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Abstract: A novel Probability Hypothesis Density (PHD) filter, called the Gaussian Sum Convolution PHD
(GSCPHD) filter was proposed for nonlinear multi-target tracking problems. The PHD within the filter 1s
approximated by a Gaussian sum, as in the Gaussian Mixture PHD (GMPHD) filter but the model may be
nonlinear. This is implemented by a bank of convolution filters with Gaussian sum approximations to the
predicted and posterior densities. The analysis results show the lower complexity, more amenable for parallel
umplementation of the GSCPHD filter than the convolution PHD (CPHD) filter and the ability to deal with
complex observation model, small observation noise of the proposed filter over the existing Gaussian Mixture
Particle PHD (GMPPHD) filter. Furthermore, the proposed GSCPHD filter was generalized to nonlinear non-
Gaussian models, called as the generalized GSCPHD (GGSCPHD) filter. The multi-target tracking simulation

results verify the effectiveness of the proposed methods.
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INTRODUCTION

The main task of multi-target tracking involves joint
estimation of the unknown and time-varying number of
targets as well as their individual states (e.g., positions,
velocities etc.) based on a sequence of noisy and
cluttered observation sets (Bar-Shalom and Fortmann,
1988; Smith and Singh, 2006, Bar-Shalom and L1, 1995).
Traditional multi-target tracking formulations involve the
explicit associations between measurements and targets
which makes multi-target tracking much harder task than
single target tracking (Bar-Shalom and Fortmann, 1988;
Smith and Singh, 2006, Bar-Shalom and Li, 1995;
Bar-Shalom and Tse, 1975; Vihola, 2007).

The Random Finite Set (RFS) method to multi-target
tracking 1s an emerging and promising alternative
(Goodman et al., 1997, Mahler, 2000), where the collection
of individual targets and observations are treated as a
set-valued state and a set-valued observation,
respectively (Mahler, 2003; Vo and Ma, 2006). Two new
algorithms, called the Gaussian Mixture Particle PHD
(GMPPHD) filter (Clark et al., 2007) and Convolution PHD
(CPHD) filter (Panta and Vo, 2007), have been presented
recently. The GMPPHD filter which 15 based on the
particle filter scheme, requires the analytical availability of
the likelihood function as well as the not too small
observation noise, thus it is limited in practice (Rossi and
Vila, 2004, 2006). And the convolution PHD filter which 1s
based on convolution kernels, is complex and difficult to
parallel implementation for the resampling scheme.

In this study, we firstly present the Gaussian sum
convolution PHD (GSCPHD) filter which overcomes the
drawbacks of the GMPPHD and convolution PHD filters.
The algorithm approximates the intensity function by a
weighted sum of Gaussians similar to the GMPHD and use
Convolution Filter (CF) to compute the posterior means
and covariances. Then the proposed GSCPHD filter is
further generalized to nonlinear non-Gaussian models,
called as the generalized GSCPHD (GGSCPHD) filter, by
the Gaussian sum approximation of the state and
measurement noise. The Simulation results demonstrate
the good performance of the (G) GSCPHD filter when the
observation noise is small, while the existing GMPPHD
filter fails.

BACKGROUNDS

The PHD filter 15 an approximation developed to
alleviate the computational intractability in the multi-target
Bayes filter (Mahler, 2003; Vo and Ma, 2006). Fora RFS X
on ¥ with probability distnbution P, its first order moment
1s a non-negative function ¢ on ¥, called the intensity or
the PHD function, with the property that for any closed
subset Scy:

[ NS[P(dx)= [ o(x)dx (1)

where, |X| denotes the cardinality of X. Given the posterior
intensity ¢, at time k-1, the predicted mtensity function
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Cy; (do not consider spawning) and the posterior
intensity ¢, can be given, respectively by Vo and Ma
(2006):

ijkl J.pSk kjkl X\C Ckl(c)dc+ bk(x) (2)

pDk( )

A Kk Z _[pDk

(Z‘x)cklkl( )
Z\E_‘ CHk 1 (E.‘)dE.\

3)

X):[lfpn,k (X)Jcﬂk 1( )

where, K,() 1s the intensity of the (Poisson) clutter RE'S;
7,18 the multi-target measurement available at time k; by(.)
denotes the intensity of spontaneous target birth; py,. ({)
and pp,, (x) denote the survival probability and detection
probability, respectively; £, (x[0) and h, (z]x) are densities
for state transiton and measwrement in single target
model, respectively:

=6 (o)t wy 4

Z=h (%) + v, (5)

where, w, and v,, respectively denote the Gaussian white
process and measurement noises.

THE (G) GSCPHD ALGORITHMS

Suppose that each target follows a non-linear
Gaussian dynamic model and non-linear Gaussian
measurement model with:

fk\k-l (Xk|x-k-1) =N (. £, G )+ Wi Q) (6)
h, {zx) =N (z; h, (x) + v, R) (7

where, N (x; p, 2) denotes the Gaussian distribution with
the mean p and covariance, ¥ and Q, are the mean and
covariance of the process noise, respectively, v, and R,
are the mean and covariance of the measurement noise,
respectively. Also we suppose that the survival and
detection probabilities are state independent and the
intensity of the birth RFS is a Gaussian sum as in the
GMPHD (Vo and Ma, 2006; Clark et al., 2007), 1.e.:

i%“)N(x mb“ll Pb(11 ) (8)

n=l
The GSCPHD filter
Proposition 1 (GSCPHD Predict): Suppose the posterior

intensity at time k-1 is a Gaussian sum of the form as in
GMPHD (Vo and Ma, 2006):

G (%)= EwQIN(x;mE,,Pﬂ) ()
i=1
then, after the predicion step of Eq. 2, the
predictive intensity at time k is still a Gaussian sum
given by:
g 0 pl (10)
eyt (%)= 2, wldkle(X;mklk—l’Pldk—l)
i=1
Where:
N N 1isN,,
= + =
Hk-1 k1 bk ('UHk 1= ka N,, +15 i< N
6 mél 1<i<N, P B} 1is N,
Wed T o Wi T ) .
mip) N, +1<ic Nkjk , P N, +l<ie Ny,
(1
and
13 6 BT
Exskjkl SHkl ﬁE(x )klimskjkl)(xé mg,)mk—l)
=1

I

xé,,ld)k—l (x £, (XI:J )+Wm Qk) xk‘ 1) N(xk—l;mltclL’Pg)=-i:1""=M
(12)

Proof: Substitute Eq. 9 into Eq. 2, we have:

B .
Chn (X)=Ps 2‘ u)Ell_[N(x;fk () + Wi Q) N(Q; m{’ B )dc +by (x)
(13)
We use Monte Carlo integration to compute the
integrals in Eq. 13 since f, is nonlinear and the integrals no

longer have a closed form solution. For each component
in BHq. 13, 1 = 1+ N,, we sample M particles from

N(C;mEzl:PIE‘—)I) ,le.:
x{) ~N(x:m B =1 M (14)
and from the strong law of large munbers (LLN) we obtai:
S SNt (e i [} NE () wN (B0 i
(15)
as M-oo, where ~ denotes almost sure (a.s.) convergence.

Then the predicted intensity from the existing targets can
be approximated with:
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pSkE(Dk 1 (x msmk 1 PS(IZIk—l) (16)
where,

Exs g xsmk 1

P()H :ﬁ%‘,(’é

N o

ms k-1 )( %) mk 1 mg,)mk—l )T

)+wkm Qk) an

where, AT denotes the transpose of matrix A. Then we can
rewrite Eq. 13 as the form:

Hypag

Mg
Chra (x) =Psy. XmgﬁlN(x.’mgl}Hk—l=PS(,ll)a\k—1 ) +b, (x) = E mSLlN(x m)&i s Pk(\llz—l)
i

) (18)

where, of , .m{_ Pl areshowninEq. 11and of,, mf,, .
P, are corresponding to gf ™), m("ghq), PS(k]Nu) in
Eq. 11, respectively for consistency, by (x) is given in

Eq 8.

Proposition 2 (GSCPHD update): Suppose the predict
intensity at time k is a Gaussian sum of the form:

Ny
Cpxs 1 E UJ (x mk\k 1> Péﬂ_l) (1 9)

Then, after the update step of (3), the posterior
intensity at time k remains a Gaussian sum given by:

H;
= Emi‘)N(x;mE),Pﬁ‘) ) (20)
1=1
where,
1- & 1<i<N,
Pox | @y =15 Ny
Nk:(1+|ZkDNNk—1=U’E): [
W N, +1i<N,
o mi 1£i€N,,, nlh _ Bl 1=is Ny,
T e g pejen [P N p1gieN
Dk Kk = L= Ny D,k k-1 = L= Ny

(2D

where, |7, denotes the number of measuwrement at time k
and

Wk@) =Poy uﬂ-l

/{H +pp;<zﬂ\(k_1 2@)3}
ahy) = UJ(D/EmE,k B ﬁ( ) (x) — ), ) (x5 - m“),mgi'qul(zfiﬁ)),

=
B9 N{zb, (x89) + 4, R, )cd ~ M), 20, ). =1 20
(22)

where, K
2004).

is Parzen-Rosenblatt kernel (Rossi and Vila,

Proof: By substituting Eq. 7 and 19 into Eq. 3 we get:

¢ (x) [1 PDk}E‘”ﬂL (xmldkalE]]lZl)

a1 Pp kmuk 1 (Z; ¥ (‘E..) + V> Ry, )N (meE)k-l ,Pﬁﬂ_l)
+zEZ,( g‘l N1

) (é muk 12 1412-1 )dé
(23)

+pDkEmuk1IN zh (E)+v

Again importance sampling is performed to compute
the integrals. For1 =1, Ny, and zeZ,, draw M’ particles
from an importance density. We use the components of
the predicted intensity as importance density, ie.,

xs‘j') N(x mgql s

k- 1) .] =L M (24)

and then calculate the particle weights through the
convolution kernels according to:

ol =Kz (z — i ) (25)

where,

27 - N(zh, (x)+v,,.R, ) (26)

and K; is Parzen-Rosenblatt kemel, h, is called the kernel
bandwidth (Rossi and Vila, 2004). From the results in
corollary 1, the second part on the right side of Eq. 23 is
approximated with:

N R S S
(27)

where,

.‘LME

6 = ) ):m.(,‘“ ) i u)( L );()(xlsxj')img)k)T
3"
(28)

By substituting Eq. 27 mto Eq. 23 we can approximate
the PHD update with:

x mg,J P[) EML‘)N(X,IDEJ,P][:J)

(29)

oo
(X):D’PM] Emm—lN(X,mE{:{—ppkm 1 E ﬁ
=) =5 1

where, w9, m%, P, shown in Eq. 21, note that W%, m%p,,
.PO)D'R in Eq. 29 are corresponding to Wk(ime),mgj:Wl) ,PS_;N““H)
in Eq. 21, respectively for consistency.

Corollary 1: The mean of the weights given by Eq. 25
converges to the mntegral given in Eq. 23.
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Proof: From the kernel theory by Rossi and Vila (2004), we
have:

Kfm(z i ))HN(zh ( )+Vkm Rk) (30)
as h-0, Mh' /log M-+ and

B[ K3, (2 267) N {zh, (x )+vm.Rkﬂ2—+o (1)

as h-0, Mh® »<. Then:

! im(”)—) EN(zh ( ”)) Vkm,Rk) (32)

M

and from the LLN we get:

$2} N(z;hk (xl(:“") ) +v,..R, )~) IN(Z;hk (ﬁ) +vLR, )N('@;ml(:'&_l,P]EI']Z_I )dE:,

(33)

Corollary 2: Equation 27 converges to the sum part in
Eq. 23.

Proof: The denominator is apparent because of the LLN
and Eq. 33. The numerator comes from the following
approximation (Clark et af., 2007):

N(Z'hk(x) *"hanu)N(X mig. 1 1) U N[ZQhk(E) + Vi Py )N(gm{(‘;-b121‘11;3-1)9‘&)}{(&“‘%:?1[;;)

(34)

Then by using Eq. 33 we have:

N(z;hk(x)+vgp,R;y)N(x;mgi,l,plgg,l)H[ﬁ)ﬁmg;g]bx(x;mgk,pgi)

7 (35)

The GSCPHD in non-Gaussian models: We know that
any density can be approximated as close as required by
a linear combination of Gaussian densities (Alspach and
Sarenson, 1972; Anderson and Moare, 1979). Suppose w,
and v, m Eq. 4 and 5 are not Gaussian, we may write them

as the following Gaussian sums (Alspach and Sorensor,
1972; Anderson and Moore, 1979):

o

p{w,)= Y o, N(w,;wl,Qf) (36)
1=1
Hyy )

p(v,)= YL ollN(v: v .R]) (37)

where,

ol = Fa, =1 G38)
Thus Eq. 6 and 7 may be rewritten as:

Hor g
B (i1 x4 )= E ww(xlrj,kN(xk;fk (X )t Wltcl)’ng)) (39)

1=1

N,

hk(zk ‘xk)

i

(DE,J)kN(Zk;hk {x, )+ v RO ) (40)

Then by applying the similar way used in the
GSCPHD filter and the properties of Gaussian, we may
directly have the following propositions of the
Generalized GSCPHD (GGSCPHD) filter.

Proposition 3 (GGSCPHD predict): Suppose the

posterior intensity at time k-1 1s a Gaussian sum of the
form:

Hyy
L(x)= EwELN(x;mEil,Plf‘_)l) (41)
i=1

then, after the prediction step of Eq. 2, the predictive
intensity at time k is still a Gaussian sum given by:

Mg o Moy
c”_l(x) = 2 0‘](21)«-1N(X;m£1&-153<(2-1) =Psy EI(DEL g, w&)k N(x mg}’?y Ps(l;:lk )+ b ( )

(42)
where,
(i) U‘Js)k 1= 1 = Nb k.
Ny =N Nopp + Nyp 0 = (iM,,)
Psx MU Wy Ny +1SiS Ny,
0 mf), 1=i= Ny, o Bl 1IN,
k-1 — -] . k-1 = ] .
B Y e G S E-TT=3 PR U VNS S T3 S
(43)
and
mi, = Ex‘”" (0 Ny () i ) B0 = h‘,ﬁ[xﬁfﬁ’ e [ - )
S

(44)

Proposition 4 (GGSCPHD update): Suppose the predict
intensity at time k 15 a Gaussian sum of the form:

Cypent | E ol N(x miy_ Bl 1) (45)

ther, after the update step of Eq. 3, the posterior intensity
at time k remains a Gaussian sum given by:
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EE IN (E U RE) RN SETIECRTS 15 39w PR
=l

5Z, il pl
(46)
where,
_ o] ;
Ny = (147, [N, Ny o) = [Fopoaos  1sieNy,
A& Het Oy (i-Mygx-1.1) :
W, Ny +1iN,
1<ieN,,

o | M 1<isNy P _ B,
ko [ M) N 1<i<N L P(I’Nm(flvj) N 1<i<N
Iy i g TIS1IS N Dk wet T1SIS N

(47)

and

1 M
WU) Pka& J E““EM)/{ JrPD;« i Z“‘P 1“’v;« M “‘()“)J
m@.!) Emg.m E.! mE)J.! —mg‘”) Eq[;u) PEJ) Eu‘gu ( A4 _ m ,1))( [J)_mgf)T

a.\Ei’”—K (Z Z,E”‘”) 20 N(Z,hk( 15”)‘*"’197-1?-1?))

(48)

Also we may have the corollaries similar to corollary
1 and 2.

Discussion: Similar to the GMPHD filter (Vo and Ma,
20086), the proposed (G) GSCPHD filters also suffer from
computational troubles caused by the increasing number
of Gaussian components. Therefore, the method from
(Vo and Ma, 2006) is used to reduce the number of
Gaussian components by truncating components having
weak weights and merging the closest components into
one.

We know that the GMPPHD filter 1s based on the
particle filter scheme, so it requires the analytical
availability of the likelihood function as well as the not
too small observation noise, thus it 1s limited mn practice
(Rossi and Vila, 2004). The convolution PHD filter
(Panta and Vo, 2007), though it 13 based on convoelution
kernels and can deal with the situations that the
observation noise 1s small or the likelihood 13 not
analytically available, it is complex and difficult to parallel
implementation because of the resampling scheme. The
methods proposed in this study apply the convolution
kernels without the resampling step during recursion, thus
they have the ability to deal with complex observation
meodel, small observation noise of the GSCPHD over the
GMPPHD filter and the lower complexity, more amenable
for parallel implementation than the convolution PHD
filter.

SIMULATION RESULTS

Consider a two dimensional scenario with an
unknown and time varying number of targets observed in

clutter over the swveillance region (-/2, -n/2) rad =(0,
2000) m. The state dynamics are given by Vo and Ma
(2006) and Clark et al. (2007):

%, =f{® )%, +GW, @, =@, + AU,

B T T ..
where, x, = [xk,l sxk.z’xka,a] and [x, ,, x, ,]' is the position,

[Xy 5 X 2] 18 the velocity, @, is the turn rate, the target
state variable x, = [%.m T and:

10 smwdfe (11— mswa) o
Cn 1 (1-coswaA) o sinwA/m CFadfa o . )
Hml=|, o e |G =[a%2,00 %24 0:0,8] Wiy ~ N[50, 21, )
0o aAnmh COsmA

u., N (0, ¢8) with A = 1s, 0, = 20 m/s® and
0, = (m/180)rad/s. A consists of noisy bearing and range
observations is given by:

ﬁ:@MmﬁmﬁM}(HJ+ﬁMfT+n

We assume the spontaneous birth RFS is Poisson with
intensity bk (x)=0IN(x; m", ,, P, )+ 0.IN (x; m%, , P, ),
where m", , = [0,1000,0,0,0], m¥, , = [-500,1000,0,0,0]",
P, = dlag ([2500,2500,2500,2500, (6m/180)*]"). The
probability of target survival and detection are Py, = 0.99
and Py, = 0.98, respectively, clutter is uniformly
distributed over the swveillance region with an average
20 points per scan. We use 100 particles both in the
proposed (G)GSCPHD filters and the GMPPHD filter. The
nmumber of Gaussian components at each time step is
capped to a maximum of 100 components, the pruning is
performed with a weight threshold of 107 and merging is
performed with a threshold of 4.

We consider two scenarios, l.e.,
Gaussian sum noises, where in Gaussian noise
scenario, viy-n (0, Ry, with R, = diag ([0%, o]},
0y = (2n/180)yad/s, 0,= 20m in Gaussian sum scenario,
v~08N (v@, RY 02N v?, R®)), with, v\, = [0,0]%,
v, = [(2n/180)rad/s, 3m]", R, = diag ([(c™y), o™ )],
o'y =(2m/180)rad/s, o™, = 20 m, R%, = diag ([(0"F, 0@ )",
0% = (3n/180)rad’s, 0¥ = Sn1.

In the case that the parameters are given above, all
the ()GSCPHD and GMPPHD filters work well. However,
when the covariance of the observation noise is reduced,
e.g., 0,= | m in Gaussian scenario or o', = 1 m Gaussian
sum scenario, the GMPPHD filter fails while the proposed
(G) GSCPHD filters still works well (Fig. 1, 2), where
the true states are denoted by solid lines and estimated
states denoted by circles. Note that Fig. la and b
correspond to Gaussian noise scenario, Fig. 2a and b
correspond to Gaussian sum noise scenario, Fig. 1a and
2a correspond to the GMPPHD filter, Fig. 1b and 2b
correspond to the GSCPHD and GGSCPHD filters,

Gaussian and
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Fig. 1a: Results of the GMPPHD filter in Gaussian noise
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Fig. 1b: Results of the GSCPHD filter in Gaussian noise

Time step

‘500 T T T T T
5 10 15 20 25 30 35 40 45 50

Time step

Fig. 2a: Results of the GMPPHD filter in Gaussian sum noise

Time step

Fig. 2b: Results of the GGSCPHD filter in Gaussian sum
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5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

Time step

noise

respectively. The top plot of each figure corresponds to (G)GSCPHD filters are more convenient for VLSI

X position, the bottom y position.
CONCLUSIONS

The (G)GSCPHD filters overcome the inabilities of the
existing GMPPHD filter which is limited in the applications
to scenarios that have low-noisy observations or lack the
knowledge of the likelihood function. Simulation results
are also presented to demonstrate the good performance
of the (G)GSCPHD filters when observation noise is small
while the existing GMPPHD filter fails. Moreover, the

implementation and feasible for practical real-time
applications than the convolution PHD filter since there
is no resampling step.
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