http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan




Information Technology Jownal 10 (12): 2284-2291, 2011
ISSN 1812-5638 / DOL: 10.3923/1).2011.2284.2291
© 2011 Asian Network for Scientific Information

Nonlinear Adaptive Block Backstepping Control Using Comimnand Filter and
Neural Networks Approximation

'Cao Lijia, ‘Zhang Shengxiu, 'Li Xiaofeng, 'Liu Yinan and *Liu Ying
'Xi’an Research Institution of Hi-Technology,
Xi’an 710023, Peoples’ Republic of China
“School of Electronic, Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai, 200240, Peoples” Republic of China

Abstract: A nonlinear adaptive block backstepping control approach is designed for a class of n-th order
Multiple-input  Multiple-output (MIMO) nonlinear systems with uncertainties and disturbances. The
problem of “explosion of complexity” in traditional backstepping 1s avoided by usmg command filter
to replace the differentiations of virtual control law. Radial Basis Function Newral Networks (RBF NNs)
are employed to adaptively approximate the unknown nonlinear functions. The closed-loop system is
guaranteed to be bounded and tracking errors are also proved to converge exponentially to a small residual set
around the origin by Lyapunov approach. The nonlinear six Degrees-of-freedom (DOF) flight simulation on an
Unmanned Aerial Vehicle (UJAV) model is provided to demonstrate the effectiveness of the designed

control scheme.
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INTRODUCTION

In the past decades, backstepping
(Kanellakopoulos et al., 1991) has become one of the most
popular adaptive and robust control design methods for
nonlinear systems because it can guarantee global
stabilities, tracking and transient performance for the
broad class of strict-feedback system (Wang and Ge,
2001; Khalil, 2002). The essence of backstepping design
15 to select recursively some appropriate functions of
state variables as pseudo control signals for lower
dimension subsystems of the overall system. This control
technique hinges on using a part of the system states as
virtual controls to control the other states and offer a
choice to accommodate the unmodeled nonlinear effects
and parameter uncertainties.

Generally, the application of adaptive and robust
techniques is limited by lack of accurate system dynamics.
In particular, some adaptive learming parameter estimation
or identification algorithms are utilized to elininate
uncertainties of dynamics (Van Qort et al., 2010; Ren and
Atkins, 2005; Li et of., 2009; Leu and Chen, 2011; Peng,
2010, 2011; Karabacak and Eskikurt, 2011; Tong et al.,
2010a, b). Theoretically, a Radial Basis Function Neural
Networks (RBF NNs) can approximate any continuous
function to an arbitrary accuracy on any compact set as
long as a sufficient number of neurons are employed

(Chen and Chen, 1995; Schilling et al., 2001). As aresult,
backstepping control approaches had been presented that
combine backstepping with Nns m the recent years
(Shi, 2011; Mazenc and Bliman, 2006).

Varies applications of the adaptive backstepping
control techniques demonstrate its superiority over
classical controllers. However, an obvious drawback in
the integrator backstepping design 1s the problem of
“explosion of complexity” which is caused by the
repeated differentiations of certain nonlinear functions
such asg virtual controls (Swaroop et al., 2000). Dynamic
Surface Control (DSC) technique 1s mtroduced to resolve
this problem (Swarcop et al., 2000, Zhang and Ge, 2008).
In addition, the desired output and its first n derivatives
must be available i tracking control for an n-th order
systems. A command filtered approach for nonlinear
systems which can resolve the two problems
simultanecusly, is proposed by Farmrell et ol
(2005, 2006, 2009).

In this study, a mnonlinear adaptive
backstepping control approach is proposed.

block

SYSTEM FORMULATION AND PRELIMINARIES

Problem formulation: Let state variables x'eR™,
x* €R™,..,x" € R™ and system mput u € R™ with
m>n,. Consider the following class of n-th order
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Multiple-input  Multiple-output  (MIMO)  nonlinear
systems with uncertainties and disturbances:

%1=h (X)) + AL (FED) + g (Kx A (R)xz + di

K= () + AT () + 2%+ A (T)xin + @

Ko =hn () + AL () g TutAg (X u+ do y=x1

where, x;, = [%,, %, ... x|" are assumed to be available for
measwement, y denotes the system output; The
functions £ (.)and g; (),1 =1, 2,..., n, are smooth nonlinear
functions that are assumed to be known; Af; (.) and Ag, (.)
are smooth nonlinear functions caused by both parametric
and nonparametric uncertainties; d; denote the
disturbances.

To ensure controllability, we will invoke the

following assumption:

*  There exists a constant g, such that for1 =1, 2,...,
each function |g; (.)||. where, ||| denotes the 2-norm of
a vector or a matrix

The control objective is to design an adaptive control
mput u so that the output y follows a desired
trajectory y. with the constraint that all signals in
the closed-loop system are semi-globally umformly
ultimately bounded. Generally, the assumption that v,
and its derivatives are all existent and bounded is
required. If there 13 a n-th order system, y, and its
derivatives up to the (n+1)® order are all bounded is
usually required (Shi, 2011). In the practices, this
assumption 18 very stringent. In this study, Command
Filtered Backstepping (CFBS) (Farrell et al., 2009) is used
and this approach requires the following less stringent
assumption.

¢  The desired trajectory y, and its derivative ¥. are

continuous and bounded

In addition, to design the backstepping controller,
another assumption is required.

¢ Farrelletal (2009): fori=1, 2,....n, each function f, ()
and g () and their first partial derivatives are
and bounded

continuous
D, cR!

on any compact set

RBF Nns: In the system, there are some unknown
uncertainties Af; () and Ag; (\) and distwbances d;. They

can be combined to form an unknown nonlinear function
A, as follows:

Ai = Afi + Agixia +di,
An = Afn + Agau +dn

1£isn-1 (2)

To identify A, 1 = 1, 2,..., o some identification
models, e.g., fuzzy logical system, wavelet networks and
neural networks can be applied. For Radial Basis
Functions (RBF) NNs, the identification model £ (x) can be
expressed as:

) = W) + £(x) (3)

where, x € R¥ is the input vector of RBF NNs; W' =
[w,, Ws, ..., w;]" is the ideal weight vector, [ denctes the
node number; { (x) = [{, x), £, ), ..., §; GO is the basis
function vector; £ (x) is the so-called NNs functional
approximation error. {; (x) 1s usually chosen as the
Gaussian function:

|x-c

2
b BRI (4

i

Gi () = exp(—

where, ¢, = [c,, €., ..., 0] 18 the center and b, is the width
of £, (x).

Theoretically, the single-lndden-layer RBF NNs can
approximate any continuous nonlinear function to any
deswed accuracy. This 15 known as the universal
approximation capability (Funahashi, 1989). Even the
approximation cannot always be perfect in the practices,
there still exist integer N, the node number in the hidden
layer, for arbitrary constant €,0, satisfying approximation
error ||e (x)||<e,,. To use RBF NNs in block backstepping,
there is another assumpticn about weight vector W',

» Lee and Kim (2001): The weight vector W' are
bounded in the sense that

[W[, < W (5
F

where, W_ 13 known positive constant and |.||; denotes
the Frobemous norm of a matrix.

THE DESIGN OF ADAPTIVE BLOCK
BACKSTEPPING CONTROLLER

Step 1: Design a nominal control input «,. Recall first
Eq. in 1 with 2, it can be written as:
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X =fi + gixa + Ay (6)

The tracking error vector 1s defined as % = x;-y,. By
treating x, as a virtual control input and using the
feedback linearization method, the nominal control input
¢, 18 designed as follows:

a =g (s + 6+ WG -0 (7

where, k, denotes the designed positive constant; W

denotes the estimate of ideal weight matrix W', and the
estimate error is W: =W — Wi . Select adaptive update law

of RBF NNs weight matrix as:

Viﬁ = E1(C1>~(;r — UlVAV1 ) (8)
where, £, € R" denotes the nvertible pesitive gain matrix
and 0,0 1s a small design parameter called g-modification

coefficient.

Step 1: Design a nominal control input &, 1= 2, 3,..., n-1.
Consider:

%=t +gixin + A (9)

Define the tracking error vector % and the
compensated tracking error signals z as:

=% —%Xu,Zi=% &, i=12-n (10)

where, the variable & 1s the output of the following filter
==kl + g, (Xine —a) + g G (11

with £, (0)=0. Fori=n, define £, = 0.
Then, the nominal control input ¢; is designed as
follows:

ai=—g (ki%, +fi + gl 71 + W, —%i) (12)

where, k denotes the designed positive constant; W,
denotes the estimate of ideal weight matrix W, and the
estimate error is Wi =W — Wi . Select adaptive update law
of RBF NNs weight matrix as:

W, = E(GE - W) (13)

where, Z; € R"™ denotes the invertible positive gain matrix
and 6.>0 1s o-modification coefficient.

12, it’s known that the derivative of
mput % i3 used. Unfortunately,
computing %« is a hard work. This situation will cause a

From Eq.
virtual control
problem called “explosion of complexity” and the
assumption that vy, and its derivatives wup to the
(nt1)® order are all existent and bounded will be
required.

To avoid this problem, the command filter, which 15
formal introduced in Ref. (Farrell et ol , 2009), is used. Pass
¢, through a command filter (14) to produce the signals
%, and %.. Define the state space implementation of
command filter as:

{fll ® } _ [ q:
q2(t) —2Cimiqz — oxifq — Xc) (14)

where, w; denotes the natural frequency of the command
filter. The filter design parameters are w>0 and
£, € (0, 1).The designer would typically select w;>k, for all
1, so that x, and %. will accurately track « , and &,
respectively.

Step n: Design control input u. Recall that:
Tn=fn + gall + An (15)

Tracking error vector 13 defined as % =%« —X= . The
control input u can be designed as follows:

(16)

U=—gr (Kn¥n +Fu + goct Zat + Wil — Kne)

where, k, W, , W, are the same meaning as in step . x.,

can be produced with passing ¢, ; through the command
filter Hq. 14. Select adaptive update law of RBF NNs
weight matrix like Eq. 13.

W, = B, (! — 0.Wa) (17)

where, =, € R™ denotes the invertible positive gain matrix
and 0,>0.

STABILITY ANALYSIS

In Design Section, the adaptive block backstepping
controller using CF and RBF NNs 1s designed. The
stability of the close-loop system will be discussed here.
The dynamics of the tracking error % and the
dynamics of the compensated tracking error z will be
given firstly.
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Error dynamics: The dynamics of tracking errors can be
written as follows:

=% — X1
=fi + gixo + Ay —Xie
=fitga + W'+ — % +g(% X)) +g(Xe —ar) (18)
=—ki% + W'l —WITCI +E+ @ + g —ar)

=—ki% + g% + g1 (X2e — X2:) — WTQ +a

%i =% — K
=fitgid + A — Ko + 8 (Xiwt — Xiate ) T 8 (Kot — 1) (1 9)
=-k% — gLZH + W C, - \”\VZT Ci +8i tgiXin + & (Xine — &)
= k% —gliZis + it + g (Kiwte — 2 )— Wit o+

% =%a — Xue
=fu + gull + An — X (20)
= —Ka%n — ghiZat + Wil - Willp + 20

= —Ku%n — @it Zu — Wa L + En

Combine 10 and 11, the compensated tracking errors
dynamics become:

n=%-&=—kiz +gizz - W' +g D
zi=% & =—kizi —gl 70 + g7 - W+ (22)
Zo = %o — Eo = —Knn —gliZas — W1 L +£n (23)

Stability properties: Now, consider the control Lyapunov
function candidate:

Vit = %i(zf 7+ (WIE'W,) (24)

i=l

The time derivative of the Lyapunov function is:

V=¥ @+ o WIE W)

i=1

Bl W e o Wy (25)
i=1

= ORI W - 20250 + 2T
i=1
Note the following mequality:

tr(W B (W — B, 2)) = tr{~o; W W, )
=tr(-o W) (W, + W)

2 (26)

< tr{-o W W, +%v"v§vig M +% W

Gi 3, Tes Ti 2
<t WTWL )+ W
€ 2 )} 5

And from Young’s inequality, we have the following
inequality:

2o <[z +[e [ /4 (27

Combine Eq. 26 and 27 with Eq. 25, the time
derivative of the Lyapunov function could be written as:

ve Fwaf + Sueiwn TS Wi faf 1o (28)
= =

where, k', = (k-1)>0.
Define:

k=min(2k!,0"), c= En‘,(%wxﬁ +e] 7 4
sien =

Finally, the following equation is obtained for the
derivative of the chosen Lyapunov candidate function
Eq. 24

VekVic (29)

Equation 29 inplies that V<0 , when V<c/Zk
Multiplying Eq. 29 by e* yields:

9 ey < ce (30)
dt
Integrating both sides of 30 over [0, t], we obtai:
£ G (31)
0= V(D) <+ [V(0) ~ e

Therefore, all signals of the closed-loop system are
uniformly ultimately bounded. Furthermore, it means that
if the designed positive constants k; are chosen suitably,
tracking errors will converge exponentially to a small
residual set around the origin.

APPLICATION TO UAV MODEL

Here, the approach proposed in design is used to
design flight controller for a UAV model.

Let x, = [a, B, pl', x. =[p. q. r]" and control input
u=[8, &, 6] Where, «, [} and p, respectively denote
angle of attack, sideslip angle and conical rotation angle;
p. q and r, respectively denote roll, pitch and vaw rates
about the body axes; §,, 8, and &, denote deflections of
aileron, elevator and rudder, respectively. Based on the
assumption of the flat Barth and constant mass properties
(Stevens and Lewis, 2003), the general nonlinear six
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Degree of Freedom (DOF) dynamic of the UAV can be
written as (Lijia et al., 2010):

% =0 () + g (x)xe+ha (3 )u
%2=F (x1,%x2)tg2 (x1)u

¥ =x1

(32)

To design the adaptive block backstepping flight
controller, some assumptions which have been presented
in other papers (Li et al., 2009; Lee and Kim, 2001) are
given as follows:

¢ The control swface deflection has very small effects
on the aerodynamic force component:hu=0

e There exist positive constants «,, and P, € R such
that the magnitudes of g, and g, are bounded and
invertible for all « and p € R, satisfying |o|< e, [Bl<Pu

According above assumptions , system Hq. 32 with
uncertainties and distwbances can be transformed into a

MIMO strict feedback system such as:

X1=fi +g1X: + A[
(33)

X2=F2 + gau + Az

y=x1
Where:
A =Af + Agixa +di and Az = Afz + Agau+ d2

Let the desired trajectory v, = x,, = [¢,, B, 1.]”. Now,
the controller can be expressed as:

a=—gi(ki% + 61 +VAV1TC1 —¥:)

where, s is the Laplacian.
The adaptive update law of RBF NNs weight matrix
can be given as:

VAV1 =& (C1)~(1T — G1W1 3, \?Vz =Ez (Czig — Gz'\;Vz ) (35)

The schematic of the UAV flight control architecture
can be given as Fig. 1. Note that there 15 a first order filter
between command signals and desired trajectory y, which
is used to produce smooth desired trajectory and
guarantee assumption 2.

SIMULATION RESULTS

This section presents the numerical flight simulation
results from the application of the controller design to the
UAV model of the previous section with aerodynamic
coefficients uncertainties and continuous disturbances.
The controller is evaluated on estimation accuracy and
tracking performance. The control design has been
implemented in the MATLAB/Simulink environment by
means of Level-2 M-file S-fimction. The sampling time and
delay time of states are both set to 5 m sec. In addition, all
the control surface deflections are limited +25 deg.

The initial conditions of the engagement are given in
Table 1.

The Lyapunov design only requires the controller
gains to be negative definite but 1t 1s more natural to
select the inner loop gains higher than the outer-
loop gains to achieve good tracking performance
(Van Oort et al., 2010). Therefore, the gain matrix of
update law and controller gains are selected as:

Table 1: Tnitial condition for simulations

u=—gz' (koo +5 +glz + WECZ —%2) State variable Initial values Control input Initial values
X1 =X1 —X1e, X0 =X2 X2, Z1=%X1— & Vi 238'5;[“ sec”
34 g 0.50 deg
& =—ki& + g (2 —a1) ( ) Bo 0.20 deg 8,0 0.35 deg
'’ Mo 0 deg B -0.06 deg
o co Po 0.08 deg sec™! 8n 0.58 deg
B e — Q@ 0 deg sec™!
%2 | 8°+20ws+ o f -0.07 deg sec™!
Al \/c
(“Omﬂi, Filter —> Command Control surface
Control law [~ Actuators - » UAV Model —»
N inputs u, deflections
L Trackin
oo s RBENNs
UAV States x

Fig. 1: Schematic overview of the control architecture
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0.03 4

x, (1)-Err

0.02 x, (2)-Err
X, (3)-Err

0.01 +
0.00 -
-0.01 +
-0.02 4

x,-Err (deg)

-0.03

o]

Time (sec)

Fig. 2: Tume histories of tracking error % and unknown nonlinear function A,

059 ai(1)
s 5= APP

ai(1)
<

2:(2)
i

5 6 7 8 9 10
Time (sec)

=
—_
19 -
W
i~

Fig. 3: Approximation performance of the RBF NNs for A,

1 = diag([0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5]),
5 = diag([107,1072,1072 107 107 1072 107 107 )
ki =8k;=6

In approximating A, and A,, the RBF NNs contain 8
nodes with centers of receptive field ¢, evenly spaces in
(-0.5+0.5); The widths are all initially selectedas b, =1.
The initial aerodynamic coefficients are all chosen as two
times of accurate values and disturbances are both
selected as sin (7t) [0.05, 0.01, 0.05]". Figure 2 shows time
histories of the tracking error x, and unknown nonlinear
function A, which are used, respectively as inputs and
ideal approximation targets of RBF NNs. The
approximation performance for A, 1s shown in Fig. 3. What

is worth noting is that as there is similarly approximation
performance for A,, it’s not given in this study.

Consider quickly approximation 1s needed, the size of
RBF NNs are small. As a result, the unknown noenlinear
function estimation error cannot be very well. However,
Fig. 3 still shows that RBF NNs has enough approximation
accwracy for the unknown nonlinear function

The effectiveness of the designed control scheme 1s
demonstrated on the nonlinear six Degrees-Of-Freedom
(DOF) flight simulation on the TAV model, of which all
the aerodynamic coefficients are shifted of 100% and the
disturbances are also added m.

Figure 4 shows that the angle of attack, sideslip angle
and conical rotation angle commands tracking is quite
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Desired trajectory
————— UAV States

Angel of attack (deg)

5
0.2-

\
0.14% ~
\ \
\

-0.1

-0.2

Conical rotation angle (deg) Sidesilp angle (deg)

Fig. 4: Tracking performance of the designed controller

25 7—— Alieron
————— Elevator
20 Rudder

5 6 7 8 9 10

Time (sec)

Control surface deflections (deg)

Fig. 5: Time histories of control swface deflections

good despite the unknown nonlinear function. Figure 35
shows the efficiency of control s comparatively high,
since there are little satwration of control suwrface
deflections.

CONCLUSION

This study has been concerned with designing a
nonlinear adaptive block backstepping control system

5 6 7 8 9 10
Time (sec)

capable of tracking desired trajectory while uncertainties
and disturbances existing in system model. The command
filtering approach is extended on MIMO systems to avoid
the problem of “explosion of complexity” in traditional
backstepping. RBF NNs are employed to adaptively
approximate the unknown nonlinear functions composed
of unknown uncertainties and disturbances. According to
stability analysis using Lyapunov function, the closed-
loop system is guaranteed to be bounded and tracking
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errors are also proved to converge exponentially to a small
residual set around the origin. The effectiveness of the
proposed control approach is demonstrated in the
tracking problem of UAV nonlinear model with
aerodynamic coefficients uncertainties and disturbances.
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