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Abstract: These recent years, Low Earth Orbit (LEO) satellite networks, which have global coverage and short
round-trip delays, have been playing an increasingly important role. As fast speed, frequent handover and
time-varying topology, to develop specialized and efficient routing algorithm 1s a huge challenge m LEO satellite
networks. A Distributed Routing Algorithm with Traffic Prediction (TPDRA) is proposed in this study. TPDRA
solves the linearly inseparable problem of satellite traffic prediction in higher dimensionality space and finds
the optimal path for data packets through mobile agents. TPDRA consists of two parts, traffic prediction and
routing decision. In traffic prediction module, the upcoming traffic from terrestrial is forecasted using Radial
Basis Function neural network. In routing decision module, mobile agents traverse the whole satellite networks

and collect the routing information. The final routing decision factor is not only depending on the cwrrent state
of satellite networks, but also related to the future state of satellite nodes. Simulation shows that, compared with
ACO, TPDRA has better transmission delay as well as intensive performance for congestion.
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INTRODUCTION

Satellite systems which provide seamless coverage
have become an important component of the next
generation global personal system
(Darnopykh, 2010). Compared with the geostationary orbit
(GEO) and the Medium Earth Orbit (MEO) satellites, the
propagation delay of LEO satellites is shorter and a few
tens of satellites on several orbits are able to provide
global coverage. In a LEO satellite system, satellites
can directly commumcate with each other by using
Inter-Satellite Links (ISLs) which can be utilized to
transmit network management signal as well as data
packets. Due to the time-varying and dynamic
topology of satellite networks, to design and realize

communication

dynamic adaptive routing has been a challenging issue
(Jinglin et al., 2009).

In recent years, some routing algorithms for LEO
satellite networks have been developed assuming a
connection-oriented network structwre (Uzunalioglu et al.,
2000). These algorithms use offline computations and
satellites actually serve as a transponder, while the
optimal paths from a source node to a destination node
are only computed on the ground station. Satellites only
forward the packets according to the routing tables. In
other words, these routing algorithms are static and
centralized processing. As a result, their robustness is
weak due to the frequent handover in LEO satellite
networks. In addition, centralized-processing of the

ground station for routing cannot adapt to the

overwhelming development of multimedia services.
Therefore, dynamic, distributed and adaptive routing 1s
another feasible method for LEO satellite networks. As an
inevitable trend, multimedia services are often carried over
IP because 1t has the advantages
expansibility and compatibility. A lot of work 1s focused
on Internet-based application (Wood et al, 2001) and
many routing methods considering satellite TP services are
presented. Ekici et al. (2001) proposed a distributed
routing algorithm (DDR: Distributed Datagram Routing)
dealing with the combination problem of IP with LEQ
satellite networks. To mimimize the packet delay, in this
algorithm, each satellite is represented by a discrete
geographical coordinate and executes routing strategy
respectively. But in case of satellite or ISLs broken
down, the performance of DDR will drastically
deteriorate.

A novel distributed routing algorithm with traffic
prediction (TPDRA) is proposed in this paper. In TPDRA,
Newral Network (NN) is used to forecast the traffic of
satellite nodes, while mobile agents take charge of
collecting network mmformation which 1s used to gumde
transmission of data packets. Routing decision is not only
related to the current state but also the future state of the
network. When the bursty traffic 1s coming, the sudden
change can be predicted by TPDRA and advance notice
will be received by satellites node. Routing decision
strategy increases or decreases the traffic from adjacent
satellite nodes to avoid disaster and the congestion
probability of satellites 1s reduced.
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ROUTING PROBLEM IN SATELLITE NETWORKS

Routing m satellite networks 1s essentially an
optimization problem which can be divided into two
associated parts: path exploring and path maintaining.
Any routing algorithms
mformation for routing decision. But mformation
collecting always lags belund the change of network. As
a result, routing decision strategy has to use the
hysteretic information. As a heuristic inspiration, if
routing information can be forecasted, the performances
of a routing algorithm will be lughly improved.

According to historical data and the related
information, prediction is a process using proper methods
and techniques for the scientific analysis, computation
and inference for future situation. At present, statistical
regression analysis, time series forecasting and wavelet
prediction are commonly-used prediction algorithms. As
satellite networks cover the entire surface of the earth, the
local time of subsatellite point, population distribution
and development of economy are quite different more
often than not. Besides, the non-uniform geographical
distribution also mfluences traffic characteristics in

need to collect network

satellite networks. These factors and the nonlinear
combination of these factors make traffic prediction so
complicated that these prediction algorithms are hardly
appropriate for traffic prediction in satellite networks. As
a hotspot of mtellective control method, artificial Neural
Network is extensively applied in many frontiers because
it has the advantages of self-study, self-adapting and
parallel processing. According to combination and
simulation of the hidden layer calculation unit in neurons,
NN can effectively organize the relationships between
independent and dependent variables. In particular, NN 1s
highly effective and suitable for non-linear situations.
Therefore, NN 1s adopted by this paper for the traffic
prediction in satellite networks.

In some routing algorithms, once parameters of
satellite constellation are set, the topology of satellite
networks can be calculated. In fact, the parameters of
satellite constellation are fixed, i.e., these settings are
static. However, not only the dynaniic characteristics of
satellite networks can not be reflected such as time-
varying network topology, but the change of traffic can
not be depicted. A undoubted fact is that traffic of
different zones is often quite distinct. When satellites
continuously fly over continents and oceans, changes of
traffic should be considered into routing algorithms of
satellite networks. By means of NN, if traffic of satellite
networks is predicted, network resowrce utilization can be
mnproved. In addition, routing algorithms with traffic
prediction proactively deal with changes of network
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avoiding passively responding to external changes so
that the reliability and robustness of the whole network
are strengthened.

DISTRIBUTED ROUTING ALGORITHM WITH
TRAFFIC PREDICTION (TPDRA)

The proposed routing algorithm with traffic
prediction can be divided into two stages, traffic
prediction and routing decision.

Traffic prediction: When a satellite moves at high speed
on its orbit, the track of subsatellite point will shift due to
the earth rotation Furthermore, the earth
condition 1s complex more often than not. These factors
complicate the traffic prediction in satellite networks,
especially for LEO satellite networks. In this paper, two
assumptions are introduced. One is that the state of
satellite node 1s related to its traffic load. In other words,
the traffic density of satellite node depends on the queue
length of link at satellite node and the TSI, capacity. The
closer the queue length to ISL. capacity is, the busier
satellite node 15. Another 1s that the traffic load of satellite
node can be divided mto two parts: the traffic from the
ground and the traffic from adjacent satellite nodes. The
former is determined by the objective factors including
land and ocean, population, economy development. For
the latter, the traffic from adjacent satellite nodes 1s
dependent on routing algorithm, because a well-designed
routing algorithm can regulate traffic. Specifically, if the
traffic in an area under subsatellite point 15 ligh, nodes
around the satellite avoid forwarding data by the satellite.
If the traffic in an area under subsatellite point is low, for
instance over the Pacific Ocean, nodes around the
satellite should fully forward data through the satellite.
TPDRA 18 responsible for control and regulation of traffic.
The essence of TPDRA is to revise the traffic from
adjacent satellite nodes by predicting the traffic from the
ground using NN and finally maximize the utilization of
satellite network resources.

The potential traffic density from the ground is
related to ground conditions. Here it is calculated as
follows: the earth swrface 1s divided into a regular grid of
cells along with latitude and longitude. The potential
traffic density of every square region is determined by the
local population and GNP (Kim et al., 2001). In this study,
a feasible and convenient 1dea 1s mtroduced that the
potential traffic of square region ranges from 1 to 10 in
Fig. 1. (Of course, other ranges are accessible with the
same idea). The actual traffic from terrestrial received by
each satellite 15 calculated through summing up the
densities of the square regions covered by the satellite. In

surface
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Fig. 1: Potential traffic density of earth surface

each square region, Radial Basis Function Neural
Network (RBFNN) is proposed for traffic prediction
(Lee and Shih, 2007).

¢ The network structure of RBFNN

RBFNN belongs tomultilayer forward neural network
in structwre and it has three layers. The first layer is
the mput layer which 1is composed by the signal
sowrce nodes. The middle layer 1s the hidden layer. The
last layer is the output layer which responds to the input
mode.

According to Fig. 2, the number of training sample is
N. There are M neurons in the input layer and any neuron
15 denoted by m. The hidden layer has N neurons and
any neuron is denoted by i. ¢p(X, X)) 1s the output drive
of hidden uniti and represents the basis function.
t= [t Loty o by J(1 = 1,2,... 1) 18 the centre of the basis
function. There are J neurons in the output layer and
any neuron is denoted by j. The synaptic weights
connected dden layer and output layer 1s denoted by
w,(1=1,2,..N,1=12,..1)

X = [X, X,...%,....X]" represents the training
sample set and any traimng sample 1s denoted by
X = (Kt Kz o Kiamo - XK > (& = 1,2,....N). The cormresponding
actual output is denoted by Y, = [yi, Yizr Yo Xus)s
(k = 1,2,..N) and the deswed output s d, = [d,,
dizonys il o= 1,2, N).

When the input signal is training sample X, the
actual output of output neuron j is:

287

._
e
3
=t

Fig. 2: The network structure of RBFNN

N
ykj(Xk) = EWij(P(Xk, Xi):j = 1: 2:---:
i=1

The basis functien 1s Gaussian function as follow:

—

(p(r)—exp{ (r= 2)} (6=0,1eR)

(1)

(2

where, t 15 the centre of Gaussian function and o is the

variance. Therefore:

tP(Xk,XJ—eXP[
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¢ The learning algorithm of RBFNN

An entire-supervised algorithm of RBF neural
network 18 proposed and in this way, the centre and other
parameters of RBFNN are determined by supervised
learning. There 1s one output mn traffic prediction and the
target function can be defined as follow:

polse (4)

where, e, is the error signal and
ey =d, - V(X))

1 (%)
= dki ZWI(P(”XK -4 Hc)

Therefore, the next step is to search the reasonable
parameters t, w, T' and make the target function
minimized. Gradient descent algorithm is often introduced
to solve the optimization problem above and the specific
calculation is shown as follow:

The weights of output layer w;:

dE u
o= Y e el -], o
win+)=w(m-n ;E.((nn))’ =12..,1

The centre of RBF hidden layer t;:

cE(n) N ‘ - N
2 72wl(n)k§:1:ek(n)(p(||xk t 020 (X, () .

D=t (-, gfg

1=12,..,

I

The extension of RBF hidden layer 3':

GE(n) w il .
——=-w.() e (e (X, — t(n)j|, )Qy(n)
o> 2 \I I,
Q. (1) = (X, —t, (), —t, ()" (&)

-1 -1 6E(n)
D=2 m)-my o
2 (D=2 m-m o5

where, 1, 1, 1; denote the different learming rate,
respectively.

The routing decision strategy: In routing decision stage,
Mobile Agent (MA) 1s used to collect and exchange the
information of satellite network (Zhu et ol., 2010). MA is
classified mnto forward agent and backward agent. The

main idea of the routing strategy is that forward agents
produced by satellites move among satellites. When
forward agents arrive at destination satellite, they died
and backward agents are produced. Afterwards, backward
agents move along the same path but in the opposite
direction, estimate path cost, finally update routing tables
of the visited satellites. Forward agent is responsible for
network exploration and mformation collection, while
backward agent inherits the routing information of the
forward agent and updates routing and pheromorne table
(Rahmatizadeh et al., 2009).

Informally, the behavior of TPDRA can be
summarized as follows:

» From each satellite nodes s, mobile agents are
generated towards specific destination nodes d at
regular intervals. These agents are called forward
agents because they are moving from source to
destination and are indicated with F,, where 1 1s the
forward agent identifier

s+  Fach forward agent is a random experiment and it
collects the non-local routing mformation about
paths and traffic. Forward agents simulate data
packets moving hop-by-hop from sowce node
towards destination node. They have the same
priority queues with data packets. Forward agents
explore the satellite network concurrently,
independently and asynchronously. Forward agents
travel from a node to an adjacent one towards their
destination. At each intermediate node, they use a
stochastic decision policy to select the next hop.
While moving, the forward agents collect information
about the traveling time and the node identifiers
along the paths they traveled

»  Once arrived at destination, the forward agent dies
and a backward agent B! is generated and goes
back to the souwrce node by moving along the same

path

Pi

= [s,vl,v2,,,,,d]

as before but i the opposite direction. Backward

agent uses higher priority queue than data packets.

Coming from v, v, € N(v, )P, . backward agent

arrives at intermediate node v, € B, and updates
the local routing information

¢ When backward agent returns to the source node, it
1s removed from the network. Every mobile agent has
a maximum time-to-live (TTL). If the mobile agent
exceeds the TTL, it will also be destroyed

¢+ Data packets are routed according to a stochastic

decision policy based on the mformation contained
in the data-routing tables. These tables are derived
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from the pheromone tables which are used to route
the mobile agents. At the same tume, the pheromone
tables are judged and modified by mobile agents.
Only the best paths are stored in the data-routing
tables which guarantee the transmission performance
of data packets

Data structures maintained at the satellite nodes: The
performance of the routing policy is related to the
information maintained at the network nodes. In TPDRA,,
each satellite node k comprises of five components
including Pheromone matrix T*, Data-routing table R* Link
queues L* and Statistical parametric model M.

Pheromone matrix T is orgamzed similarly to the
routing tables in distance-vector algorithms, its entries
are the goodness of choosing neighbor nodes as the next
hop toward destinations. In other words, t,, represents
the probability of link (k, n) to route data packets toward
destination d. The t,, values are in the interval [0,1] and
sum up to 1 along each destination column:

E:tmd:L

ne by,

de[LN].N, = {neighbors(k)} )]

N is the number of nodes in satellite networks.

Data-routing table R* is the routing table used to
transmit data packets. R” is a stochastic matrix and has the
same structure as T*. The entries of R* are obtained by an
exponential transformation and re-normalization to 1 of the
corresponding  entries of T Data packets are
probabilistically spread over the neighbors according to
a stochastic policy which depends on the values of the
stochastic matrix R”.

Link queues L* are data structures in a node. The
status of the local link queues are a snapshot of what
is going on at the precise time while T* represents a
long-term experience accumulated by the mobile agents of
the network.

Prediction traffic P* is data structure which records
the predicted traffic from the earth. The entries of P* are
acquired from RBFNN and decides the future status of
satellite nodes along with link queues L=

Statistical parametric model M* is a vector of N-1data
structures  (p,o%, W, ), where p, and o} represent the
sample mean and the variance of the traveling time to
reach destination d from the current node, while W, is the
best traveling time over the window of the last w
observations.

Forward agent behavior: Atregular intervals At, forward
agent ¥, 1s launched at node s toward a destination
node d aimed at discovering a feasible, low-cost path from
s to d. Forward agent shares the same queues as data
packets. The destination d 1s chosen with a probability py
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Po = (10)

D

1
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!

where, f, ;is the number of packets bounded for d that so
far have passed by s.

While traveling toward their destination nodes,
forward agent keeps a private memory H which i1s
comprised of two lists. The list

an—)vm = [VDDVID”'DVm]

maintains the ordered set of the nodes visited so far and

the list

V2V = |:Tv04>vl 2 T‘vlav1 LR T‘vm_lavm :|

holds the values of the traveling times experienced by the
forward agent.

At each intermediate node k, forward agent choose
its next hop with the following way: If ne V_,,vneN_,
all the neighbors have been visited by the forward agent,
then it chooses the next hop in a random way, but

excluding the nede from which forward agent arrived.

1
nd T ‘Nk‘_l
pn,d :0

P VneNk/\(nivi_l\/|Nk|:l)

(1)

otherwise

Otherwise, the forward agent applies a stochastic
decision policy as follow:

tyy ol
Pu =T "% YneN,  AngV,_,
St todN |- 2) (12)
n=1
Py=0 otherwise

The value ze[0,1] weighs the relative importance of
the heuristic correction with respect to the pheromone
values.

(13)

Here, 1,e[0,1] 1s based on the status of the local link
queues L* and normalized by q,, q, is terms of packets
wailting to be sent from noede k to its neighbor n.

Backward agent behavior: Once the destination 1s
reached, the forward agent F_,, is terminated and the
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backward agent B, is created, B,,, contains all the
information n the F,, and follows the identical path in the
reverse direction but, being priority now, does not wait in
queues. At each node on the return path, the B, updates
all the data structures.

Updating of the local models: M* is updated consulting
the list T, , and considering the value T,,, of the
traveling time experienced by the forward agent while
traveling from k to d. Equation 6 1s used to update the
values for yyand .

me e opy (T — 1) (14)

Gy U?l"'n((Tkad_ud)z _Gi)

W, (15)

L If T,< W,
The factor m weights the number of most recent
samples that will really affect the average.

Evaluation of the path: After updating the local traffic
model M, the path visited by the forward agent must be
evaluated. The concrete way is as follows:

where, 1, 18 the reinforcement factor, W is the best
traveling time experienced by the forward agent over the
last observation window of size w samples. On the other
hand, I, and I.; are estimates of the upper linit and the
lower limit of p in a certain of confidence interval. The
coefficients ¢, and ¢, weigh the goodness and stability of
the traveling time T.

-1

sup

(Isup - Iinf) + (T - Imf)

inf

(16)

W
rl_Cl(T)J'_CZ{

Revising the reinforcement factor: R, reflects the current
state of satellite node and it has to be revised When
satellite node moves from low traffic region to lugh one,
1t 18 1dle because the number of data packets 1s small at
first. Therefore the value of r, is large and it means the
routing decision policy encourages data transmission to
this node. But in fact, the traffic of this satellite node will
mcrease m little time and the thoughtless decision may
lead to congestion. Here the reinforcement factor r is
improved by prediction traffic P*.

Suppose that the prediction mterval is At and p is
the predicted traffic in time t+At. Let Q and q(t) denotes
the queue length and the queue occupancy at time t. The
ISL capacity s C , the average packet size is d,, and the
size of buffer is B. Then the congest degree £(t) of satellite
node 1s defined as follow:
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(Q-q(t)xd,, +CxAt—P
B

()= a7

E(t) shows the future state of satellite node and the
revised factor y is converted from E(t):

y=— (18)

1+ exp(—ak)
where, a is the slope parameter.

Then the final reinforcement factor 1 1s calculated as

follow:

r=1xy (19)
Updating of the pheromone table: After getting the
reinforcement value r, the pheromone table T* is updated
as follow:

teg « to +1(l—t,,) (20

t:4 represents the probability of choosing neighbor f when
destination is d. All the probabilities sum up to 1 for the
same destination d, so the probabilities t,; receive a
negative remforcement unplicitly by normalization.

(21)

tgety—th,, ¥neN,n=f

Updating of the data-routing table: The data-routing table
R® is updated after every update in the pheromene table.
Data packets are routed according to a stochastic policy
whose parameters are the entries of the data-routing table.
The eniries of R* are defined as the result of an
exponential transformation of those of the pheromone

table. The transformation increases the impression of the

high probability.

R:,d = (tn,d)E

nd Z R:(d 1e k
SIMULATION AND RESULTS

Here, Iridium satellite constellation 1s mtroduced to
evaluate the performance of routing algorithms. There are
66 satellites distributed in 6 orbits at a height of
approximately 781 km. Satellites commumcate with
neighboring satellites via inter-satellite links. Each satellite
has four mter-satellite links: two to neighbors in the same
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Fig. 3: The potential traffic density of earth surface
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orbital plane and two to satellites in neighboring planes to
either side. The potential traffic density is shown in
Fig. 3 and the earth surface is divided into 288 grids by
longitude 15° and latitude 15°. Every grid has traffic
weighting according to the economy development of the
area and ranges from 1 to 10. Other simulation parameters
of algorithms are set as follow: @ =0.3,11=0.2,¢,=0.7,
¢, = 0.3, a =1 Ant Colony Optimization (ACO) in
literature 8 (Hongbin et al., 2009) and TPDRA are
compared in the simulation.

Figure 4 is the prediction performance of TPDRA and
Fig. 5 is the comparison of TPDRA and fractional
auto-regressive integrated moving average model
(FARIMA) in literatue 9 (Ming ef al., 2009). Figure 4
shows that the traffic prediction of TPDRA is accurate
and timely which reflects the changing network flow.
Figure 5 shows that the prediction performance of
TPDRA is better. This is because the solution space of
hidden layer is built based on Radial Basis Function and
the input vector is transformed according to hidden layer.
The input data with low dimensionality is converted to the
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Fig. 6: The link congestion probability of satellite node

high dimensionality space and the nonlinear separated
problem in low dimensionality space is solved in high
dimensionality space.

Figure 6 is the link congestion probability of satellite
node in ACO and TPDRA. The potential traffic density is
heterogeneous in the earth surface and when satellites
move from the low traffic region to the high one, the
congestion probability of satellite links increases due to
the accessorial data packets from the terrestrial. Compared
with ACO, traffic prediction which is the important
component of TPDRA revises the routing strategy and
avoid packets transmission to the impending congested
satellite nodes.

Figure 7 shows the average packet delay of two
algorithms. Facing high degree of burst traffic, the packet
delay of ACO increases rapidly and the link of satellite
nodes is jammed until mobile agents find out. By
comparison, TPDRA makes the satellite node deal with
the burst traffic wholeheartedly through restraining the
data transmission from neighboring satellites. Therefore,



Inform. Technol. J., 10 (2): 285-292, 2011

1409 —— ACO
—=— TPDRA

1204

100+

Packet delay (m sec)
o0
o

=Y
T

—

10 20 30 40 50 60 70
Simulation time (sec)

IS
T
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TPDRA has a reinforced robustness
encountering the unexpected situation.

performance

CONCLUSION

In this study, we mtroduced a adaptively distributed
routing algorithm with traffic prediction TPDRA for LEO
satellite networks. TPDRA uses traffic prediction module
and routing decision module. The former predicts the
upcoming traffic from the terrestrial and revises the
routing decision. The latter uses MA to collect the
network information and the decision strategy is not only
depending on the current state of satellite networks, but
also related to the future state of satellite nodes. Because
of the traffic prediction and dynamic data balance
between satellite nodes, TPDRA improves the robustness
of satellite networks. By simulations, the agreeable results
also demonstrate that TPDRA outperforms other
algorithms. To concluded, TPDRA 1s promising in LEO
satellite networks.
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