tens of thousands or even millions of instances. Try to
apply present results to more real-world applications,
then, 1s a very important 1ssue for future work.
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