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Abstract: We present a new multi-target tracking algorithm for nonlinear models, termed as the Central
Difference Multi-target Multi-Bernoulli (CD-MeMBer) filter. Sterling’s polynomial mterpolation formula 1s used
1in deriving the filter under the assumption that state and measurement noises are Gaussian and each probability
density during the predict and update recursion is approximated by a Gaussian sum. Furthermore, the proposed
CD-MeMBer filter was generalized to nonlinear non-Gaussian models, called as the generalized CD-MeMBer
(GCD-MeMBer) filter, where the state and measwement noises are approximated by Gaussian sums. The
sunulation results of the target tracking verify the effectiveness of the proposed algorithm.
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INTRODUCTION

Multi target Tracking (MTT) involves joint estimation
of unknown and time varying number of targets as well as
their individual states from a sequence of sets of nosy
and cluttered observations (Bar Shalom and Fotman, 1988,
Bar-Shalom and L, 1995). The traditional approach to this
problem 1s to assign a single target stochastic filter, such
as a Kalman filter, to each target and use a data
association technique to assign the correct measurement
to each filter (Bar Shalom and Fotman, 1988; Clark and
Bell, 2007), this 1s a data association problem and requires
various ad hoc methods in practice to stop the associated
computation cost from growing exponentially over time
(Panta et al., 2009). Recently the Probability Hypothesis
Density (PHD) and Cardinalized PHD (CPHD) filters have
attracted much international interest (Mahler, 2003, 2007,
Vo et al, 2005; Vo and Ma, 2006). Unlike the PHD/CPHD
recursions, which propagate moments and cardinality
distributions, Mahler’s new filter the multi target multi
Bemouli  (MeMBer)  recursion propagates
(approximately) the multi target posterior density
(Mahler, 2007; Vo et al., 2009). Also, the Gaussian Mixture
(GM) mmplementation of the new MeMBer recursion is
proposed, which 1s called GM MeMBer filter. However,
since the GM MeMBer filter is based on the linear
Gaussian models, it may not be adequate to handle
nonlinear non Gaussian models, which are more umversal
1n practice.

In this study, we present a solution to the MeMBer
recursion for nonlinear tracking models, called as the
Central Difference MeMBer (CD-MeMBer) filter, which
give further practical justification for the use of the

MeMBer filter mn multiple target tracking problems.
Provided that the state and measuwrement noises are
Gaussian, Sterling’s polynomial interpolation formula
(Van der Merwe, 2004; Ito and Xiong, 2000) is used n
deriving the filter under the assumption that the initial
prior multi-Bemoulli multi-target density is given and each
probability density is comprised of a Gaussian sum.
Further more, by the Gaussian sum approximation of the
state and measurement noise, we extend the CD-MeMBer
recursion to nonlinear non-Gaussian models and propose
the generalized CD-MeMBer (GCD-MeMBer) filter. The
simulation results of the tracking verify the effectiveness
of the proposed CD-MeMBer and GCD-MeMBer filters.

BACKGROUND

The MeMBer filter 1s a tractable approximation to the
Bayes multi-target recursion under low clutter density
scenarios using multi-Bernoulli RFSs. A multi-Bernoulli
RFS X 13 a uon of a fixed number of independent
Bernoulli RFSs X" with existence probability r*<(0,1) and
probability density p¥, i=1,....M, where M is the number
of Bernoulli. Thus, a multi-Bernoulli RFS is completely
described by the multi-Bernoulli parameter set.

{(r(” ol )}Ml

The mean cardinality of a multi-Bernoullh RFS 1s EV‘IF(‘)

and the probability density is as in Vo et al. (2009). )

n ={(ro) P )}M1
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We recall the prediction and update step in Vo et al.
(2009) which summarized the MeMBer recursion.

Prediction: Suppose that at time k-1, the Multi-Bernoulli
posterior multi-target density:

ol )

is given, then the predicted multi-target density at time k
is also a multi-Bernoulli.

Update: Suppose that at time k, the multi-Bernoulli
predicted multi-target density:

Tyt —{(flﬂﬁ 1>P1Eﬁ< 1)}”‘:& B

is given, then the posterior multi-target density at time k
can be approximated by a multi-Bernoulli.

THE CD-MEMBER FILTER FOR NONLINEAR
MODELS

We adopt the same assumption on target birth, death
and detection as in Vo et al. (2009):

¢+ The survival and detection probabilities are state
independent, i.e.,

Psx (xk—l ) =Psyx (1 )

Pox (xk ): Pox (2)

¢ The birth model is a multi-Bemoulli with parameter set:

where, p¥, are Gaussian mixtures of the form:

Ew” (x m” P(‘if)) (3)

where, N(sm.P) denotes a Gaussian density with mean m
and covariance P.

Proposition 1 (CD-MeMBer Prediction): Suppose that at
time k-1, the (multi-Bernoulli) posterior multi-target
density:

Ty *{(rkt)l piil )}hfl

is given and each probability density p¥, ,1=1,.., M, is
a Gaussian sum of the form:

bl = S wiiN(xm{2 5 ) “

Then, the predicted multi-target density at time k is
also a multi-Bernoulli:

S ) Ll Y A

i=1

rP(fLH = rk(l—)l Psx (6)

s
pPkal WE?N( Hk-17 mkjkl Plgk)1) (7)
=

Where:

are the parameters of the multi-Bernoulli RFS of births at
time k and:

i =T ()L g[f(msfs + )+ e{mtd -

B = WLEM &9 4+ 50) 8 (il -)TJ'hL’g[S“(PT h;hjlz

=l =l
) 2(rl) ]

)] 22 (i)

[+ )« £ -
(&)

where, [*] denotes [*]*[+]", L, andL, are the dimensions of

the state and process noise, respectively s>¥ and ' are

the products of h and the 1 th column of the matrix square
roots of B and Q,, respectively,i.e.,

g0 :h( Pt )1,1:1,,,,,14 (9

sl = (J_k) L, (10)

Proof: From the prediction step of the MeMBer filter in
Vo etal (2009), we have:

rP(:I)c\k—l = rlEJ—)lJ.pEL (x)pS,kdx = rlqtl)lps,kjpltclzl (x)dx = rktl—)lpS,k (1 1)

then:

(ﬁq@ (x )’Pk 1P51<>

(s, ps;ﬂ>

_[ (xk £, (xk 1 QH)EWHU)N( k- 15m1(<u1)>Pl<(if))dx1«-1

<k|<—1(x| ) Px-i 1>

pgiﬂk—l {x)=

i)
= SW(U) x Xy ) k) ( i 1sm1£mp kl‘: k-1 :Ewlgml)N g 1sm1<|1< 1>1)1<(LJ)1)
[=1

(12)
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Where:

mHk 1 _,[fk N(xk s Pl )dxk,l

P1<(|11;J-)1 = J.(fk (xk—l ) *ml(:flg)q )(fk (xk—l )* mltcljig)—l )T N(xk 1 mE« Jl) P(l ki )dxk—l
(13

Using the Sterling’s polynomial interpolation formula
(Van der Merwe, 2004), we may obtain the results of
proposition 1.

Proposition 2 (CD-MeMBer Update): Suppose that at time
k, the predicted multi-Bernoulli multi-target density:

Mgt = {( rlgllzfl P E)H )}Mk"‘"

i=1

is given and each probability density pf, , i=L-—- My, is
a Gaussian sum of the form:
E will, (x mi 1’P1511c])1) (14

Then, the multi-Bernoulli approximation of the
posterior multi-target density at time k can be given by:

m={ (Ul (bt ()], A
Where:
I . 16)
1 —GgaPoy
plh (%) =pil, (x) (17)

3 1r15‘12 1 Wit ) E m—1r15‘12 . %)k z
R e / {Kk(z)fi %—”} %)

2
i (1— rk(llz—lpD,k) SR

My e Mg
i) = 3 S WEIN (s PY) / Yyw (19

Uk
) [

_,[J (i)

1 i, r‘k -] i, i
=pos Y, W N 7520, Jl),W.Sji):l ;(1) Poy N[z, 800 )
=1 T

(,1) mstk) +K()")(Zk Z‘E))P(J) J)Sk.]( J)) K( SE;HI«—I(S( )

S~ Es"“[gk(mu’w“))—gk( ), -]
4 :“%g N A EARELS)

[ (m 50+, (mi s3]

s, = 4h12[gk(mkn+skm) o (- 52) [+ E[vm}
Bt e %) )20 ()

(20)

where, L, is the dimension of the measurement noise, s
and sy® are the products of h and the lth column of the
matrix square roots of B and Ry, respectively, i.e.,

& =h( P, )11=1,,,,,Lx (21)
stV =h(yR, ) 1=1 L, (22)

Proof: By substituting (14) mto prediction steps of the
MeMBer filter in Vo et al. (2009), we have:

i 1- '[pldk J{x)ppudx

e 1_<p$"1’pr”“> =l

)
by =T - : =]
1- rk(uZ-l <[-"1(<\2<-1 =pD,k> - rk\kquldk,l )pD:kdx (23)
1-p
_ Dk
=g, —
- Tt Pox
@ _ o 1-pp, W 24
pl-,k(x)_pklkfl(X)IT—PMH(X) ( )
- <pl<uc—1= D k>
Moo ) ,(1—ruf‘£,1)pmjpﬁil (e (zx)dk a1, (150, )08, (2)
2 7
_ = (1 g e lpDk) _ i=l (1 —rlf"lz_lpD‘k)
o (2)= LTS dx Mo pl) p 0
K, (2)+ E rk\k-lpD:k.l.pldk—l (x)g (zlx) K (2)+ o, 89, (z)
' =1 1- rk(\llz-lpD,k ) =1 f;glk),1pn,k
(25)
Where:
C(i) ( =Pp k‘l.pk\k 1 gk (Z| x) X

,pDk.[Ew” (xmk] Pli‘l;’_)l)l\l(zk;gk(xk),Rk)dx (26)

Jklk—l
=Ppx E ijk 1 (Zk;lﬁiﬁnsﬁiﬁl)
=

Mg r(‘) "
PU,k(X;Z): E 1 pDkV/E ) pDkIde (27)
kjk—l 71—

= 1= k 1

where, by using the Sterling’s polynomial interpolation
formula (Van der Merwe, 2004) we have:

h?-L, -L ngk(mﬁijh) 1
i) _ x v [L3)
g (mi ) == g (28)

L

St -4)o k-]

1,

Sita= 4h? E[ ( W+ “))—gk(mi‘]ﬂl —sf:’(l))T +$§[S;,U) T
h2 -1&

ah* E[ d(mi +50 ) g (mﬁiﬂl‘Si’(l))‘zgk(mgij)*l)f

=1

(29)
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](lk -1 - .
E quk 1 (x mé]ﬁ PL(llk) )N(Zk;lﬁﬂil,sgiﬂil)
(30)

) (E.\ mkjk B 1)dE.\

W

Y:pku” gk le

= E wk\k 1 (x’m'Llle’PlETi,:l]() )_[N(Zk;gk (E.\)

EXTENSION TO NONLINEAR NON-GAUSSIAN
MODELS

We now considers extensions of the CD-MeMBer
filter to non-Gaussian models, i.e., the process noise n,
and measurement noise v, are not Gaussian any more.
Due to the fact that any density can be approximated as
close as required by a linear combimation of Gaussian
densities (Anderson and Moore, 1979; Alspach and
Sorenson, 1972), the distribution of n, and v, can be
expressed in terms of the following Gaussian sums:

p(ny)= MWE,)kN(nk?nS)>Q1EI)) (3D
1=1
Hog )

p(v )= wa}iN(vk;VE),RE)) (32)

=

where, w@ denotes the weights of each Gaussian density
and:

Nh Nv
Tt =¥l = (33)
1=1

[

Then:

-
P (x 1% )= E 51) N(xk;fk (X )t “E)vQE)) (34)

Hoy
g (z, 1% )= wa,{)kN(zk;g(xk)+VE),RE)) (35)

The following two propositions present the
generalized CD-MeMBer (GCD-MeMBer) recursion for
the nonlinear non-Gaussian multi-target models. The
proofs are the combination of those of proposition 1, 2
and the Gaussian sum property (Anderson and Moore,
1979; Alspach and Sorensor, 1972), thus omitted.

Proposition 3 (GCD-MeMBer prediction): Suppose that

at time k-1, the posterior multi-target density 1s a multi-
Bermoulli with the form:

=l

and each probability density pl, i =
Gaussian sum of the form:

1, M., 15 a

pl = Ewgf,)N(x;mEj),Plf'_’f)) (36)

Then, the predicted multi-target density is still a
multi-Bernoulli:

s ={ (0 )| UYL 00 BT

i=1

08 (38)

Tk = Bt Ps

=3 S (x,smid RS (39

pPka 1
]
Where:
i1 1 i
Wi o (10)
h’-L, -L 1
Lil) _ x n i 1
mltd] )= o (fk (mL]f)JrnlE))Jrﬁ

L, (f(mi”_]f )+ nf)) (41)

Iy
BY = e D[ e(mf #5507 -5) ]

4
[ 2

1 X, i x, ) 2
+Pq:1 X ql|:f( mi 4 g (;a)Jrf( ) (?))*Zf(mf(_{))}
(42)
where, 5% and s are the products of h and the gth

column of the matrlx square roots of Pty and Q0

respectively i.e.,

s =n(of7) a=1-1, (43)

Py P @
q

Proposition 4 (GCD-MeMBer update): Suppose that at
time k, the predicted multi-Bernoulli multi-target density:

Mm -1

T = {(rk(\k) 1Pl )} i

is given and each probability density pf)_ , i=1- My, 13
a Gaussian sum of the form:

Jl[xl -1

E W’J (x mH PIEI”) ) (45)

Then, the multi-Bermnoulli approximation of the
posterior multi-target density at time k can be given by:
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T z{(rl.(i)lupl(.l,)k )}j\j‘kil U{(f&,k (z).pus (X;Z))}Ez,‘ (46)
Where:

(i
I

i 1-p
%c:k(\lzll ()Dk (47)

L Kk lpDk
(48)

Mmur() W e Mg
rg‘k(z)— E (1 k]kl)CU,k( )/(Kk(z)-%— E Hkl%Uk( )] (49)

3
= (1 rl£11121PD1<) =l rk“‘lpDk

k-1 L&!l
30 ) ME TE JE 5{,13,1)(50)

=]

My Hyy B

= 2 2 X WEN(xmi P

[

PUk XZ

and

By i
i) i i) _
Pos 2, X whwii, (Zk s )’Wér,i)*
= =
rlEuZl L NRVR YY)
1— I'() pDkw wldlglN(Zk;Zld,li,—l’SN,li,—l)
Kic-1

(AR 1,7.1 1,7.1 1,31
i =i« K50 (22442 P

-1
i, 51.0) qoli] il 4.0 A) il
= Pk(\kJ—)l - KT(_I,Jk)SEdl-:—I) (KI(_TJk )) =KT(_I,JI<) = S)(cz?kj)k—l (Siui-l) )

(L3 n
R (gk(maﬁa)+v53>)+—Lv(g“(m§f")”“ E

oy oo B (il + 52 g (i —s2 ) 200 |

82, = b S i+ 519 - (m, —5) ] + & ST

= =l

b1 i @Y g (g oy (i T
|:gk( it T Sk ) gk( i1~ S ) gk( mk—l):|

=

; I W x@ T
szkl\k 1 =3 21'12 Esk |: k( klk 5t 5 ol )) 8y (ml(qﬁl —Sk’(q) )}
=l

st and 57" are the products of h and the gth column of
the matrix square roots of Bl and R{ , respectively ie.,

0 H{JFT) a1, (52
q

§7lo :h( ng)) g=L--L, (53)
q

From the above propositions, it can be concluded
that the CD-MeMBer filter is a special case of the
GCD-MeMBer filter when N =N, =1. Similar to the
GM-MeMBer filter, the CD-MeMBer and GCD-MeMBer
filters also suffer from computational troubles caused by
the mcreasing mumber of Gaussian components. We

apply the similar way as in Vo et al. (2009) to reduce the
number of components, at each time step prurung of
hypothesized tracks is performed by discarding those
with existence probabilities below a threshold. For each of
the remaining tracks, we eliminate components with
weights below a threshold and merge components within
a distance of each other.

SIMULATION RESULTS

Nonlinear gaussian model: Consider the following MTT
model in a two dimensional situation (Vo et al., 2005):

AT? 0
1 AT 0 © 2
0 1 0 0 AT 0 |[wy
X, = X+ 5 s
0 0 1 AT o AT Wi
0 0 0 1 2
0 AT

where, x, and y, denote the state and measurement at time
k respectively; Xk = [X,, X,z X X0l where, X, and
X, denote the x and y positions, respectively; X,, and
X4 denote the x and y velocities, respectively, S=[S,
S,]" and VT are the sensor position and sampling interval,
respectively; wk = [w,, w,,]" and vk = [v,, v,,] Tare state
and measurement noises, respectively. And w, ~N{:0.1;) |
T, denotes two by two identity matrix:

v, ~ 1\1(-;0,diag[0.05:é 7 ]T)

s = [0 -100]" (Clark and Bell, 2007). The birth process is
multi-Bernoulli with density:

m= (0 00))

where, ¥ = 003, i = N (. m”, PP%), m " =[00007,
m™ = [4000-600 0], m™ = [-800 0 -200 0], m;* = [-200 0
-800 0", P¥ = diag ([10 10 10 10]". The probability
of the survival and detection are p,, = 0.99 and py, = 0.98,
respectively. Clutter 13 modeled on a Poisson RFS over
the surveillance region with an average of 10 clutter
points per scan. At each time step, the number of
Gaussian components is capped to a maximum of
100 components, the prumng 1s performed with a
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Fig. 1(a-b): Results of the CD-MeMBer filter

1500
1000

500

-500

500

-500 -

-1000

10 20 30 40 50 60 70 8 90 100

Time step
Fig. 2(a-b): Results of the GCD-MeMBer filter

weight threshold of 107 and merging is performed
with a threshold of 4. Additionally, pruning of the
hypothesized tracks 1s performed with a weight
threshold of 107 and a maximum of 100 tracks
(Vo et al, 2009).

Figure 1 shows the results of the proposed
CD-MeMBer filter, where the tracks in x and y coordinates
are given separately with the solid line for the ttue and
the dots for the estimated. It can be seen that the
CD-MeMBer filter is capable of providing accurate
tracking performances.

Nonlinear non-gaussian model: Consider the MTT model
in (83), the same parameters are used except that the state
and measwement noises and are both expressed by
ZaUSSIAn SUMS!

p(my ) = AN (g, QF )+ o

L
B (v, = LN, RV )+ N (w59 RP)

N(nk;nf),Qf))Jr UJSLN(nk;nf),QE))

where,

(2

wf) = 035,05 =0.3,af) =035,0f, =030 =070 =[0 o] .n{?
)

=[o1 -0, =[-01 o1],

:diag([o.os2 22]),RE):diag([o.l2 52]).

Figure 2 shows the results of the proposed
GCD-MeMBer filter, where the tracks m x and y
coordinates are given separately. The solid line denote
the true tracks and the add signs denote the estunated
tracks. We can see that the GCD-MeMBer filter is capable
of providing good tracking performances.

CONCLUSIONS

A couple of new MeMBer filters, namely, the Central
Difference MeMBer (CD-MeMBer) filter and the
Generalized Central Difference MeMBer (GCD-MeMRBer)
filter are presented. They can be applied to nonlinear
or/fand non-Gaussian tracking models. Using Sterling’s
polynomial interpolation formula, we derive the recursions
for the weights, means and covariances of the constituent
Gaussian components of each probability density in the
multi-Bernoulli posterior multi-target density. The tracking
performances verify the effectiveness of the proposed
CD-MeMBer and GCD-MeMBer filters.
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