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Abstract: Based on possibility concepts, various Possibilistic Linear Models (PL.Ms) have been proposed and
their pivotal role in fuzzy modeling and the associated applications have been established. The Regularized
Possibilistic Linear Model (RPLM) 15 a regularized version of PLM which can enhance the generalization
capability of PLM. In present study, a novel Adaptive RPLMs Based Median Filter (ARBMF) is proposed for
unproving the performance of median-based filters, preserving image details while effectively suppressing
impulsive noises. The proposed filter achieves its effect through the linear combinations of the weighted output

of the median filter and the related weighted input signal and the weights are set based on regularized
possibilistic linear models concerming the states of the input signal sequence. Experimental results for
benchmark images demonstrate that the proposed filter outperforms a mumber of extensively-used median-based

filters. Moreover, the proposed filter also provides excellent robustness with respect to various percentages

of impulse noise in our testing examples.
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INTRODUCTION

In the field of signal processing, the median filter 18
a well-known filter which demonstrates effectively in
suppressing impulsive noises. However, the median filter
also removes fine components of signals, causing
distortion of signal waveform. Therefore, modifications to
the median filter are needed and there are many studies
about modification of the median filter. For example,
the Weighted Median Filter (WMF) was given
m Yin et al. (1996) and Lukac (2004) where the
modification 1s to take the median value m a signal group
in which some input signals are multiplied. However,
seting the weights 1s difficult for actual signal
processing. In Ko and Lee (1991) and Lin (2007), the
Center Weighted Median Filter (CWMF) was introduced.
In fact, 1t 13 a special case of the WMF that gives weight
to only the central pixel in the filter window. Moreover,
the Switching Median Filters (SMF) have been studied
by Sun and Neuve (1994) and Wang et al. (2010).
These filters mainly use a detection process for separating
the uncorrupted pixels from the corrupted. Therefore,
pixels are left unchanged if they are judged as noise-free
pixels. In addition, an extension of the Vector Median
Filter (VMF) has been presented by Smolka and
Chydzinska  (2005) and Lukac et al. (2006) where there 1s
an adaptively switching filtering design. The switching

concept depends on a threshold and the detection
process 1s based on the peer group concept and the
statistical measure of the vector’s deviation. These
switching median filters yield satisfactory results when
the parameters concerned are properly set. However, it 1s
not easy to exploit fixed decision-making parameters,
since the parameters are obtained at a pre-assumed noise
density level.

Since possibilistic linear regression analysis was first
introduced the literature dealing with possibilistic
regression analysis and Possibilistic Linear Model
(PLM) has grown rapidly. Ge et al. (2008) mvestigated
the Regularized Possibilistic Linear Model (RPLM)
which 15 a regularized version of PLM and can enhance
the generalization capability of PLM. In this study, we
propose a novel Adaptive RPLMs Based Median Filter
(ARBMF) to 1improve the median-based filters,
especially for suppressing fixed- and random-valued
noises while preserving image details. In this filter, the
judgment of the existence of impulsive noises is
expressed by RPLMs and the filter parameter is
controlled by the models. Examples of processing actual
images with impulsive noises are shown to verify the
high performance of this filter. Moreover, the new filter
also provides excellent robustness with respect to
various percentages of impulse noise mn our testing
examples.
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THE DESIGN OF THE FILTER ARBMF

The principle of the filter ARBMF: Suppose that
umpulsive noises are added to a two-dimensional image X
with its height rand width c¢. Letx (i, )e {0, 1, 2,..., 255} be
the pixel value at position (i, j) in image X. Let the
observed sample matrix W (1, 1) represents a filter window
at location (i, j) with its size (2t+1, where t+1 <i<r-t,
t+l<j<e-t and the central pixel value of the window
W (4, D bex(,])

The output value y (1, ) of the filter ARBMF at the
processed pixel x (1, ) 1s obtained as follows:

yLp=BEHpmGHA-pGinxGHy @

Here, B (4, j) denotes the weight indicating to what extent
an impulsive noise is considered to be located at the pixel
x (i, §). If B (4, j), an impulsive noise is considered to be
located at the pixel x (3, J) and the output of ARBMF 1s
equal to the median value of the input pixel values in filter
window. If B (i, j) = 0, an impulsive noise is not located at
x (4, }) and the output is equal to the input as it is.

To judge whether an impulsive noise exists or not,
B (@, j) should take a continuous value from 0to 1 to cope
with ambiguous case. Therefore, the major concern of
filter ARBMF is how to decide the value of B (i, j) at the
pxel x (3, 7).

The weight P (1, j) can be set by the local
characteristics of the nput signals. In general, the
amplitudes of most impulsive noises are larger than the
fine changes of signals. Hence, we can define the varable
u (1, j) as follows (Arakawa, 1996):

u(, )= x @ )-m G, )l (2)

where, u (1,]) denotes the absolute difference between
x (i, )) and the median value m (i, j).

Obviously, if u (4, j) is large then an impulsive noise
1s assumed present, else {u (1, ])=0} no impulsive noise 1s
assumed present. The variable u (1, j) 1s a measure for
detecting the possibility whether the input x (i, j) is
contaminated or not (Wang, 1997). However, it is difficult
to separate the impulsive noises sufficiently only by the
value of u (1, j). For example, suppose that an image
contains very fine components such as line components,
the width of which is just one pixel and x (4, ) is located on
the line with no impulsive noise. The value u (3, j) is large
since m (1, J) must not be close to x (1, J) but to the
background of this line and accordingly, an impulsive
noise is assumed to be located at the pixel x (4, j), although
no noise 15 there. To avoid the wrong judgment, it 1s
necessary to add variable v (1, ) to improve the filter’s

performance. The variable v (i, j) can be defined as follows
(Arakawa, 1996):

PR R 3)

where, x, (1, 1) and x, (1, }) are selected to be the pixel values
closest to that of x (1, J) in its adjacent pixels in the filter
window. If v (i, j) is large then an impulsive noise is
assumed present, else {v (i, j))=0} no impulsive noise is
assumed present.

The variable v (1, ) takes the 1solation of impulsive
noises into consideration so as to separate the impulsive
noises from the fine components of signals. When a line
compomnent appears in the filter window, v (1, j) must be
small since the two mput signals selected in formula (3),
that is, x, (i, j) and x, (i, j) must be located on the line,
Thus, we can judge that no noise is located at the pixel

x (1, ])-

The partitioning of the observation vector space: In
present study, according to the variables u (i, j) and
v (1, 1), the observation vectors are given by:

O, )=, v, ) (4

A partition 18 defined that the observation vector
space 2 subset of R’ is classified into a set of N mutually
exclusive blocks, defined as Q,, Q,,..., Q, given by:

Q, ={0G, e Q:f(0G.))=k), k=12 N,

3

N
s.k. Q:UQk and QkﬂQI:(p, for k=1,
k=1

where, the classifier f () is defined as a function of the
observation vector O (i, j). Tt determines the output from
a partition of the vector space (2 into N non-overlapping
blocks according to the value of O (3, ), Thus, each input
data x (i, j) corresponding to its O (i, j) is only classified
into one of N blocks. Tn general, the classifier f(.) can be
obtained by different methods to determime to which
block the vector O (1, J) belongs. Owing to sumple
computation and efficiency, the Scalar Quantization (SQ)
(Lin and Yu, 2004; Chen and Wi, 2001 ) is considered to
be the classifier f (.) on the design of filter ARBMEF.

In order to dimimsh the complexity, all the block
boundaries on the partition € are restricted to be parallel
to the coordinate axes and their projections on the
coordinate axes are mutually exclusive or identical,
Based on the special case, each block (3, can be
represented as a Cartesian product of two interval blocks,
s, and s,; that is, €, = s,xs,. Then each scalar component
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0,0, Defu, ), v 4, Pr,a=1,2 of O (4, j) can be classified
independently by using SQ (Lin and Yu, 2004) which is a
very simple process whose quantizer consists of an
encoder mapping process and a decoder mapping process
(Sayood, 2000). The encoder mapping process includes
receiving the input value O, (i, j) and providing an output
codeword which depends on the interval in which the
valued falls and the decoder mapping process provides
the codeword to a representative value d. In this study,
encoder mapping process divides the range [0,255] mto
five intervals such that each scalar component O, (1, J)
belongs to one of the five intervals as shown in Fig. 1.

The following is the algorithm for the partitioning of
the observation vector space.

¢ TInput x (i, j) and the filter window w (i, j) centers
around x (i, j)

¢+  Compute u (i, j) and v (4, j) by wing Eq. 2 and 3,
respectively

*+  Obtam O (3, )) by using Eq. 4

*  Decide which interval u (1, j) belongs to and provide
a representative value d,

*  Decide which mterval v (1, j) belongs to and provide
a representative value d,

¢+ Evaluate O (i, j) that belongs to block k of the
partition such that O (i, {)e€2, ke {1, 2., N} by using
the equation k = (d,-1)*B+d,, B, denotes the number
of intervals of u (i, j)and v (4, j)

Output
A®@
5 =
4 4
3
2 -
14 Input
u (i j)
O T T T T T :
0 5 20 35 60 255
Output
42w
5 -
4
3
5
| - Input
u(i.j)
0 T T T T T ;
02 15 35 255

Fig. 1(a-b). The quantizer nput-output map for scalar
observation vectors

Figure 1 shows that the range [0,255] is divided into
five intervals. Of cowrse other possibilities may also exit.
In present study, the quantization interval values are
obtained empirically through extensive experiments and
remain fixed in filtering process throughout all the
experiments. That is, they are part of the filter ARBMF
and can be applied to all situations. Despite its simplicity
and low computational complexity using the SQ classifier,
the filter ARBMF has shown desirable robustness in
dealing with a variety of images corrupted by different
impulsive noises.

The creation of regularized possibilistic linear models:
In general, a possibilistic linear model can be written as:

N =TOLA)=AgH A X HA X+ +A X, (6)

where, A, (0isn) denotes a symmetric triangular fuzzy
number, 1e., A =(&.n), whose membership function is
defined as:

- &
“‘A,(aa) = un
) 0 otherwise,

if &-nsa s+, 7

where, £ is a center and 1, 1s a radius.
By fuzzy number arithmetic, we have

Ax=Ex.mlx ), A+A =E+Em+n)

Thus, let:

T T
X=Xy, 5, ), [XEQLIE LIx L ),

Er = (5.8 B TIT = (Mg, MMM, )
Then:

FYJ:AD+A1X1+A2x2+"'+Anxn:(‘gTX, T]T‘XD (8)

Now, we can derive the acceptable fuzzy membership
function i (y) of output v as:

T
1P Sxl g
n x|
u, =41 if x=0y=0, )]

0 if x=0v+0,

We can easily establish a regularized possibilistic
linear model for each block, according to the partitioning
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Fig. 2: The original reference image ‘parlor’

of the observation vector space. The input/output data
set for the creation of regularized possibilistic linear
models can be obtained from a reference unage. Figure 2
shows the original reference image ‘parlor® used in out
experiments. In owr experiments, the reference image
corrupted by 20% random-valued impulsive noise.
According to the original image, the reference image and
the formula (1), we can obtain the input/output data set.
In this data set, the input variable is the observation
vector and the output variable is the desired weight for
the pixel. The data set D can be described as:

D= (1,9, B, 01,05 B, v, B ) (10)

Another representation 1s also possible. If we take
the observation vector u and v as the input variables,
written as x, and x,, respectively and take weight [ as the
output variables, written as y, The data set D can also be
defined as:

D={(x, ¥} (X ¥5)s (X0, ¥ )} (11)

where,

x =x,.x ), xeRye[0]1], i=12,L
According to the partitioming of the observation
vector space, the data set D can be divided into N data
subsets which are corresponding to those observation
vector subspaces, defimed as D, D,,..., Dy, given by:

Dk = {(Xl =y1),(x2=y2)," "(x& =Y& ) ‘ X = (Lxl:l Xy )T,

N
£0x,. %)=k i=12--B) st ¥R =L, (12)
k=1

DD,=¢ and i#j

Assume we have obtained the data subset D, (k =1
2...., N), then we can establish the RPLM for the block
Q (k=1,2,.,N), defined as M, given by:

X‘j = Ak*T X (13)

where,

A=A A LA LT, AL =6 ), 1=012,
=(A,, A AL, x €D, =12,

and YA, denote the estimates of Y; Ay respectively.

In RPLM, we need to choose an appropriate free
parameter A (i.e., the threshold value used to measure
degree of fit), such that ME(YI)Z?» 1e. (Geetal, 2008):

T
uw(yi)=1—‘y‘;ljék (14)
by n

il

where, 1" x| denoctes aradius of ¥ and £' x; denotes the
center of Y. That is, the degreehcdvf fitting the estimated
regularized possibilistic linear regression model v7= a4, x,
to the given output data 13 determinedmbyw the
corresponding  A-level set. Then, the regularized
possibilistic linear regression analysis in Eq. 13 will
become the following optimization problem (Ge et al.,
2008):

min®d(,& A =¥ " |x, \%E&,HE(A; 1aY)

éT
BEX cqopye
n x| (15)
st é T 3|’<(1 M+ A
ALAT20
=12, .N

where, ¢ 18 a predefined constant, A and A* denote the
latent variables of the upper/lower bounds of the output,
respectively.

The RPLMs can be established after solving the
optimization problems
experiments, we let ¢ = 80 and & = 0.5. Although, we use
reference image ‘parlor’ to establish RPLMs, owr
experimental results show that the performance of
filter ARBMF is not dependent on the reference
image. For example, the filtering results by the ‘parlor’
reference image are very close to the filtering results

mentioned above. In our

by ‘Lena’ or other reference images. For, in general
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speaking, even if we use other benchmark images as the
reference 1mages, the models established from our
methods are steady.

It should be emphasized that after the RPLMs have
been established, these models will be used in all our
experiments and will never be changed again In fact,
these models have become the fixed parts of the filter
ARBMF.

The operating procedure of filter ARBMF: Assume the
filter window of ARBMTF 1s sliding on the image X from
left to right, top to bottom in a raster scan fashion. Now,
we can express the operating procedure of the filter
ARBMF as follows: the conventional median filter m (3, 7)
and observation vector O (i, j) are first computed and the
k th block 1s detected for each mput data x (1, j) by using
the function f (O (i, j) and the value of P (i, j) associated
with its block €3, is obtained according to the regularized
possibilistic linear model M, Of course, the
carresponding output of M, is a fuzzy number, we choose
the center of the fuzzy number as the value of B (4, 7).
Finally, the output of filter ARBMF can be obtained by
using Eq. 1.

The operating procedure can also be described in
detail as follows:

for (T=(1+t); i< = (r4); i++)
for (j = (1+t), j<= (c-t}; j++)
{Take the filter window W (i, j) at location (i, j);
Define the data set D from W (i, j) as
D= {x (i, jt) x (-t, j-0),..., x (Q, j)..., xitt, j+t-1), x (i+t, j+0};
Compute the output value m (i, j) of the standard median

filter from D;

Compute u (i, i), v (i, j) and O (i, j> by using Eq. 2, 3 and 4,
respectively;

Obtain the representative values d, and d, fromu (i, j), v (i, j) and
Fig. 1;

Evaluate O (i, j) that belongs to block k of the partition by
using the equation
k=(d,-1)<5+d;;
Take u (i, j) and v (i, j) as the input variables and compute the
output data of M,. The result can be denoted as & x0T xp
where, £7 = (& 5. & Ba) T = (oM Thea) 0= u (@i v D'

Let (16, ) =g B -

if B @, )=0

then { Replace x (i, j) by the result obtained from Eq. 1) }

else { The output is equal to x (i, j)}

endif

}

EXPERIMENTAL RESULTS

Several experiments for benchmark images are
organized to demonstrate how well the proposed filter
ARBMEF can suppress impulsive noises and enhance the
image restoration performance for signal processing. In

order to evaluate and compare the performance of the
proposed filter ARBMF with a number of existing impulse
removal techniques which are variances of the standard
median filter in the literature, we adopt the peak signal-to-
noise ratio PSNR criterion to measure the image
restoration performance and the noise suppression
capability.

In addition, 3%3 filter windows were used in all the
experiments. In particular, the quantization mterval
values employed in the partitioning processed were
obtained experimentally and the satisfactory mterval
values shown in Fig. 2 are used throughout the
experiments. The five mtervals can be [0,5), [5,20), [20,35),
[35,60), [60,255) and [0,2), [2,5), [5,15), [15,35), [35,255) for
the variables u (i, j) and v (i, j), respectively. In the
experiments, the image ‘parlor’ corrupted by 20%
impulsive noise as shown in Fig. 2 was taken as the
reference image. The RPLMs for the corresponding blocks
can stay constant during the filtering stage throughout
the experiments.

The first experiment 1s to compare the filter ARBMF
with the standard median filter MEDF, the Center
Weighted Median Filter (CWME), the Switching
Median Filter (SMF) (Sun and Neuvo, 1994) and the
Vector Sigma Median Filter (VSMF) (Lukac et al.,
2006) which was proposed m terms of noise removal
capability. Table 1 serves to compare the PSNR results
of removing both the fixed- and
impulsive noise with p = 20% and it reveals that the filter

random-valued

ARBMEF achieves significant improvement on the other
filters for suppressing both types of impulsive noises.

In order to show the excellent capability for
preserving image details while effectively suppressing
impulse noise, Fig. 3, 4 are given here. These figures are
the comparative restoration results of the several filters
mentioned above for the benchmark mmages corrupted by
impulsive at  20%.
experiments, the filter VSMEF seems to always outperform
MEDF, CWMF and SMF, so the filter ARBMF is just
compared with VSMF. Apparently, the filter ARBMF
produced a better subjective visual quality restored unage
with more noise suppression and detail preservation.
Especially, in Fig. 4, we can see that the ARBMF has
preserved the top thin line more completely than the
VSMF.

The second experiment 15 to demonstrate the
robustness of the weights obtained from RPLMs with
different percentages of mmpulsive noises, regardless of
what is used as the reference image. In this experiment,

random-valued noise In our

the mmage ‘parlor” corrupted by 20% mmpulsive noise 1s
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Fig. 3(a-d): Restoration performance comparison. (a) original image, (b) the image degraded by 20% random-valued
mmpulsive noise, (¢) the restoration result of VSMF and (d) the restoration result of ARBMF

Fig. 4(a-d): Restoration performance comparison. (a) original image, (b) the image degraded by 20% random-valued
impulsive noise, (c) the restoration result of VSMF and (d) the restoration result of ARBMF

Table 1: Comparative restoration results in PSRN (dB) for 20% impulsive

noise
Images

Filters Lena Goldhill Boat Bridge Lake
()

MEDF 30.2 28.8 29.2 24.9 27.2
CWMF 30.4 29.9 29.8 25.7 281
SMF 31.5 30.5 30.3 26.2 284
VSMF 31.3 30.6 311 26.9 285
ARBMF 351 33.9 338 20.2 311
()

MEDF 31.7 29.7 301 25.4 27.8
CWMF 324 30.8 31.0 26.3 288
SMF 327 311 31.0 26.2 289
VSMF 329 31.2 31.3 263 292
ARBMF 3.1 32.6 32.8 27.7 3ol

(a): Fixed-valued and (b): Random-valued impulsive noise

also taken as the reference image, independent of the
actual corruption percentage. Figure 5 shows the
comparative PSNR results of the restored image ‘boats’
when corrupted by the fixed- and random- valued
impulsive noise of 5-30%, respectively. From Fig. 5, the
filter ARBMF has extubited a satisfactory performance in
robustness, regardless of the reference image used in
expermments. In addition, Fig. 6 shows the restoration
performance comparisons of different methods in filtering
the image corrupted by random-valued impulsive noises
at various noise ratios. From these figures, we can also
see that the filter ARBMF produced better subjective

visual quality restored images.
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Fig. 5(a-b): Restoration performance comparison of different methods in filtering the “Beat’ image corrupted by impulsive
noises at various noise ratios. (a) image corrupted by fixed-valued impulsive noises, (b) image corrupted by

random-valued mpulsive noises
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Fig. 6(a-h): Restoration performance comparison of different methods in filtering the image corrupted by random-valued
impulsive noises at various noise ratios. (a-b) original image, (c) noised image (p = 15%), (d) noised image
(p = 25%), (e-f) the restoration results of VSMLF and (g-h) the restoration results of ARBMF

CONCLUSIONS

In present study, a novel adaptive RPLMs based
median-type filter ARBMF has been proposed to preserve
image details while effectively suppressing impulsive
noises. The proposed filter achieves its effect through a
summation of the mput signal and the output of median
filter. With the filtening framework, the efticient SQ method

is used to partition the observation vector space and the
observation vector is classified as one of N mutually
exclusive blocks, then the weight associated with the
corresponding block 1s obtained according to the RPLM.
Some results of image denoising show the high
performance of this filter and the filter ARBMF is not only
capable of showing desirable robustness in suppressing
noise but also able to gain appreciated image quality.
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