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Abstract: This study discusses a semi-physical simulation platform for Adaptive Front lighting System (AFS)
based on vehicle driving simulator. The research background, performance and development of AFS are
introduced firstly. Then the architecture of AFS is proposed which includes three parts: vehicle sensors, control
module and actuator unit. On the semi-physical simulation platform, the signals of gear, throttle pedal, clutch
pedal, brake pedal and steering wheel are sampled by PC and with which the vehicle kinematics model 1s
established. On the base of these, a genetic-based hybrid fuzzy-PID controller is proposed for coordinately
controlling of AFS. This developed controller has capability to collect sensors data, send them into the
algorithmic program and control front light up-down and left-right movement. The kinematics model and
controller are tested on the semi-physical simulation platform and the results can be analyzed. This provides
a convenient testing platform for control algorithm of AFS.
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INTRODUCTION

Preventive and active safety of road vehicles is one
of the top priorities in car design and development
nowadays. Passive and active safety systems have been
developed in research and development activities to
produce vehicles that will perform at the highest level of
safety and ensure comfortable driving under various
conditions (Hacibekir et al., 2006). Moreover, researchers
have been trying to develop preventive and active safety
systems that will actively support driving safety using
today's advanced electromechamcal systems.

The major problem hindering safer and more
comfortable driving is the driver’s limited reaction time in
the presence of changing road conditions. An aim of
development m active safety 1s to reduce the reaction time
of the driver by unproving visibility and thus achieve a
significant increase in road safety and driving comfort.
Alexander and Lunenfeld (1990) mentioned that driving an
automobile 1s primarily a visual task because vision
contributes as much as 90% of the information needed to
drive. Good visibility contributes to driver confidence and
enables more relaxed and safer driving. Moreover,
statistics clearly show that the majority of accidents take
place at mght or m bad weather because of low visual
conditions (Shadeed and Wallaschek, 2007). So under
such conditions, it is of great importance to use available
technology to contribute to road safety by improving the
visual conditions provided by vehicle front lights.

Lighting in modern vehicles has been steadily
iumproving in the last decades. Modern technology
provides new light sources and more powerful optical
systems. With current sensors and control equipment,
advanced dynamic lighting systems are possible. The
Adaptive Front lighting System (AFS) is the outcome of
engineering efforts in developing the next generation
lighting systems not only for drivers but also for all other
road users. As the active-safety system, AFS has been
paid more and more attention. Now R123 applied to
Adaptive Front Lighting System (AFS) is issued by
United Nations Economic Commission for Europe
(Roslak and Wallaschek, 2004) and regulations are
expected within years in our country.

AFS 18 an active-safety front lighting system which
will enhance visibility at night by changing the light
distribution according to the road and the driving
condition (Hacibekir et al, 2006, Roslak and
Wallaschek, 2004). In the horizontal plant, low beam of
front light has ability to swivel horizontally which
according to steering wheel angle and vehicle velocity; in
the vertical plant, low beam front light can swivel
vertically according to vehicle gradient which getting from
horizontal sensor. Due to the automatically moveable light
distribution depending on the environment, the range of
low beam will be enlarged in curved roads and crossway.
So AFS 15 most advanced vehicle lighting system which
can make driver have more clear view when driving at
night and have abundant time to deal with the emergency.
Thereby the drive safety is improved greatly.
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This study introduces a semi-physical simulation
platform that visualizes the complex light characteristics
of low beam of front light in detail and control in real-time
on a PC-based system. When the user drives the vehicle
simulator over a virtual test track at the night, all the
information of gear, throttle pedal, clutch pedal, brake
pedal and steering wheel can be collected by the vehicle
simulator. Then by decision and calculation, the swivel
angle of low beam of front light will be figured out. Later
the swivel angle will be sent to actuator unit which drives
two low beam light axes to the expectation position.
Finally we will obtain the best illumination effect.

ARCHITECTURE OF AFS

AFS mcludes three parts: collection module, AFS
controller and actuator unit. Collection module samples all
the signals of gear, throttle pedal, clutch pedal, brake
pedal and steering wheel by sensors and data acquisition
card, AFS controller manages all computing and
controlling tasks; actuator unit drives front light axis to
the aim position. In the following paragraphs, further
defimtion of each part will be given and the architecture
of AFS 1s shown in Fig. 1.

The vehicle simulator can provide the driver with a
realistic interpretation of operating automobile, so AFS
can be established in laboratory on the sunulation
platform. The vehicle simulator 13 composed of the
following components: vehicle dynamic model (motion
controller), visual scene, scenario editor, driving cab,
sound device and hydraulic platform, shown m Fig. 2. The
state parameters about the vehicle simulator which
include steering wheel, gear, throttle pedal, clutch pedal,
brake pedal, velocity and vehicle gradient collected by a
special data acquisition card based on PCT. The collection
module has CAN interface, through which all these
information can be shared with AFS controller.

AFS controller is the key unit of the whole system. Tt
gathers all sensors” signals mentioned above, by decision
and computing, it will “know” vehicle state in this
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moment. Based on AFS kinematics model and control
strategy which will be discussed later, AFS controller
figures out the control parameters. Then the control
parameters will be sent to actuator umt Then, AFS
controller will start the next cycle.

Actuator unit mncludes power drive circuit and DC
motors. There are two DC motors and their drive circuit
charge for low beam light axis moving on the vertical and
horizontal plent. The schematic diagram of AFS
mechanical structure 1s shown in Fig. 3. Drive circuit get
control parameters from AFS controller and drive DC
motor to the aim position. By means of closed loop
position control, the system has high control precision.

KINEMATICS MODEL

AFS has ability to identify vehicle running state and
adjust the low beam to the appropriate angle, making
better illumination effect. At the same time, it’s important
to take account of vehicle dynamic factors including
vehicle velocity, steering wheel angle and vehicle body
gradient to decide the low beam swivel angle. So AFS
kinematics model should be established, through which
the relationships among these factors must be present
clearly.

Due to two freedom-degrees which AFS low beam
has, kinematics model of system can be classified
as two parts: the one is horizontal plant kinematics
model and the other is
The further

presented as follow.

vertical plant kinematics

model. define of each part will be

Horizontal plant kinematics model: The schematic of
horizontal plant kinematics model is shown in Fig. 4. The
output horizontal swivel angle ¢ which is according to the
steering wheel angle and vehicle velocity, can be
calculated by equation recommended by SAE (Society of
Automotive Engineers) (BmbH, 2004a; BmbH, 2004b) as
following:
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Fig. 2: Vehicle simulator

Fig. 3: Schematic diagram of AFS mechanical structure
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This is an empirical formula, Where R is
steering radius of vehicle, X is stopping distance and
H 1s height of low beam to the ground. But it 1s very
difficult to measure R. According to Ackermann
steering geometry, R equals approximately to
L/sinP, where 1. is wheel base and B is outside wheel
angle. Generally, P is
steering wheel angle (The proportion of automobile 1s
about 1:10).
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Fig. 5: Vertical plant kinematics model

Vertical plant kinematics model: For the vertical plant,
swivel angle of low beam light axis 1s adjusted according
to the gradient of vehicle. The schematic of vertical plant
kinematics model is shown below in Fig. 5. Light axis
vertical swivel angle output can be derived:

o=tan" (

-1, dHr — dHt") (2)
L

where, dHT 1s the vanation of the front wheel height and
dHr is the variation of the rear wheel height. From the
schematic diagram, I, is the wheelbase. Now we can see if
dHf-dHr>0, the front light should swivel upward,
otherwise downwards.

In this kinematics model, the input parameters include
vehicle velocity, steering wheel angle and vehicle body
gradient; the output parameters are light axis horizontal
and vertical swivel angle. The basic relationship between
them 1s reflected. It’s a basic kinematics model of AFS.
But the real factors, such as the performances of
cornering braking, the flexural rigidity of the wheel and the
variation of load are all ignored. So the kinematics model
should be modified by a great deal of experiment data.

AFS CONTROLLER

The AFS controller calculates the desired front
light angle @ and ¢ based on the state of the vehicle
using kinematics model Eq. 1 and 2. The resulting
desired front light angle is converted to a required
number of steps and direction for a step motor or
sent to a PID position control loop when a DC
motor is used. DC motors were used in this study for
adaptive tracking of curves by the front light The
control strategy qualification 1s shown below in
Table 1.
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Table 1: Control strategy qualification

Control strategy qualification Value
System start velocity 15 km h™!
Systern close velocity Skmh™!
Systemn start minimal steering wheel angle 12°

System close minimal steering wheel angle 9°

Tn horizontal plant, when tuming right, light axis 18°
maximal swivel angle

In horizontal plant, when tumning left, light axis 15°
maximal swivel angle

In vertical plant, system start gradient angle +2°

In vertical plant, light axis maximal swivel angle -15°~10°

Here, a genetic-based hybrid fuzzy-PID controller is
developed which employs a fuzzy-PID controller
mtegrating an industrial PID controller (Yu et al., 2009,
Oh and Pedrycz, 2002). The fuzzy-PID controller consists
of three independent fuzzy sub-controllers, namely, fuzzy-
based proportional controller, fuzzy-based integral
controller and fuzzy-based derivative controller. A genetic
optimization technique (Oh et al, 2004) is used to
determine the optimal values of the scaling factors of the
output variables of these sub-controllers. These
independent controllers are grouped together and
mtegrated with an industrial PID controller to form a
hybrid-fuzzy PID controller. Figure 6 shows the
architecture of the proposed genetic-based hybrid
fuzzy-PID controller. The hybrid fuzzy-PID controller is
anticipated to accommodate the robust stabilization and
distwbance rejection problems.

Fuzzy-based controller: The following provides the
detailed design of the fuzzy-based proportional controller.

The first step in designing the controller is to decide
which state variables of the drives system can be taken as
the input signals to the controller. Both the position error,
e(k) and the delayed feedback control signal, Ug(k-1), are
used as the inputs to the position controller. The output
of the fuzzy-based proportional controllers is the gain,
FK;. The linguistic fuzzy variable e(k) has three sets:
Positive Large (PL), Zero (ZE) and Negative Large (NL.),
with each set having its own membership function.
Furthermore, the linguistic fuzzy variable Ug(k-1)" has
also tlree sets: Positive Large (PL), Zero (ZE) and
Negative Large (NL), with each set having its own
membership function. After specifying the fuzzy sets, it is
required to determine the membership functions for these
sets. Typical triangular membership functions are utilized
for the e(k) and Ug(k-1). Figue 7 and 8 show the
membership functions for the fuzzy inputs. The three
fuzzy sets can be symbolized by F,, I=1,2and =1, 2, 3.
Their corresponding membership functions can be
symbolized by uF ! (e(k), U k-1)),j=1, 2, 3.

The next step m the design of the fuzzy sub-
controller is the determination of the fuzzy TF-THEN
inference rules. The number of fuzzy rules that are
required 1s equal to the product of the number of fuzzy
sets that make up each of the two fuzzy input variables.
Thus, a total of 9 fuzzy rules are required. Tn general, a
typical fuzzy rule 1s of the form:

R®: IF ek) is F,’ and Ug(k-1) is F,! Then fis C,' for
i=1.3,1-1..3.k=1..9
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Fig. 7: Membership functions for e(k)

A NB 7E PB

—V

-1 -0.1 0 0.1

Fig. 8: Membership functions for Ug(k-1)

The conjunction of the rule antecedents 1s evaluated
by the fuzzy operation intersection which is implemented
by the min operator. The rule strength represents the
degree of membership of the output vanmable for a
particular rule. Defining the rule strength, &; of a particular
rule as:

él,] =min (“'F;HFJ) (3)

where, i€[PL, ZE, NL] is associated with the fuzzy variable,
e(k) and je[PL, ZE, NL] is associated with the fuzzy
variable, Ug(k-1). The fuzzy mference engine uses the
appropriately designed knowledge base to evaluate the
fuzzy rules and produce an output for each rule.
Subsequently, the multiple outputs are transformed to a
crisp output by the defuzzification interface. Once the
aggregated fuzzy set representing the fuzzy output
variable has been determined, an actual crisp control
decision must be made. The process of decoding the
output to produce an actual value for the controller gain
FK; 1s referred to as defuzzification. Thus, a fuzzy logic
controller-based center-average defuzzifier is
unplemented. The output of fuzzy-based proportional
controller 1s given by:

FK, =T, (e(k), Ugp(k — 1)) 4

where,

9
3 (minGiy (e06), Ugp Ok 1)
fp(e(k)sUFp(k_l))Z 1:1; > (5)
E ([inzli,glwlil (ek), Uge (k100

1=1

The linguistic fuzzy output variable FK; has nine
sets: Negative Very Large (NVL), Negative Large (NL),
Negative Medium (NM), Negative Small (NS), zero,

ZE

NL NM NS | PS PM PL PVL

NVL
=}

Fig. 9: Membership functions (singlectons) for FK,

-0.6 -0.3-0.2(|) 0203 0.6

Positive Small (PS), Positive Medium (PM), Positive
Large(PL.) and Positive Very Large (PVL). The two fuzzy
sets, namely, Negative Very Large (NVL) and Positive
Very Large (PVL) are added to enhance the tracking
performance. After specifying the fuzzy sets, it is required
to determine the membership functions for these sets ;'
for 1=1... 9. The membership function for the fuzzy set-
representing zero is a fuzzy singleton. Additionally, the
other membership functions are composed of fuzzy
singletons within the region defined for the fuzzy output
variable. Figure 9 shows the resulting membership
functions for the variable FK..

Consequently, the control signal generated by the
fuzzy-proportional controller can be written as follows:

Upe (k) = Gip {fy (), Uy (k = 1)} (k) (6)

where, Gy 18 the scaling factor that timed experimentally
using genetic optimization.

The fuzzy-based integral controller and fuzzy-based
derivative controller are desinged using the same method.
Finally, the overall output of fuzzy-PID was derived as
follows:

Uy (K) = Upp () + Up, (k) + U (K) (7

where, Ug(k) and Ug(k) are the fuzzy varable just as
Usp(k). Saturation 1s also incorporated n the fuzzy-PID
controller structure. As such, the final output of proposed
controller is:

U )) U0 > U, (K)
U= Ugpp(0) Uy () S Upop () S Uy () (8)
Uy K) e () < Uy (K)

where, U, and U, are the permitted minimum and
maximum mputs to the drive system.

Genetic  optimization: Genetic optimization-based
approach 1s used to ensure the best performance of the
proposed fuzzy-PID controller. The genetic optimization
imitates the natural evolution process in which the fittest
survive and the best genes are propagated to the next
generation. A population of chromosomes is evaluated

and a fitness value is assigned to each. Each chromosome
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Fig. 10: Functional block diagram showing the genetic optimization process

represents a possible solution for a given problem and the
ones with the higher fitness have a better chance to
reproduce. One of the main features is that it could work
well for nondeterministic systems, ill defined systems and
systems that are hard to model (Seng et al, 1999).
Furthermore, the final performance outcome of the
algorithm does not depend highly on the initial choice of
chromosomes. When the genetic optimization 1s applied
to control applications each chromosome represents the
set of controller’s adjustable parameters and the fitness
value 1s a quantitative measwe of the controller
performance. The autotumng consists of the automatic
adjustment of these parameters to optimize the controller
performance. The genetic optimization combines a
stochastic exploratory search with a well defined cost
function to find the solution that fit the problem the best.
The cost function that represents the fuzzy-PID controller
is defined as follows:

@)

T=1(Gp,G;,Gp)

where, Gy, Gy, Gy, are the output scaling factors of the
fuzzy-PID sub-controllers. The function f represents the
relationship between the overall performance and the
design parameters. The ptimization problem for the
fuzzy-PID controller is described as (Farag et al., 1998):

max(F(G,,G,,G)) = max(L/ ) (10)

where, F 1s the fitness function. There are various ways to
calculate the overall performance I of the controller but for
simplicity reasons the Mean Square Emror (MSE)
performance index was selected,

J=%g(e(k))2 (1L

where, N is the length of the evaluation window and e(k)
is the error between the reference position and the actual
position. The fitness of each parameter
chromosome can be determined as follows:

set, or

)

(12)

F(G1. G, Gp)=1/ (2 3 ey

Once the fitness function is established, the genetic
operators and parameters are defined The genetic
optimization consists of three basic operators: the
crossover, mutation and reproduction. The parameters are
the number of generations, the population size, the
probability of crossover and mutation. In general, an
initial population size is defined and evaluated with the
fitness function. Once each chromosome has a fitness
assigned to it, the reproduction process takes place with
those that are more fit having a greater chance to be
selected. Then, each of the two operators of crossover
and mutation are applied to create the new pool of
chromosomes to be evaluated. Crossover occurs when
the chromosomes partially exchange their information by
interchanging some of their genes. Mutation is the
random alteration of a particular section of the
chromosome by occasionally changing one of more of the
genes that are part of the chromosome. Figure 10 is the
functional block diagram showing the procedure of the
genetic optimization.

The overall geneticbased auto-tuning procedwre of
the fuzzy-PID controller consists of the following steps:
Step 1:  Select the control topology of the Fuzzy-PID
controller in which the outputs of the sub-
controllers are used as the FPID gains
Define the characteristics of the fuzzy-PID
subcontrollers such as number of fuzzy sets,
membership functions, fuzzy rules and
defuzzyfication method
Set the genetic optimization parameters, such as
the number of generations, the population size,
the probability of crossover and mutation
Tune of the parameters, Gp, G; and Gy, of the
Fuzzy-PID using the genetic
optimization procedure

Step 2:

Step 3:

Step 4:
controller
EXPERIMENTS

According to the arclutecture of AFS, the whole
system has been established in our laboratory. An

2057



Inform. Technol. J., 10 (11): 2052-2059, 2011

Table 2: Left light horizental plant data

Steering wheel Theoretical swivel — Real swivel
angle (deg) Velocity (kmh™!) angle (deg) angle (deg)
-25 80 0 0

5 100 0 0

40 60 7.0 6.8

80 40 12.0 11.8

80 30 10.6 10.5
120 30 13.7 13.9
170 10 15.0 14.8
200 5 0 0

ultmate goal of the system 1s to verify the control
strategy and we present an experimental analysis
conducted on this semi-physical simulation platform. The
software of the host computer is developed by Delphi
language, including data cellection, calculation, display
and data transmission based on LIN bus, shown in
Fig. 11.

Horizontal plant experiment: According to horizontal
plant kinematics model, we measured real swivel angle and
made contrast to theoretical swivel angle when given
input data. Details are presented in Table 2 and Table 3.
Steering wheel tun-left angle i1s defined positive. By
contraries, turn-right angle 1s negative.

From the experimental data we can see:

*  When the steering wheel turns right, the left front
light should keep the original position. So the
theoretical swivel angle and the real swivel angle of
left front light is 0°. In the same way, when the
steering wheel turns left, the theoretical swivel angle
and the real swivel angle of right front light is 0°

*  When the velocity below 5 km h™" or the steering
wheel angle below 9°, the front light axis will not
move

*  The nght and left maximal swivel angle in horizontal
plant are different, the right can reach 18° and the left
canreach 15°

*  The maximum error of swivel angle 15 0.2° which
meets the accuracy requirements

Vertical plant experiment: Just like horizontal plant, some
input data been given, we measured real swivel angle and
made contrast with theoretical swivel angle. Details are
presented in Table 4.

The experimental data shows us that:

*  The maximal swivel angle in vertical plant can reach
-13--14°

*  The maximum error of swivel angle 15 0.3° which
satisfies our application requirement completely

B anrEmantamn 1-T]
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Fig. 11: Software mterface on semi-physical simulation

platform

Table 3: Right light horizental plant data

Steering wheel Theoretical swivel Real swivel
angle (deg) Velocity (km h™) angle (deg) angle (deg)
20 60 0 0

-5 30 0 0

-30 80 13.8 13.6

-30 60 11.5 11.4

-50 80 17.6 17.5

-80 20 12.7 12.9
-150 10 15.5 15.6

Table 4: Vertical plant data
Theoretical swivel angle (deg)

Real swivel angle (deg)

-13.4 -13.1
-8.1 -7.9
-4.9 4.8
-2.8 -2.8
4.2 4.1
9.0 8.8
14.1 13.8
CONCLUSION

The semi-physical simulation platform for Adaptive
Front lighting System (AFS) based on velicle driving
simulator was disccussed in this study. Tt can be used for
system-level research, especially for control algorithm
design. The simulation results indicate that the design
mentioned in the study can be conveniently appllied to
adapt light distribution according to the changes in the
traffic conditions and to achieve an optimal illummation of
the traffic space. The experiments verified the semi-
physical simulation platform available and effective.
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