http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Jownal 10 (11): 2214-2219, 2011
ISSN 1812-5638 / DOL 10.3923/1).2011.2214.2219
© 2011 Asian Network for Scientific Information

Dynamic Software Reliability Maintenance Based on Component
Monitoring and Resource Allocation

L. Chen, W.U. Kaigui and HE. Pan
College of Computer Science of Chongging University, Chongging, China

Abstract: Reliability 1s one of the major concems for software engineers. Due to dynamic properties of the open

environment, visited probability of each component might change after a certain amount of time. To maintain
user’s requirement of the software system reliability, this study proposes a dynamic reliability maintenance

mechanism based on monitoring and resources allocation. An open source monitoring software, named
Glassbox, is adopted to observe the change of number of visits to each component. Besides, the path-based
method 13 used to analyze the reliability of software system from components reliability in the run time.
Sensitivity of each component is calculated using this model and the difficulty to improve each component’s
reliability is analyzed. After that, considering the limited system resources, we propose a greedy algorithm for

re-allocating resources reasonably according to component sensitivity and the difficulty to unprove component

reliability which can improve the system reliability. Finally, some simulation experiments are presented to
evaluate our method. The results showed the effectiveness of the proposed mechanism in this study.

Key words: Reliability maintenance, component, monitoring, resource allocation

INTRODUCTION

With the rapid developments of information and
network technology, the structure of software system is
more and more complex. Software development almost
gives up “start from scratch approach™ and extensive
component reuses are preferred. Tn order to evaluate the
reliability of software system, the reliability of
compoenents, implementation features of components and
interactions among components are integrated to
establish the relationship model between components and
software system on the basis of the architecture.

In recent decades, a number of reliability models have
been developed to evaluate the rehiability of a software
system. They are mamly classified into three categories
(Goseva-Popstojanova and Trivedi, 2001; Gokhale and
Trivedi, 2002): State-based models (Pietrantuono et al.,
2010), path-based model (Yacoub et al., 1999) and additive
model. These models do well in the periods of software
development and test phase on these conditions: 1, the
reliability of individual components i1s known; 2, the
transition probability among components can be
informed; 3, the operating environment and user needs do
not change. However, once the system 1s developed, in
the operational phase, the system's reliability is difficult to
be guaranteed. Possible reasons are as follows: 1,
different people have different operation habits which
resulted in large differences in the operational profile. 2,
with the development of the Internet, more and more

systems are in an open environment. Because of the
uncertainty of an environment itself, software system had
to change with the environment. These two factors will
make system reliability a certain difference between
software distribution and runmuing. During the period of
software operation, when the access number of a
component increases and resources attached to this
component are relatively few, performance of tlus
compenent will be worse and reliability of the system will
slip in synchronization; Conversely, the access number of
a component reduces and resources attached to this
component are relatively surplus, that is, resources are
not fully utilized which also leads to reduce the reliability
of the software system.

Monitoring 1s not only a traditional field of research
but also a common engineering technology. The purpose
15 to momtor and control the system. Monitoring
technology has been a widely used in various fields
(Zulkemine and Seviora, 2005). To solve above problems,
we attempt to make use of an open source monitoring
software, named Glassbox which is a management agent
with a browser-based interface that automatically
pinpomts common problems in software system. We
experience Enterprise Java applications problem diagnosis
in the operational phase, especially monitor the transition
probability among components.

Besides, we use software components to construct a
software system, assess the reliability of the system by
investigating the architecture and calculate the reliability

Corresponding Author: L. Chen, College of Computer Science of Chongging University, Chongging, China
2214

Inform. Technol. J., 10 (11): 2214-2219, 2011

of the system by path-based model. Sensitivity of each
component is calculated using this model. When the
system has been monitored for a certain amount of time,
resources among various components should be adjusted
dynamically to make them more reasonable on the
condition that total resowrces in the system are limited
and then the system is more reliable.

DYNAMIC RELIABILITY MAINTENANCE
MECHANISM

Due to the dynamic properties of the system and
variety of visited probability, we need to monitor the
behaviors of each compoenent, such as the frequency of
visits to each component. According to the state
monitored, resources could be re-allocated to improve the
reliability of the system. Figure 1 describes the main
framework of our mechanism.

Reliability evaluation of modular software system
Notations:

¢ Ry reliability of component i

+ Ry mitial state

+ R absorbing state

¢ F: the difficulty to improve reliability of component
i

¢ P, probability of X, being in state j given X is
in state 1

¢ ;0 expected value of the number of visits to
component i

¢ R, reliability of the system S

Reliability assessment: To construct a component-based
software system, it involves assembling components
together and interactions among these logically

|€— Glassbox Begin

v

Monitoring

Algorithm

Resource
allocation

Caculate system reliability

Meet user
needs?

Fig. 1: Main framework of our mechanism

independent components which can be implemented and
tested individually. For this approach, we have the
following assumptions:

¢ The failures of the components are independent. A
software system can be viewed as composed of
logically independent modules which can be
inplemented and executed individually. That 15 a
component failure which will not affect other
components

» The transfer of control among software components
follows a Markov process. The exchanges of control
among these components are characterized according
to the rules of a Markov process

Under the assumption of independence among the
successive executions of the components, the reliability
of a system can be predicted by the path-based model
{Gokhale and Trived:, 2002). For example, if a system
consists of n components with reliabilities denoted by R,
R,,.... R, respectively the reliabilities of an execution path,
1,3,2,3,2,4,3,4n

The reliability of this path 1s:

R, =R xR}AxRS°* =R xR,

R,. R, can be viewed as a virtual node which can solve the
problem that a system has multiple initial/absorbing
states.

The reliability of the system 1s (Lo et al., 2005):

R,=R, xR, x[[2(R*) (1)
MONITORING

The purpose of momtoring is to monitor and control
the system. It 1s not only a traditional field of research but
also a common engineering technology. Monitoring
technology has been a widely used in various fields. We
can use remote monitoring technology to observe and
control the state of the object which not only simplifies
but also improves the
management efficiency. Monitoring is essential in some

the management process

place, for example: the critical distributed applications (the
main business of telecommumecations and banking).
Momnitoring software allows managers to master the
system operating conditions in time and timely treatment
of a nmumber of exceptions to enswre the safe operation of
the system.

Glassbox is a management agent with a browser-
based interface that automatically pinpoints common

2215

Inform. Technol. J., 10 (11): 2214-2219, 2011

Environment B

Monitored
object

Environment A

Monitored
object

Monitoring data acquistion

Fig. 2: Shows the hierarchical structure of the momtoring
system

(AOP) and Java Management Extensions (IMX)
technology to monitor the enterprise java, without forcing
you to embed anything or change a single line of code. It
provides a real time diagnosis of the system and cross-
references it against both the service levels and owr
knowledge base of failures. Glassbox can carry out depth
performance monitoring, for example: capture the total
number of requests, time; database requests in all
requests. In this study, we conduct experiments with the
Glassbox 2.0 version and mainly calculate the access
probability of individual components within a period of
time (Fig. 2).

RESOURCE ALLOCATION

Sensitivity analysis: According to the (1), it would be
helpful to know which component reliability most affects
the reliability of the system, so that more accurate
measurements can be made for the important one.

The following formula is:

3R]
OR

=

(2

3R
3Ry

We define S, R, as the relative change of this system
reliability, when is changed by 100 p%, so

R, (R, R, . .R R....R)-R
Spa = JRR, i TR LR, (3
1 Rs
Sexy), 8oy 4
P||P

0.207 —— Component 2
wee. COmponent 3
0.154-—- Component 3
Component 5

| Component 6
0.10 Component 7
——Component 8
+ Component 9

0.05
0.00
-0.054 .
010

-0.154

The relative change of system reliabilty d(s)

'020 T T T T T T T T T 1
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

The relative chang of component reliability P

Fig. 3: The relationship between component and system

On the base of (1), (3), (4), we can get that:
(I+p)* 2 (1+pY.p>0(1+p)" <(1+p),p<0 (5

According to (5), we have the result that the
component which is most frequently accessed is the most
sensitive one.

In Fig. 3, frequency of visits to component & 1s the
highest, so component 8 1s the most sensitive. However,
frequency of visits to component 3 is the lowest, so
component 3 is the least sensitive. We can reduce the
resources which belong to the low sensitivity component
to the high sensitivity one which can improve the system
reliability.

Algorithm: Assuming that all components of the system
share one kind of limited resources, such as redundant
resources which can be treated as a resource pool,
resowrces are deployed to the various components in the
optimal way when the system are released. We can infer
the following mformation from Fig. 4

¢ Tt is an exponential growth relationship between
resources cost and component reliability

» To achieve maximum reliability, the cost will be
infinite in theory

s Higher reliability requirements, higher resource cost
needs. The reliability of a component increases from
0.8 to 0.9 15 easier than from 0.9 to 1.0

Because we do not focus on the research about the
relationship between resources cost and component
reliability m this study, we 1gnore the type of resources

2216

Inform. Technol. J., 10 (11): 2214-2219, 2011

The resources cost

T T T T T T 1
01 92 03 04 05 06 07 08 09
The component reliabilty

Fig. 4: The relationship between resources cost and
component reliability

and simply view that F, equal R, and changes with R, in
synchronism. The values of F, can range from 0-1, the
bigger F; is the component reliability is more difficult to
enhance while added the same number of resources.

Because of the open environment is dynamic and
unpredictable, how often to re-allocate resources becomes
an important issue. If the cycle is too long, it may lead the
system hysteretic and can’t respond to user’s needs in
time; On the contrary, cycle 1s too short, component fails
to make full use of resources. Frequent re-allocation
would increase the system overhead and bring bumpiness
to the system. Therefore, the granularity of resource
allocation cycle 1s very important, usually, experts m this
field have proposed methods to decide the allocation
frequency (Tao et al., 2006).Greedy algorithm proposed
1n this paper 1s an improved method which solve problem
by a step by step manner. According to the final goal
which may be the objective function or not, every step
must ensure that the solution is local optimal solution.
Literature (Tian and Dai, 2007) has verified that greedy
algorithm 13 a better method 1 the resource allocation.

Equation 5 represents the result that different
components have different sensitivity because of the
different transition probability. Figure 4 shows the bigger
F, 13, the component reliability 1s more difficult to enhance
on the unit resource. As total resources are limited, we
can adjust the resources dynamically to improve the
reliability of the system according to the following two
aspects. On the one hand, less resources are allocated
when low access to components and more resources are
allocated when high access to components. On the other
hand, when F; 13 too high, we needn’t to continue to
umnprove the reliability of component I.

The process of design adjustment algorithm is as
follows:

Step 1: Sort components from low to lugh by

Step 2: Compute system reliability using (1). If the
current system reliability does not meet users’
requirements, go to Step 3, else the end

Step 3: For (I = 0; 1<n; 1++) do remove unit resource from
component i, calculate the new R, Fias R°, F’, .
Then find the component i with the min (R;-R’;)

Step 4: For (J = n; 150, j--) do add umt resource from
component j, calculate the new R, I, as R’ I,
Then find the component j with the max (R*,-F7))

Step 5: Remove unit resowrce from component i to
component

Step 6: Repeat step 2

EXPERIMENTS AND RESULTS

The case study chosen for illustrative purpose is a
I2EE application. The tools of Glassbox 2.0 and web
server Tomecat 5.5 are adopted. These experiments run on
a local pc with Intel 13 370 2.40GHz CPU, 2GB RAM,
Windows 7.

The system consists of 10 components where

component 1 1s the mmtial state with the reliability 0.99 and
component 10 the absorbing state with the reliability 0.99.
Each component represents an application module, such
as access to the database module, login module,
registration module and so on. Figure 5 depicts the
control-flow graph of the first example and the transition
probabilities among the components are given as follow:
P,=06, P,=02 P,=02 P, = 03, P,; = 04,
p,,=03,P,,=05P,,=05P,;=04,P,,=04,P,, =10,
P;;=1.0,P;,=03,P;,=04,P,,=03,P,,= 0.5, P,,,= 0.5,
P,,=03,P,,=07,P,,=0.6,P,,=0.4.
Resource allocation: When the system is released, the
expected number of visits on each component before
absorbing state from the initial state and the reliability of
each component, the difficulty to improve reliability of
component 1 can be derived as listed in Table 1.

Thus, the system reliability when the system released
is 0.810 according to Table 1.

System running after a period of time: The Glassbox
13 monitoring the behaviors of each component,
especially ;. After a period of time, due to the dynamic
properties of the system and variety of visited probability,
the expected number of visits on each component has
changed and we obtain the new py, as the Table 2.

2217

Inform. Technol. J., 10 (11): 2214-2219, 2011

Fig. 5: Component based architecture

Table 1: Component reliability and access frequency when the system is

released
Component 2 3 4 5 V] 7 8 9
R; 097 097 097 090 097 0958 09 098
F; 097 097 097 09 097 098 09 098
i 061 059 082 142 091 162 1.8 083

Table 2: Component reliability and access frequency after a period time

Component 2 3 4 5 0 7 8 9

R; 097 097 097 09 097 098 099 098
F; 097 097 097 09 097 098 099 098
i 061 059 082 09 172 162 188 083

Table 3: Component reliability and access frequency after adjustment

Component 2 3 4 5 i) 7 8 9

R, 0.964 0963 097 099 0976 098 0992 098
F; 097 096 097 09% 097 098 1.00 098
i 061 059 082 098 172 162 1.88 0.83

Compared to Table 1, p; in Table 2 drops to 0.980 and
U increases to 1.720. According to (1), the new system
reliability 1s estimated as 0.794.

If the user’s requirement 1s not less than 0.800, we
need to take measures to achieve this reliability of the
systerm.

After re-allocate resources: As it 1s listed in Table 2, p;,1s
1.880, then component & is the most sensitive, 8 18 0.590,
so component 3 is the least sensitive. According to our
algorithm, remove unit of resources from component 3,
allocate it to the component 8 While (R,-R’)* < (R,-R’,1*,
we begin to remove resources from component 2 which is
the second lowest sensitive component. On the contrary,
when (R°,-R,)' < (R”,-R,)*, we begin to add resources to
component & which 1s the second highest sensitive
component. After adjustment, the reliability of each
component listed in Table 3.

From Table 3 we can see that R, drops to 0.963,
R,drops to 0.964, R; increases to 0.992 and R, ncreases to

0.815 7 —e—Method in this paper
—+—Take no measures
0.810 ——User need

I

*x

S

vy
1

System reliabilty
(=}
o
(=3
(=3

0.795 -
0.790
0.785 T T T T T T T T |
1 2 3 4 5 6 7 8 9 10
Time

Fig. 6: The system reliability 1 the run time

0.976¢ According to (1), the system reliability is
recalculated and the satisfied result 15 0.803. At this time,
0.803 exceeds the user’s requirement 0.800, so we have
completed the task successfully m one monitoring and
resource allocation cycle.

Comparison: We have known that user’s requirement 1s
not less than 0.800. As Fig. 6 shows, when the system is
released, the system reliability is 0.810, due to the dynamic
expected number of visits on each component, the new
reliability 15 0.794. If no measures are taken to deal with in
this situation, the reliability 1s still 0.794 and changes
randomly in the future. According to our algorithm, unit
of resources from lowest sensitive component is removed
and allocated to the highest sensitive component, so the
reliability 1s 0.803. As time goes orn, resowurces can be re-
allocated dynamically to meet user’s needs. We can
conclude that taking measures to momtor and re-allocate
resources are necessary and ouwr method can work well
and effectively.

CONCLUSIONS AND FUTURE WORK

We presented an online reliability monitoring
approach that takes advantage of static modeling and
dynamic analysis to give continuous estimation of the
system reliability. Due to the dynamic properties of the
system and variety of visited probability, we use path-
based method and analyze the reliability of software
system on the level of components. Sensitivity analysis
provides a way to analyze the mnpact of the different
compoenents. Glassbox 2.0 15 used to monitor an enterprise
java application. Futhermore, we propose a greedy
algorithm for allocating resources to improve the reliability
of the system in this study. Finally, some experiments are
evaluated to validate and show the effectiveness of the

2218

Inform. Technol. J., 10 (11): 2214-2219, 2011

proposed method. We aim to do these in the future. First,
we will modify the source code of Glassbox 2.0 to meet owr
requirements. Second, a better algorithm will be designed
to re-allocate resowrces. Fmally, the proposed mechamsm
will be improved in a reasonable way.

REFERENCES

Gokhale, 3.5, and K.8. Trivedi, 2002. Reliability prediction
and sensitivity analysis
architecture. Proceedings of the 13th International
Symposium on Software Reliability Engineering,
(SRE’02), IEEE Xplore, pp: 64-75.

Goseva-Popstojanova, K. and K.5. Trivedi, 2001.
Architecture-based approach to reliability
assessment of software system. Perform. Eval,
45:179-204.

Lo, T, C. Huang, I. Chen, S.Y. Kuo and M.R. Lyu, 2005.
Reliability assessment and sensitivity analysis of
software reliability growth modeling based on
software module structure. J. Syst. Software, 76: 3-13.

based on software

Pietrantuono, R., S. Russo and K.S. Trivedi, 2010.
Software reliability and testing time allocation: An
architecture-based approach. IEEE Trans. Software
Eng., 36: 323-337.

Tao, I., Q.L. Wuand Q. Wu, 2006. Application research
of network resource allocation algorithm based on
non-cooperative bidding game. Acta Electron Sin,
34: 241-246.

Tian, J. and Y.F. Dai, 2007. Study on durable peer-to-peer
storage technmiques. J. Software, 18: 1379-1399.
Yacoub, SM. B. Cukic and H Ammar, 1999
Scenario-based reliability analysis of component-
based software. Proceedings of the 10th International
Symposium on Software Reliability Engineering,

Nov. 1-4, Boca Raton, FL., USA., pp: 22-31.

Zulkernine, M. and R. Sevicra, 2005. Towards automatic
monitoring of component-based software systems.
I. Syst. Software, 74: 15-24.

2219

	ITJ.pdf
	Page 1

