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Guogiang Wang and Weijuan Zhang
Department of Computer and Information Engineering, Luoyang Institute of Science and Technology,
471023 Luoyang, Henan, People’s Republic of China

Abstract: In this study, a novel subspace learning method named Neighborhood Preserving Fisher Discriminant
Analysis (NPFDA) is proposed for face recognition. Based on Fisher Discriminant Analysis (FDA), NPFDA
takes into account the local geometry structure information, changes the objective function. Thus, two abilities
of manifold learning and classification are combined into the proposed method. In order to improve the
discriminating power, Schur-decomposition 1s used to get the orthogonal basis vectors. Experimental
results on the Yale face database and Feret face database demonstrate the effectiveness of the proposed

method.
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INTRODUCTION

During the past two decades, subspace-based face
recogmtion has been extensively studied and many
methods have been proposed The most popular
methods include Principal Component Analysis (PCA)
(Turk and Pentland, 1991) and Fisher Discriminant
Analysis (FDA) (Belhumewr et al., 1997). PCA performs
dimensionality reduction by projecting the original
high-dimensional data to a low-dimensional linear
subspace spanned by the leading eigenvectors of a
covariance matnx. Thus, PCA builds a global inear model
of the data. PCA i1s umsupervised learning algorithm,
whereas FDA i3 a supervised learning method. FDA
searches for the projective axes on which the data points
of different classes are far from each other while
constraining the data points of the same class to be close
to each other as possible. While these two methods have
attained reasonably good performance in face recognition,
they may fail to discover the underlying nonlinear
marmfold structure as they seek only a compact Euclidean
subspace for efficient face representation and recognition.

Recently, a number of nonlinear manifold learning
algorithms have been proposed to discover the local
geometry property of high-dimensional feature spaces.
The most representative methods include Tsomap
(Tenenbawm et @l., 2000), Locally Linear Embedding (LLE)
(Saul et al., 2003), Laplacian Eigenmap (Belkm and Niyogi,
2002), Local Tangent Space Alignment (LTSA)
(Zhang and Zha, 2004), Local Coordinates Alignment
(LCA) (Zhang et al., 2008) and Local Spline Embedding
(LSE) (Xiang et al., 2009). All of them attempt to embed

the original data into a submanifold by preserving the
local geometry structure. But they yield maps that are
defined only on the training data and this issue that how
to map new test data to the low dimensional space
remains difficult. Linearization, kernalization and
tensorization are some often used techniques to deal with
the problem (Yan et al., 2007). For example, the most
representative  such  algorithm is  Neighborhood
Preserving Projections (NPP) (Pang et al., 2005a, b) which
1s a linear approximation of LLE and the testing data can
be explicitly mapped to the learned subspace. However, it
deemphasizes discriminant information which may
sometimes make 1t not suitable for recognition task.
Earlier works based on FDA suffer from not
preserving the local mamfold of the face structure,
whereas the research works on NPP lack to preserve
global features of face images. In this study, we proposed
a new subspace learning method called Neighborhood
Preserving Fisher Discriminant Analysis (NPFDA) which
extends the original Fisher Discriminant Analysis by
preserving the locality structure of the data. Our method
effectively combines FDA and NPP, 1.e., it can hold the
strong discriminating power of FDA while preserve the
intrinsic geometry relation of the data samples. In order to
improve the discriminating power, Schur-decomposition
is used to obtain a set of orthogonal basis eigenvectors.

A BRIEF REVIEW OF FDA AND NPP

The generic problem of linear subspace learmng 1s the
following. Let X = [x, X;,.., Xy] be a set of face umage
vectors and x,€R” (i = 1, 2,..., N). Each image x, belongs to
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one of ¢classes {X,, X,.,.., X.}. The problem is to find a
projection transformation matrix W that map high-
dimensional data set X to a low-dimensional wvector
Y = [V, Yor Vo) where y; = W x,eR® (d<<D). Here, we
briefly review how the FDA and NFPP algorithms realize
subspace learning.

Fisher discriminant analysis: FDA is one of the most
popular subspace learmning techniques which tries to find
the subspace that best discriminates different classes by
maximizing the between-class scatter matrix S, whule
minimizing the within-class scatter matrix S, in the
projective subspace. 3, and 3, can be defined as:

8, = EN, (TN (1)
8,= i‘, E (3, — 10y _Hi)T (2)

where, | is the mean image of all images, i is the mean
image of class X and N; 1s the munber of samples in class
X..

The objective function of FDA is as follows:

|W's, W]
[W's. W]

w,] (3)

Wopt =argmax =[w; w, -

where, {wi]i = 1, 2,.., d} 15 the set of generalized
eigenvectors of S, and S, corresponding to the d largest
generalized eigenvalues {A]i=1, 2,.., d}, ie.

S,w,=A S, w,1=1,2..m (4

Note that there are at most ¢-1 nonzero generalized
eigenvalues and so an upper bound on d 1s ¢-1, where ¢
is the number of classes.

Neighborhood preserving projections: NPP 13 a linear
approximation of the nonlinear Local Linear Embedding
for learning a locality preserving subspace which
preserves the intrinsic geometry relation of the data and
local structure.

Simliarly to LLE (Saul et af., 2003), NPP first
constructs a neighborhood graph for X based on either
the K nearest neighbor or € neighborhood criterion. Then,
the affinity matrix 3 can be obtained by mimmizing the
reconstruction error:

2

-3 (5)

i=1

K
X~ 35X,
=1

With constrains:

E]suzl

and S; = 0 if x; is not of the k nearest neighbor x;.

The basis idea behind NPP is that the same weight S;
that reconstructs the pomt x m D-dimensional space
should also reconstruct its image y; in d-diunensional
space. The projection tansformation matrix W can be
obtained by solving the following mimmizing problem:

2

n%;n i (6)

¥
Yi— Esi]y]
o

With the constaint:
.S
il =1
vy

where, Tis a T identy matrix.
By simple algebra formulation, the minimization
problem reduces to finding:

argminWIXMXTW (7)
WIXX™W =1

where,
M=(1-8)(1-3)"

Finally, the column vector of transformation matrix W
that minimizes the objective functions is given by the

minimum  eigenvalues solution to the following
generalized eigenvalue problem:
XMXTW = AXXW (8)

NEIGHBORHOOD PRESERVING FISHER
DISCRIMINANT ANALYSIS

Here, we describe Neighborhood Preserving Fisher
Discriminant Analysis (NPFDA) algorithm that learns a
locality preserving and global discriminating subspace.
The proposed NPFDA approach combines global feature
preservation technique FDA  and
preservation technique NPP to form the high-quality

local feature

feature subspace.

Justification: Smce NPFDA 1s designed to hold both the
linear global character and the nonlinear local character
and also possess the discriminant ability, we can mnovate
a heuristic object function by combination the FDA and
NPP:
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T.
T(W) =max 50V wiyvy T 9)
WIS W

where, S, is the between-class scatter matrix, S, 1s the
within-class scatter matrix. X 1s the image set and W 1s
the projection direction. The definition of matrix M is the
same as 1n neighbourhood presering projection. Since
NPP wants to find a projection direction W to make
WT as small as possible, we can instead here choose
-WIXMX'W and make it as large as possible in the low
dimension space.
Alternatively, we can reformulate Eq. 9 as:

J(W)=max W'S, W - WIXMX™W (10)
st WS, W=I

The constrained maximization problem, Eq. 10 can be
done using the method of Lagrange multipliers:

L (W, A) = (W (S,-XMXW)-4 (I-W'S,W)

where, 4 is the Lagrange multiplier. Setting the gradients
with respect to W to zero, thus we can get:

(S,-XMXDW = AS, W (11)

By defining L = $,-XMX", C = S, Eq. 11 can be
rewritten in the form of a generalized eigenvalue problem:

LW = ACW (12)

Obtaining orthogonal eigenvectors: The generalized
elgenvectors obtained by solving Eq. 12  are
nonorthogonal. This makes it difficult to faithfully
represent the data. Here, we introduce Schur
decomposition to get orthogonal basis vectors.

Instead of performing eigenanalysis on the matrix C™*
1., Schur-decomposition is performed on C™" .. Suppose
the Schur decomposition of C™' L is C™' L = UTU", where
U = [u, u,,..., ugy] 1s an orthogonal matrix, T 1s a quasi-
upper-diagonal matrix with the real eigenvalues of the
matrix C' L on the diagenal. Assume u;, w,.., Uy to be
Schur vectors of C™' L corresponding to the first d largest
real eigenvalues. Tt is obvious that u, u,.., u, are
orthogonal to each other. U = [u,, u,,..., uy] 18 an optimal
solution of the maximization problem Eq. 10. The following
theorem reveals the fact:

Theorem 1: Suppose u,, u,,..., 4, to be discriminant Schur
vectors of NPFDA. Thus, we have:

J([UnUg:"',ud]) = [[([Ul,U2,---,L]d]TcilL[L]l,L]Z,---,Ud]) (1 3)
= JE IO

Proof: Since u,, 1,,.., u, are Schur vectors of the matrix
C™" L corresponding to the first d largest real
eigenvalues, we have:

Clu=Awi=1,2...d (14)

where, A; is the ith largest real eigenvalue of the matrix
C~'L. From the formula (14), it follows that:

[, Uy, Uﬂ]T CTL [u, u,.., ug] = diag [}l‘la )“2,---: }l‘]] (15)
Thus, we have:

Iy, uy,--u, D= tr([upuz,"'=Ud]TC71L[U1,U2,"',Ud])

d
=11 = i)

(16)

The outline of NPFDA: The algorithm procedure of
NPFDA can be summarized as follows:

Step 1: Compute the matrix M

¢ For each data point x;, determine its k nearest
neighbors by KNN or e-ball algorithm

¢ Compute the weights S; that best linearly
reconstruct x, from 1its neighbors, solving the
constrained least-squares problem in Eq. 5

+ LetM=(1-3)(1-3)"

Step 2: Compute the between-class scatter matrix S, and
the within-class scatter matrix S,

Step 3: Let L = $,->XXMX, C = S,, Schur decomposition is
performed on the matrix C' L and obtain
othogonal basis vectors 1T = [u, u,,..., u,]

Step 4: Obtain the embedding Y in R* using Y = U™X

Step 5: Classify the embedding results using a suitable
classifier

EXPERIMENTS AND DISCUSSION

Here, we conduct several experiments on different
databases (YALE face database and FERET face
database) to demonstrate the effective and robustness of
our proposed method named Neighborhood Preserving
Fisher Discriminant Analysis (NPFDA). We have also
compared the proposed method with four popular
methods including PCA (Twk and Pentland, 1991), FDA
(Belhumeur et al., 1997), NPP (Yan et al., 2007, Pang et al.,
2005b), L.PP (He and Niyogi, 2003; He et al., 2005). We
applied the nearest neighborhood classifier with
Euclidean metric for recognition. To have a fair
comparisory, all the results reported here are based on the
best tuned parameters of all the compared method.
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Fig. 2 (a-b): Recognition rate vs. dimensionality reduction on Yale face database: the left sub-figure 1s achieved by
selecting 3 images person for training and the right sub-figure is achieved by selecting 5 images person for

training

Table 1: Recognition accuracy (%) comparison on Yale face database
Method 3Train STrain

PCA 52.2542.78 (44) 58114336 (74)
FDA 60.58+3.67 (14) 76112247 (14)
NPP 64.5043.15 (16) 75.3343.05 (15)
LpP 64.083.37 (16) 78.22+3.11 (14)
NPFDA 66.0043.74 (15) 79.33+3.06 (18)

YALE: The YALE face database contains 165 grayscale
images of 15 individuals. There are 11 images per subject
and these mmages demonstrate variation in lighting
condition (center-light, left-light, right-light) and facial
expression (happy, surprised, wink, sad, sleepy and
normal). All face images are resized to 32x32 for
computation efficiency in our experiments. Figure 1 shows
the sample images of two mdividuals. For each people, [
(= 3, 5)images are randomly selected for training and the
rest are used for testing. The random selection is repeated
10 times. The plot of the average recogmnition rate versus
subspace dimensions of all methods are shown in Fig. 2
and the best recognition results and the corresponding
reduced dimensions obtained by each method is listed in
Table 1. As can be seen, NPFDA algorithm outperforms

the other algorithms mvolved in this experiment. This
reason 1s that NPFDA considers the class label
information and preserves the intrinsic structure from the
raw face images, in addition, NPFDA obtains the
orthogonal basis eigenvectors. Thus, it can produce more
discriminative embedding results.

FERET: The subset of FERET face database contains
100 individuals and seven images for each person. It
15 composed of inages whose names are marked
with two-character strings: “bd”, “ by”, “bf”, “be”, “be”,
“ba”, “bk™. This subset mnvolves two facial expression
images, two left pose images, two right pose images
and an illumination image. All the images in the subset
are to be the size of 40x40. Figure 3 shows sample
images of two persons. Simliarly to the strategy adopted
on Yale, I = (= 3, 5)images per person are randomly
selected for training and the rest are used for testing. All
the repeated over 10 splits
independently and then the average recognition results
are calculated. The recognition results are shownin

tests are random
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Fig. 3: Sample face images from the FERET database
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Fig. 4 (a-b). Recognition rate vs. dimensionality reduction on FERET face database: the left sub-figure 1s achieved by
selecting 3 images person for training and the right sub-figure is achieved by selecting 5 images person for

training

Table 2: Recognition accuracy (%) comparison on FERET face database

Method 3Train 5Train
PCA 38.00+1.64 (299) 44.85+3.02 (499)
FDA 70.58+1.7% (70) 80.45+2.89 (04)
NPP 74.17£2.43 (146) 85.8543.51 (118)
LPP 74.52+1.82 (98) 82.75+2.98 (102)
NPFDA 86.3541.82 (94) 92.25+1.87 (94)

Fig. 4 and Table 2. We can draw a similar conclusion as
before.

CONCLUSIONS AND FUTURE WORK

In this study, a novel subspace learning algorithm
named Neighborhood Preserving Fisher Discriminant
Analysis (NPFDA) is proposed. NPFDA makes use of
local mamfold structure information and discriminant
information. In some sense, the proposed method can be
regarded as a combination of NPP and FDA. On the other
hand, NPFDA wses Schur decomposition to get
othogonal bases of the face subspace. Experimental
results show that the proposed method is indeed effective
and efficient. Our future work is to extend NPFDA to
nonlinear form by kernel trick.
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