http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan




Information Technology Journal 10 (11): 2220-2225, 2011
ISSN 1812-5638 / DOL: 10.3923/1t).2011.2220.2225
© 2011 Asian Network for Scientific Information

Wavelet-domain Hidden Markov Tree Model Approach to Fusion of
Multispectral and Panchromatic Images

Jianjun Yin, *Ming Gu, *Jiang Wang and *Jiangiu Zhang
"Department of Electronic Engineering, Fudan University, China
*Suzhou-CAS Semiconductor Integrated Technology Co., Ltd., China
*Departmemnt of Electronic Engineering, Fudan University, China

Abstract: We propose a wavelet-domain Hidden Markov Tree (HMT) model-based multi-spectral and
panchromatic images fusion algorithm in this study. Our algorithm exploits the wavelet-domain HMT model
learnt from the high-resolution panchromatic image to perform super-resolution operation to the low-resolution
multispectral image. In this way, the desired lugh-resolution multispectral image 15 obtained. The experimental
results showed that the proposed algorithm can produce sharper images as well as retaining good color.
Moreover, as a result of the insensitivity of the wavelet coefficients” statistical information to the noises, our

algorithm exhibits stronger robustness to the noises.
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INTRODUCTION

The fusion of Panclromatic (PAN) and Multispectral
(MS) images is the process of combining the PAN and
MS images to produce images characterized by both high
spatial and spectral resolutions. With the fusion of
different images, we can overcome the limitations of
information obtained from individual sources.

Tt has been noted by Joshi e al. (2006) that the
fusion of MS and PAN images 1s an 1ll-posed problem. To
solve the 1ill-posed problems, we need regularizations.
Accordingly, the model-based fusion approach is
proposed. First of all, we compute the statistical prior
information from the PAN image. Then, to obtain the
high-resolution MS 1image, we can perform
super-resolution to the low-resolution MS image with the
prior information. The most important part of the
model-based fusion methods 1s how to obtain the
appropriate prior information from the PAN images.
Recently, various models have been proposed for the
model-based fusion, including auto-regressive model
(Joshi et ai., 2006), Gaussian Model (Hardie et ai., 2004),
mhomogeneous Gaussian-Markov model (Joshi and
Talobeanu, 2010) and total variational model (Kumar and
Dass, 2009).

However, these models are all computed in the spatial
domain. Although, the spatial-domain statistical models
generally work well when there is little noise, the
performance degenerates considerably when the noise
increases. Wavelet-domain mformation i1s well-known for

its robustness to noise (Eismann and Hardie, 2005) and is
therefore, exploited here to obtain a more robust prior
model. We propose a MS and PAN images fusion method
using wavelet-domain hidden Markov tree model. This
model can model both the statistical characteristics of the
wavelet coefficients and the relationship across wavelet
coefficients hierarchy. It 1s widely used in umage
denoising, 1mage super-resolution and compressive
sensing (Romberg et al., 2001). It provides useful prior
information for model-based mmage fusion methods.
Because of the robustness of the wavelet-domain
statistical model, the proposed algorithm is less sensitive
to noise. This characteristic will be validated by our
experiment in present study.

Wavelet-domain hidden Markov tree model: An image
can be decomposed as (Mallat, 1999):
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form an orthonormal basis for 17 (R), while This results in
a natural quad-tree structuring of the three subbands. It
is known that most of the energy concentrates in a small
fraction of wavelet coefficients. This sparsity property is
desirable because it enables an umage to be represented
with a small number of wavelet coefficients. The wavelet
coefficients of natural images have two primary
properties: non-Gaussianity and persistency. That is why,
the wavelet coefficients have peaky, heavy-tailed marginal
distributions and large/small values of wavelet
coefficients tend to propagate through the scales of the
quad-trees. The HMT approximates the non-Gaussian
marginal pdf as an independent Gaussian mixture and
employs Markov cham to capture the interscale
persistence property.

WAVELET-DOMAIN OHMT BASED
MULTISPECTRAL IMAGE FUSION

Multispectralimage observation model: The multispectral
image fusion problem can be cast in a high-resolution
restoration framework (Joshi et al., 2006), where an
appropriate prior model learnt using the high spatial
resolution PAN observation is exploited to regularize the
solution. Figure 1 shows the block scheme of the model
that represents the relationship between the available
low-resolution M3-image and its high-resolution version
for a single spectral channel. In particular, the observed
low-resolution MS images are models as decimated and
noisy versions of their high-resolution versions.

Let Z, represent the available high-resolution PAN
mmage and represent the lexicographically ordered
high-resolution MS images (each N*x1 of pixels) and are
the corresponding vectors (M*x1) containing pixels from
the low-resolution observations, then we can write:

Z,-m=23_.p
Y, M=23,...1,
Y, =Dz, +u, 2

where, D the decimation matrix of size M**N’ and v, is the
M,x1 noise vector that assume to be zero-mean i.i.d.
process with variance & . Although, there are numerous
methods to estimate the decimation matrix, in this study,
we assume the decimation is fixed in this study, because
the estimation of the decimation matrix 1s not the key pomt
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Fig. 1: Low-resolution image formation model
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of this study. An example for a decimation factor of q =2
and with z,, of the size 16x1, can be written as:

1100110000000000

=1 0011001100000000 (3)
4/ 0000000011001100
0000000000110011

Thus, the low-resolution pixel is the average of high
resolution pixels over a neighborhoed of q° corrupted
with additive noise. The decimation process is
represented by the matrix D.

Our problem 1s now reduced to estimating z, given
Vo.M =23, pand z,. The problem is an ill-posed inverse
problem, because the matrix D is not invertible. Therefore,
obtaming a robust solution requires a reasconable
assumption about the nature of the true image, which is
called the prior information. Once the prior model for the
true 1mage 1s chosen, the properties of the model only
depend on the model parameters. However, the
parameters of the prior model are unknown as the true
high resolution MS images are unavailable and have to be
estimated. Tn this study, the parameters are learnt from the
available high-resolution PAN observations. In other
words, we assume the spatial correlation for the unknown
high-resolution MS images can be estimated from the
available high-resolution PAN data. In this study, we
propose a prior model using wavelet-domam hidden
Markov tree.

Multispectralimage fusion using wavelet-domain hidden

markov tree: According to maximum a posterior principle

z,, can be estimated by maximizing P(Z,./v,). Using
Bayes theorem, we have:

P(z, /%)= P(Va / 2)P(2.) )

Taking the logarithm of (4), Z, can be obtained via:

2, =mgmax, [logP(y, /z,) +logP(z, ] ©)

As Eq. 2 shows, can be written as:

logP(y, / 2,)
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A Dz, | (6)

logP(y,, /2, )= %

logP(z,) is characterized by hidden Marlov tree model:

logP(z, ) o< log P(w, ) = ilogif(wim s, =tps, =ty (7)

where, w,, 18 the corresponding wavelet coefficient of z,
w,, and s_ are ith wavelet coefficient and state variable of
7z, Due to the complexity of Eq. 7, some simplification will
be made. First let consider whens,_ =t

Wi &)

—logfiw,, |8, =t)e=
28,

where, &,
when s, = t. If s;,, = 1 denotes that the wavelet coefficient
is small, then. In other words, when s,, = 1, the value of
the wavelet coefficients are suppressed. We can simplify
Eq. 7 as follows:

is the variance of wavelet coefficient w,,

2 2
8 w8,

logP(z, )= 7%( Wi &)
" E PO, +p, (D

Finally, in order to avoid the ringing effect, we
regularize the restoration with Gaussian-Markov random
field similar to (Toshi and Jalobeam, 2010), whose energy
function is:

U(zm):ZEUx +U,+U, +U, (10)
where,
U, = b [z G )~ 2 G~ L3 an
U, = bz, (.5) — 2. 01— DF (12)
U, =z, G-z, 4-1Li-DF (13)
U, =bjlz, @) -z, G- Lj+DF (14)

z.(i.j) denote the value of pixel at coordinate (1, j) of the
umage z,, bi;,b7.bY,bY, 13 the parameters leamnt from z;:

b = L (15)
5~ max(8( G- Lj) 2 Gif 8}

by = L R (16)
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B = B (18)
Y max{8[z (- 1j+1) -2 (1 ) .8}

Combining Eq. 6, 9 and 10 the optimization formula
can be written as:

N
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N

st w, = Wz,

(19)

W is the wavelet transform matrix. Due to the linearity
of the wavelet transform Eq 19 is a quadratic
programming problem. Because the size of this system is
extremely large, an iterative approach called conjugate
gradient algorithm (Shewchule, 1994) is used to solve this
problem. Tn addition, due to the scale of the system, the
direct product the wavelet transform matrix W and
decimation matrix D with a vector 1s too slow and time-
consuming. In this study, we employ fast wavelet
transform (Mallat, 1999) to calculate the product W of W7
or\with any vector and compute the product of D with a
vector with convolution.

EXPERTMENTAL RESULTS

Experimentation on synthetically generated image: Here,
we consider the verification of our model for the proposed
fusion method by considering the synthetically generated
data. To start with, we generate a checkerboard image and
treat it as a high-spatial-resolution image. The observed
low-resolution image 1s then formed by decimation and
addition of an 1.1.d Gaussian noise of the variance 0.0004.
The high-resolution image 15 then estimated from the
degraded Fig. 2a original
high-resolution image. In Fig. 2b, we show the decimated
and noisy version of the same image. A decimation
factor of two was used and the decimation is obtained
via the decimation matrix similar to Eq. 3. Figure 2¢
shows the estimated high-resolution image using the

Version. shows the
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Fig. 2 (a-d): Fusion results on synthetically generated
checkerbo ard unage, (a) 256x256 pixels
high-resolution checkerboard image, (b)
Decimated and noisy 1image, (c)
Reconstructed high-resolutionimage using
IGMRF model and (d) Estimated image with
the proposed method

TGMRF-based approach. Tt can be seen that, although, the
estimated 1mage exhibits lower noise, there s still
considerable artifacts in the center of each box. The MSE
between the reconstructed unage and the real image 1s
7.24x07°. Figure 2d is the reconstructed image using the
proposed algorithm. The fused umage 1s free of ringing
effect or noticeable noise. The MSE between the fused
image and the real image is 5.0%0~°. The experiment
demonstrates the working of our model and also clarifies
that the method 1s capable of performing image fusion.
Moreover, our algorithm is proved to be robust to noise.

Experimental illustration with a single image: The
objective of this section is to test the efficacy of the
proposed method when we consider a real satellite images
as the test unage and try to recover this image from its
degraded version. We choose a single panchromatic
image of the Quickbird image of the Missisipi University.
The satellite image 1s shown in Fig. 3a. The observed
mmage Fig. 3b 13 obtained via decimation and adding
the noise with variance 0.0025. Figure 3¢ indicates the
image obtained by TGMRF-based algorithm. There is
noticeable noise in the image. The MSE between the
fused image and real image 15 0.0012. Figure 3d 1s the
image reconstructed with the proposed algorithm. The
image has less noise and has MSE with the real image
7.60x107*, However, the image fused with our algorithm
lose some detailed information in the baseball court.

In addition, we compare the robustness of the
proposed algorithm with TGMRF-based method. Adding
noise with vanience from 0.0001 to 0.01 to the unage, we

Fig. 3(a-d): The experiment using satellite 256x256
images. (a) Pixels satellite image, (b) The
observed decimated and noisy unage, (¢) The
reconstructed image using IGMRF-based
method and (d) Estimated mmage with the
proposed method

0.012
—— IGMRF-based method

------------ The proposed method
0.010+

0.008 +
0.006
0.004 4

0.002

P :
10" 107 107
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Fig. 4: The comparison of the robustness for the
proposed method and IGMRF-based method

obtain the relationship between the MSE of the estimated
image with the real image and the variance of the noise for
both method in Fig. 4. Tt can be seen that the proposed
algorithm exhibit better robustness to
IGMRF-based algorithm does.

noise than

Experimentations on quickbird images: Here, we compare
the performance of various methods for multispectral
fusion. We employ both the subjective and objective
evaluation criteria. Each evaluation criteria has their own
advantage. The objective evaluation criteria provide
normalized and consistent metric for the unage fusion
performance. However, the human  eyes have
unparalleled sense of perception to color. Therefore, this
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Table 1: The subjective criteria of the fused image obtain with various algorithm

Method Cubic interpolation IHS-based method IGMRF-based method The proposed algorithm
cC R 0.9881 0.8192 0.9939 0.9953
G 0.9900 0.7987 0.9948 0.9961
B 0.9934 0.8202 0.9957 0.9972
Average 0.9905 0.8127 0.9948 0.9962
D R 2.8817 15.2124 1.8741 1.8630
G 2.8443 16.4384 1.8786 1.8379
B 2.4638 16.4433 1.8792 1.6557
Average 2.4260 16.0314 1.8773 1.7855
SSD R 18.7892 52,0999 12.2129 11.6082
G 18.3321 51.8046 12.2382 11.2296
B 16.9835 51.8359 12.2389 9.4040
Average 18.0349 51.9135 12.2300 10.7472

comparison is performed both visually and quantitatively
using the following mdicators.

Standard Deviation of Difference image (SDD): The SSD
1s the standard variance of the difference image, relative
to the mean of the original image, defined as follows:

o0~ fe PR (s y) Blsy) BP0

The smaller the SSD is, the better the quality of the
merged image.

Correlation coefficient (CC): CC 1s the correlation
coefficient between the original and the merged images. It
should be as close to 1 as possible:

o D6 Treiigl

V2AEG D T 1Y Nl 2]
where, fis the merged image, f is its mean value, g is the
original high-resolution multispectral image, & represents
for the mean of the multispectral image.

Difference coefficient (D): Difference coefficient is the
difference between the means of the original and the
merged image (bias), in radiance as well as its value
relative to the mean of the original image (RM). The
smaller these differences are, the better the spectral
quality of the merged image:

D(k)= Y (fuse (i, j k)~ ms (i, j k)| / (m>xn) (22)

where, fuse 1s the merged image, ms 1s the original
high-resolution multispectral image, m, n are the width and
height of the merged image, respectively.

The high-resolution panchromatic image is shown in
Fig. 5a and the low-resolution multispectral image is
presented in Fig. 5b. We have performed registration
before fusion. The image reconstructed with cubic
mterpolation 1s illustrated in Fig. 5¢. It can be seen that

Fig. 5 (a-f): Real satellite image experiment (a) high-
resolution panchromatic mmage, (b) low-
resolution multispectral image, (¢) high
resolution 1image restored with cubic
interpolation, (d) image fused with HSV
approach (e) image fused with IGMRF-based
method and (f) image reconstructed with the
proposed algorithm

the merged image is very blurry. The image merged with
THS-based method in Fig. 5d suffers from significant color
distortion. Figure 5e is the image fused with IGMRF
model-based approach. Although, the merged image’s
color 1s relatively better, the border of the umage has
distortion. In addition, the details such as the branch of
the river are blurred. In comparison, the image in
Fig. 5f, merged with the proposed method has the best
quality. Although, the fused image has small distortion at
the border, it preserves color and detail mformation very
well. Table 1 compares the quantitative quality metrics of
various fusion approaches. Tt can be seen that the
proposed method produces images with the best spectral
and spatial quality.

CONCLUSIONS

This study proposes a multispectral image fusion
algorithm using wavelet-domain Markov tree model. The
wavelet-domain Markov tree model and the IGMRF model
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learnt from the high-resolution PAN image are used as
prior model to regularize the super-resolution restoration
of the multispectral image. The experiments show that our
algorithm is more robust to additive noise than the
algorithm using IGMRF as prior model. Moreover, the
fused images are shaper and retain better color than
traditional algorithms.
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