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Abstract: This study introduces the knowledge representation scheme for mathematical concepts and the
methods to realize knowledge inheritance between concepts in NKIMath, the mathematical knowledge
component of NKI (National Knowledge Infrastructure) in China. Within NKIMath, a concept is represented
by aknowledge frame, in which the formal definition of the concept is given by a logical formula in first-order
logic. When the knowledge acquisition completed, the knowledge relations between concepts are
auto-generated by reasoning, which include concept equivalence, concept subsumption, concept overlapping,
concept exclusion and concept weak-correlation. With these relations, a three-level knowledge inheritance
hierarchy of mathematical concepts can be constructed from the knowledge base, with which the knowledge
can be inherited from one concept to another.
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INTRODUCTION
Mathematical knowledge representation and
acquisition are two major tasks in many mathematical
applications, including knowledge-based automated
theorem proving, integration of different mathematical
software systems, mathematical semantic Web and
high-level mathematical instruction (Asperti et al.,
2001a, b, Zeng et al., 2004a, b). Recently, with the
development and application of Web technology,
mathematical markup language for the content and the
context of mathematics toward Web, such as MathML
(David et al., 2003), Open Math (Abbott et al., 1996) and
OMDoc (Michael, 2001 ), has been received more attention
and a lot of projects about mathematical domain
knowledge base has been started mcluding Mbase
(Michael and Franke, 2001; Franke and Kohlhase, 2000),
HELM (Asperti et al, 200la; HELM), NOWGLI
(Asperti and Wegner, 2002), etc.

In 1999, a long-term research project (called the
National Knowledge Infrastructure, or NKI) was imtiated
in China to develop shareable knowledge bases of
different domains and relevant underlying systems.
Currently, the NKI contains knowledge from 21 domains,
e.g., medicine, biology, history, geography, mathematics,
music, ethnology and archaeology (Cao et al., 2002, 2004,
Cao, 2001; Guand Cao, 2001 )and owns more than 350,000
concepts and 2,000,000 domam assertions. The
knowledge of NKI i1s acquwed from encyclopedia,
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dictionaries, handbooks, textbooks and so on, by
semi-automatic and automated knowledge acquisition.
NKI has two main purposes, one of which is to provide
society-oriented knowledge services by Web, telephone,
Email and another of which is to provide KAPI
(knowledge application programming interface) for
computer systems including language system, digital
library, machine translation and so on.

NKIMath 13 the mathematical knowledge component
of NKI (Cao et al., 2006, Zeng et al., 2003; Zeng et al.,
2004a, 2006; Zeng, 2005), which 1s important for building
the whole NKI project, not only because mathematics is
a useful subject, but alse mathematics 1s the foundation
of lots of subjects, such as physics, mechanics and so on.
According to the problems that are encountered in
desigmng the mathematical knowledge representation
language in NKI and after the discussion of ontological
assumptions for mathematical objects, two kinds of
formalisms for the representation of mathematical
knowledge are provided in Cao et al. (2006). One is a
description logic in which the range of an attribute can be
a formula in some logical language and another is a first
order predicate logic in which an ontology represented
by the description logic 1s a part of the logical language
Cao et al. (2006). The knowledge of NKIMath 1s acquired
from  mathematical  encyclopedia,  mathematical
dictionaries, textbooks
(Zeng et al, 2003). Knowledge engineers acquire
knowledge from the knowledge sources and store them

mathematical and s oon
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into the knowledge base (Zeng et al., 2004a). In order to
manage the knowledge acquired within NKIMath and help
the knowledge engineers acquire knowledge, a knowledge
management platform, NKIMathE, has been designed and
developed (Zeng et al., 2006).

To represent and acquire the knowledge of
mathematics; especially mathematical concepts, the
construction of the knowledge mnheritance hierarchy
between mathematical concepts, are important to realize
knowledge inheritance between concepts. However, it is
not easy to directly build the relations between concepts
during knowledge acquisition since there are too many
concepts. This study introduces the knowledge
inheritance mechanism and the construction of knowledge
inheritance  hierarchy between concepts. Within
NKIMath, a concept is represented by a knowledge frame,
in which the formal definition of the concept 1s given by
a logical formula in first-order logic (Cao et al., 2006). By
the type of each concept, the concepts are divided into a
set of concept categories. Within a concept category, the
relations between concepts are defined When the
knowledge acquisition completed, the knowledge
relations  between concepts are auto-generated by
reasoning, which include concept equivalence, concept
subsumption, concept overlapping, concept exclusion
and concept weak-correlation. With these relations, a
three-level knowledge inheritance Thierarchy of
mathematical concepts can be constructed from the
knowledge base, with which the knowledge can be
inherited from one concept to another. Finally, an
auto-construction algorithm is given to obtain the
knowledge inheritance hierarchy between concepts from
the knowledge base.

KNOWLEDGE REPRESENTATION FOR
MATHEMATICS CONCEPT WITHIN NKIMATH

First, we present an example, the knowledge frame of
the concept Monoid in NKIMath is shown in Fig. 1.
Within the knowledge frame of Monoid, the knowledge is
orgamzed as four different components, which are:

¢  Concept relation: Relation IS-A indicates the relation
between Monoid and Semi-Group, which can be
obtained by knowledge reasoning from Formal
Definition (FD) attribute of Monoid and Semi-Group

*  Concept statement: 1t presents the Name in Germar,
English and Chinese and InFormal Definition (TFD) in
natural language for Monoid, respectively

*  Concept formalization: The parameters and the FD
are defined, which can be used for knowledge
reasoning. For example, it can decide whether a given
set G and a binary operation op on G can compose a
Monoid

Defframe monoid: Mathematical concept

{

= IS-A: Semi-Group 1

Name: Monoid
:LN GR
Context: Group theory
IFD: A semi-group (Gop) with a unit e is called a monoid

Parameter: G
: Type Set (o)
Parameter: op

: Type Set oxo-0
FD: Semi-Group (G,op)"Have-Unit (Gop)
Pattern: (<?G>,<%p> F—"T* <!Name-CN>)
Pattern: (<?G>,<?op> is a <IName-EN>)

Pattern: (<?G>,<?op> ist eine <!Name-GR>)

—

Fig. 1: The knowledge frame of concept Moniod

¢  Translation pattern: Three translation patters in
Chinese, English and German are given, which
serves for auto-generation of multi-lingual TFDs for
Monoid

In NKIMath, the knowledge for each concept is
represented by a frame embedded with a formula in
first-order predicate logic and each frame 1s composed by
a set of slots, where slots are either attributes or relations.
The main attributes and relations of the knowledge frames
for mathematical concepts mclude.

Name is an attribute presenting the name for each
concept, which is distinguished from other concepts and
can be referenced to. In different languages, different
words are used to express one same concept. For example,
Group in English, Gruppe in German are one same
concept. A facet attribute LN specifies which language is
used to express the name of the concept. Conforming to
the XML recommendation, we use the SO 639 two-letter
country codes (EN for English, FR for French and CN for
Chinese. . .) as the LN specification. This standard is also
conformed to OMDoc (Michael, 2001).

Parameter 1s a special attribute to mdicate the
component of a concept and the methods to use the
concept, which is a list of variables with Type facet to
specify the type of each variable. For example, Monoid
has two parameters, one of which is G with the type of Set
(0) and another is op with type oxo—0. Tt means that G
and op are two components of Monoid and G and op are
also two variables for predicate Monoid (G,op), which is
used to determine whether a set and an operation
compose a Monoid or not.

Context is an attribute to indicate a branch subject of
mathematics, the main purpose of which is convenient for
knowledge menagement. In the NKIMath knowledge
management environment (Zeng et al., 2006) all the
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concepts with same Context value will be organized into
one same subject. For example, Group, Abelian-Group all
have the same Context value Group Theory, thus they
belong to the same branch.

IFD (Informal Definition) and FD (Formal Definition)
are two attributes to present the definitions of one same
concept informally and formally towards different
purposes.

IFD presents the user-oriented informal defimition of
the mathematical concept in natural language, which 1s
used for knowledge querying, knowledge regeneration
and knowledge instruction. Tt corresponds to the CMP
element of OMDoc (Michael, 2001).

FD presents the machine-oriented formal definition
with a logical formula in first-order logic (Cao et al., 2006),
which is used for knowledge reasoning and theorem
proving. FD 1s one of the most important attributes for
mathematical concepts, which presents the formal
intension for each concept and it is the basis of
mathematical knowledge formalization. FD corresponds to
the FMP element of OMDoc (Michael, 2001).

Pattern 13 an attribute to present the knowledge
translation pattern, which serves for auto-generation of
multi-lingual mathematical knowledge base to satisfy
knowledge requirements of users with different language
backgrounds. The Pattern attribute 13 one of the
innovations for the mathematical concept knowledge
representation in NKIMath. By now, we have presented
the translation patterns in tlree kinds of languages
mcluding Chinese, English and German and realized to
translate NKIMath into English and German automatically
(Zeng et al., 2006).

Relations  [S-A, SUBCATEGORY OF  and
INSTANCE OF give the relations between concepts.
During the process of knowledge acqusition, these
relations are not presented, which are auto-generated by
the reasoning between FDs when knowledge acquisition
completed.

Within the knowledge frame of a concept, there
are other optional attributes, for example, [PROPOSER]
gives the person(s) who first proposed the concept,
[TIME OF PROPOSAL] gives the time of the first
proposal about the concept and [PUBLICATION
OF PROPOSAL] indicates the source(s) where the
concept was first published. All these attributes
present some historical knowledge about the concept
for educational purpose. Attributes PERTOD, INVERSE
FUNCTION, IMAGE, DOMAIN and FIELD etc. are
optional and are generally used to specify a mathematical
function.

More details about the knowledge representation for
mathematical concepts within NKIMath can be seen in
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Cao et al. (2006). In the following discussions of this
paper, the Knowledge Base (KB) is a set of knowledge
frames of mathematical concepts and it is assumed that
KB 1s complete and comrect. Knowledge errors and
abnormities verification and checking methods for
NKIMath can be seen in Zeng (2005).

CONCEPT CATEGORY AND CONCEPTRELATION

Here, the type of a mathematical concept is defined
first, which is used to divided concepts into categories.
Within a concept category, the relations between
concepts will be defined, which mclude concept
equivalence, concept subsumption, concept overlapping,
concept exclusion and concept weak-correlation.

Concept category

Definition 1: The type of a mathematical concept C 1s
type (C) = {o| there 1s an object (instance) o € E(C) such
that the type of o is 0} where E(C) is the set of all the
instances of concept C.

The type describes the composition of a mathematical
concept. For example, the type of concept Group is
Type(Group) = {(Set(o), oxo—o)loe MTSet}, where,
MTSet is the set of all types. Tt indicates that every group
15 composed of a given set with type Set(o) and a binary
operation 0xg—¢g on the set.

Let ConceptSet be the set of mathematical concepts.
According to the types of mathematical concepts, an
equivalence relation between concepts can be defined,
thus ConceptSet can be divided mnto a set of equivalence
classes. Every concept equivalence class is defined as a
concept category.

Definition 2 ¥C|, C,e ConceptSet, C, and C, satisfy type
equivalence relation iff Type(C)) = Type(C,), denoted as

Ty
C, &C,
Proposition 1: The T relation over ConceptSet is an
(]

equivalence relation.

Proof: Tt is easy to show that ™= satisfies reflexivity,
©

symmetry and transitivity, so T® is an equivalence
©

relation.

Definition 3: The concept set ConceptSet can be divided
mto a set of equivalence classes according to Tg

each of which is named as a concept category.



Inform. Technol. J., 10 (2): 348-357, 2011

Let Concepts%pe be the set of all the concept
—

categories and let CATEConceptS%e be a concept
©

category. With Definition 2, for any concept C,, C, € CAT,
C, and C, satisfy Type(C,) = Type(C,). TypeLabel(C) 1s
used to label the types of all the concepts in CAT, where
C is any concept of CAT.

Based on the usual formalization of algebraic
structures 1 type theory, the types of structures such as
Group and Set (i.e., Type(Group) and Type(Set) mn our
notations) are X-types (Luo, 1999, 2008), with the former
having the latter as a substructure. We can define a
coercion carrier from groups to sets which extracts the
type comresponding to the carrier set of a group. For
example, G is a Group on set S and the carrier can be
defined as Type(carrier(G)) = Type(S), thus all the
properties satisfied on S are also satisfied on carrier(G).
This kind of relation, such as there 1s a coercive function
from Type(Group) to Type(Set), is defined as coercive
subtyping.

Next, we define the inheritance relation between
concept categories based on coercive subtyping.

ConceptSet
Type
>

Definition 4: Let CAT, CAT,c be two
concept categories. CAT, is a subcategory of CAT,, or
CAT, 1s a supercategory of CAT,, if there 1s a coercive
function from TypeLabel(CAT,) to TypeLabel(CAT,).
Also, it is said that CAT, inherits from CAT,, denoted as
CAT, << CAT,.

If CAT, << CAT, and TypeLbel(CAT,) # TypeLabel
(CAT,), CAT, is a proper subcategory of CAT, and
denoted as CAT, <<< CAT,.

With the properties of coercive subtyping, relation
<< gatisfies reflexivity and transitivity and relation <<
satisfies non-reflexivity, non-symmetry and transitivity.
Certainly, there are other relations between concept
categories according to type theory (Luo, 1999, 2008). In
this study, we only pay more attention to the inheritance
relation between concepts, so other relations are not
discussed here.

Relations between mathematical concepts: Within a
concept category, all the concepts have same types,
ie., they have similar compositions. Between these
concepts, five kinds of relations can be defined based on
concept intensions (or FD knowledge), which are
respectively concept equivalence, concept subsumption,
concept overlapping, concept exclusion and concept
weak-correlation.
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Concept equivalence

Definition 5: Let CATECOHCGPJ[87 be a concept

Type
)
category. VC,, C, € CAT, C, and C, satisfy the relation of
concept equivalence (denoted as C, C,), if KB,
FD(C)|FFD(C,) and KB, FD(C,)|+FD(C,).

In mathematics, different concepts can be used to
express one same class of instances. Though the names
of these concepts are different, their extensions are equal
to each other and their intensions are equal in logic. For
example, Abelian-group and commutative-group,
complemented distributive lattice and distributive
complemented lattice, triangle with equal edges and
triangle with equal angles, satisfy the relation of concept
equivalence, respectively.

Concept subsumption

Definition 6: Let CATEconceptS%pe
>

be a concept
category. WC,, C, € CAT, 1if:

KB, FD(CORFD(C,), then C, implies C, or C, is a
subconcept of C,, denoted as C, < C,
KB, FD(C)FFD(C Yand KB, FD(G ) b= FD(G ), then ¢
implies C, properly, or C, is a proper subconcept of
C,. denotation C,< C, or IS-A(C,. C))

With the definition of < (<), all the properties of (or
propositions about) C, are satisfied to C,, which mdicates
the logical mheritance from C, to C,. It is easy to prove
that < (<) relation satisfies transitivity and for any C,, C,
eCAT,C,<Coand C, < C,aif C, = C,.

Concept Overlapping
Definition 7: Let CATECOHCGPtS%,FE be a concept
)

category. VC,, C, € CAT, C, and C, satisfy the relation of
concept exclusion (denoted as C; « C, or C; « C,), if there
is a formula @ such that KB,@rFD(C,) and KB,@rFD(C,),
but KB,FD(C)) - FD(Cy) and KB, FD(Cy) b~ FD(C}).

Tt is easy to prove that o satisfies reflexivity,
symmetry and non-transitivity. Besides, relation o
satisfies the following proposition.

Proposition 2: TLet CATe ConceptSetType be a concept
)

category. ¥C,, C, € CAT such that C;<C, and C,<C|, then

C, e C,.

Proof: If there is a formula ¢ such that KB, FD(C,)re,
since C,<C, and C,<C, KB, FD(C )¢ and KB, FD(C,)r¢.
So, C, = C,.
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The conclusion of Proposition 2 is obvious. Because
C, is a subconcept of C, and C,, C, is one of the
overlapping parts of C, and C,. For example, let C, be
complemented lattice, C, be distributive lattice and C, be
complemented distributive lattice, obviously C, and C,
satisfy concept overlapping.

Concept exclusion

Definition 8: Let CATe Concepts%e be a concept
&>

category. ¥C,, C, £ CAT, C, and C, satisfy the relation of

concept exclusion (denoted as C<=>C,), if there is a

formula ¢ such that:

(1) KB, FD(C,)- and KB, FD(C,)r¢
(2) For any other formula ¢, KB, ¢l ¢' and KB,
FD(C,)r¢' iff KB, FD(C,)—g!

Two concepts satisfying the relation of concept
exclusion indicates that they are opposite in logic.
Relation <=> 1s a non-eflexivity, symmetry and
transitivity relation and WC,, C, € CAT, C, and C,
cannot satisfy =, < and o if C, <=> C,. There are lots of
concepts  in mathematics satisfying the relation of
concept exclusion, such as Commutative Group and
Non-Commutative Group.

Concept weak-correlation: The four relations between
concepts, concept equivalence, concept subsumption,
concept overlapping, concept exclusion, mdicate two
concepts with same types have relations about their
logical constraints. If two concepts with same types have
no relations about their logical constraints, they are
weak-correlation.

me D€ a concept

<

category. ¥C,, C, £ CAT, C, and C, satisfy the relation of
concept weak-correlation, if they do not satisfy =, <, « or
<Rl

Definition 9: Tet CATeconcePt57

Two weak-correlation concepts are consistent only
about their structures, but there no any relations about
their logical constraints. When the concept categories are
divided, it 1s not expected to put two weak-correlation
concepts into one category, which can be overcome by
refining the conditions for dividing categories. In this
paper, we mainly discuss the inheritance relation to realize
knowledge mbheritance between concepts, so more details
about the conditions for dividing categories are not
considered here.

Five kinds of relations between concepts within
a concept category are formally defined based on their
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Table 1: Concept extension relations within a concept category

Concept Extension
relation Fxtension relation relation chart
Concept If C,=C,, then E(Cy) = E(CY) C,
equivalence

EC) E(C)
Concept If C,<Cy, then E(CCE(CY) c
subsumption If C;<C,, then E(C,)<E(C)) B
Concept T Cp=: Cy, then E(C)NE(C)=b C.
overlapping  That is, 31 € E{C;) and I € E(C,)
Concept If Cy<=>Cy, Then E(CHAE(C) = ¢ CAp
exclusion 4
Concept Tt ¢ and C, are concept
weak- weak-correlation, then
correlation E(C)ONE(C) = C C,

intensions (or formal definitions). The extension relations
between concepts within a concept category can be listed
in Table 1.

THREE-LEVEL KNOWLEDGE INHERITANCE
HIERARCHY OF MATHEMATICAL CONCEPTS

Based on the types of concepts, a given mathematical
concept set can be divided into a set of concept
categories. All the categories can be organized with the
subcategory relation between categories, which can
realize structural inheritance between concepts. Within a
concept category, the concepts are orgamized based on
the concept subsumption relation, which mndicates the
logical inheritance between concepts. Every concept
includes a class of instances and all the mstances satisfy
the properties of the concept. Thus, a three-level
knowledge inheritance hierarchy between mathematical
concepts can be obtained, which is represented in Fig. 2.
These three levels in the hierarchy are:

Concept category level: m which every category 1s
represented as a big circle with a broken line and the
inheritance between  categories
represented as a directed arc with a broken line
Concept level: Tn which every concept is represented

relation is

as a small circle and the mheritance relation between
concepts is represented as a directed arc. The
concepts with same types are classified mto one
same concept category

Instance TLevel: In which every instance is
represented as a small rectangle. The nstances with
same properties belong to the same concept
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Concept
- category level

Instance
level

Fig. 2: Three level hierarchy of mathematical concepts

Graph representation for knowledge inheritance
hierarchy of mathematical concepts: The concept
hierarchy can be represented by a directed graph The
inheritance graph of concept categories and the
mheritance graph of concepts are defined respectively as
follows.

Definition 10: G..r = <Vegp, B, £ is an inheritance
graph between concept categories iff:

Vo =iCAT|CATe ConceptSetType is a concept
=

category} 1s the vertex set of Ge.r

Eear © Veur * Viur is the directed edge set of G.,p, v,
Vi € Vour, Vi, vi) € Bear T v << v; (Le., v; 1s the
proper subcategory of v;)

If (v, v;) € Bear and £ is the coercive function from
TypeLabel(v,) to TypeLabel(v,), then &(v,, v;) = f and
the edge from v, to v, is labeled with f

Based on the definition of the inheritance graph
between concept categories, G 18 a directed graph
without any loops. Vv, v, v, € Veup (v, v =2 g if
E(v.v) = fand £(v, ) = g.

Definition 11: G = <V, E> is a concept inheritance graph
iff:
¢V =ConceptSet is the set of concepts
e (v,v)eBiff vy,

We can represent the concept category mheritance
and concept inheritance graph with one combined
directed graph. The category vertex is represented by a
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CAL, CAT,

Fig. 3: Directed graph representation for the concept
hierarchy

big circle with a broken line and the mheritance relation
between categories is represented by a directed arc with
a broken line and every arc is labeled with the coercive
function. For every big circle of category, the concept
inheritance graph is embedded into it. The concept
node 1s represented by a small circle and the inheritance
relation between concepts is represented by a directed
arc. Figure 3 shows an example.

Figure 3, the concept hierarchy 1s composed by three
concept categories (CAT,, CAT, and CAT ). ECAT,
CAT,, CAT,) = f and Z(CAT,, CAT,) = f,. In each concept
category (CAT,, CAT, or CAT,), the concepts are
orgamzed by the inheritance relation.

AUTO-CONSTRUCTION ALGORITHM FOR
KNOWLEDGE INHERITANCE HIERARCHY OF
MATHEMATICAL CONCEPTS

Auto-construction algorithm: With the analysis for
knowledge inheritance hierarchy between mathematical
concepts, an auto-construction method for the lierarchy
from concept knowledge base can be presented.
According to the knowledge representation for the
mathematical concepts, the Formal Definition (FD) in the
knowledge frame presents the
combination of parameters indicates the type of the

ntension and the

concept. We can obtain the concept hierarchy with the
knowledge frames of concepts if there are no errors in the
frames. The auto-generation algorithm for knowledge
inheritance hierarchy between mathematical concepts
within NKIMath is presented in Algorithm 1.

Algorithm 1 only presents the framework for
auto-generation of knowledge inheritance herarchy
between mathematical concepts within NKIMath. In
Step 3 and 4, areasomng machine is needed to judge
the concept  categories
concepts.

relations between or
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A running example: In order to show the procedure of  is produced and a node (represented by the big circle
Algorithm 1, Table 2 presents the basic knowledge frames in Fig. 4a for GCC (Concept Category of Group)
for concepts including Group, Ring, Non-associative Ring synchronously. Figure 4b shows the result after reading
and so on, which only presents the main information in~ the KF of Ring. Fig. 4b, Ring 1s represented by the little
the knowledge frame, such as name, parameters and FD. circle and RCC (Concept Category of Ring) is represented

The procedure of auto-generation of the concept by the big circle. Since GCC is inherited by RCC, a
hierarchy m Table 2 13 presented as in Fig. 4. With the first  directed arc 1s represented from GCC to RCC. Figure 4
step, the KF (Knowledge Frame) of Group 1s read and @  shows the whole procedure of the auto-generation of the
node (represented by the little circle in Fig. 4a for Group concept knowledge inheritance hierarchy.

(a) Begin. Read the KF of group (b) Read the KF of ring

— Concept — e
- ~. - ~. ; \
/./ Gee \;\ category level // Gee \i\- _______ _7' RCC \
l\\____// '\\___,// N’
Vi | / 1 [

Concept level

/ Ring
i
\,
\.
\'\ _______ -
(c¢) Read the KF of Non-associative (d) Read the KF of Abelia-group
Ring
Concept category level Eamn
— N N \
7~ N a N GCC | L |
i GCC === | RCC )
/"\.\_ "/\ \,\___’/\ ; \
/ T
....... ~Ring
[~ ~ " 2 \ \
v Group N, i Non- |
i [ ] Vol f Non- i v Ossociative [/
i i\ associative  / N S
\ ! \ . / . ring
7/ . ring e -
/ e -
S - T
(e) Read the KF of Monoid
Concept category level Concept category level

e PN

™\ 4 \ Y4 N
{ acc i‘ ------- - { RcC L > RCC
[T [T
/ / : / \

A TOUP MO]]Old\ / d Jordan

! I ring
, i
Non- ,‘ N /
Abelian '\, aSSOClathe ,/‘ \ @ Abelian / . Non- 4
group //, N N mg_ 7 e, _group 4 a§so<;§a_g_\_vg zing”
(g) Read the KF of commutative (h) Read the KF of finite group
Ring Concept category level End Concept category level
P TN, — TN,
/ “ / \ / \ / \
i GCC | RCC ] i GCC | ‘RCC4
7 T 7 AY 7 1
Cokcept level Con pt level
. ,’Rxﬁg Cémrn\l\tatlve ............ tative|
g ‘N, @ring 3 y
roup  Monoid, 0 ’GIOUP Monmd\ “
<0 Jordan ring i { oldan rin; I
) ! '\\ ® J Finite groupl_ '-\ g
. @ Abelian 7 I}lon-assomaﬂvs/ N 'e ,' . Non- assomatlvﬁ
.., group 7 S g - . Abelian ot <. _ring—"
~ . n gretip ~Lng

Fig. 4: The procedure of auto-generation of the concept luerarchy
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Table 2: Knowledge frames of a set of concepts

Table 2: Contimied

Concept Knowledge frame Concept Knowledge frame
Group Deftrame Group: Mathematical concept Finite group Defframe Abelian-Group: Mathematical concept
{ {
Parameter: S Parameter: 8
: Type Set(c) : Type Set(o)
Parameter: op Parameter: op
: Type axo—a : Type
I;D: Monoid(3, op)"Have_Inverse (3, op) FD: Group(8, op)"Smaller_Than (Order(3), =)
Ring Deftrame Ring: Mathematical concept
{
Parameter: § RELATED WORK

: Type Set(c)
Parameter: opl
: Type axo—a
Parameter: op2
: Type oxo—o
FD: Non_associative Ring (8, opl, op2)y™
Associative Law (S, op2)
}
Defframe Non-associative Ring: Mathermnatical concept
{
Parameter: 8
: Type Set(c)
Parameter: opl
: Type axo—a
Parameter: op2
: Type oxo—o
FD: Abelian_Group(S, oply'Distributive_Law(S,
opl, op2)

Non-associative
ring

Defframe Abelian-Group: Mathematical concept
{
Parameter: S
1 Type Set(o)
Parameter: op
: Type oxo—o
FD: Group(8, op)"Commutative Law(S, op)
}
Defframe Monoid: Mathematical concept
{
Parameter: S
: Type Set(c)
Parameter: op
: Type oxo—o
FD: Semi_Group(8, opy*Have Unit (8, op)
}
Defframe Jordan Ring: Mathematical concept
{
Parameter: S
1 Type Set(a)
Parameter: opl
: Type oxo—o
Parameter: op2
: Type axo—a
FD: Non_associative_Ring (S, opl, op2) ™
Commutative_Law (S, op2)}
Deffirame Comrmmutative Ring: Mathematical concept
{
Parameter: S
: Type Set(c)
Parameter: opl
: Type axo—a
Parameter: op2
: Type oxo—o
FD: Ring(8, opl, op2y*Cormrmitative Law (3, op2)
}

Abelian-group

Monoid

Jordan ring

Commutative ring

355

Kerber and Kerber (1991) presented a frame-based
knowledge representation method for mathematics and
the main idea of which comes from object-oriented
technology. Kerber and Kerber (1991), every frame is
composed by name, a set of slots and fillers. Slot is a set
of atom predicates and the filler of every slot is the value
of the corresponding atom predicates. Figure 5 shows the
knowledge representation for Group in Kerber and Kerber
(1991).

Kerber’s frame-based knowledge representation
for mathematics binds the related knowledge together,
thus it 1s convement for knowledge organization and
maintenance. NKIMath enriched the information within
the frame given by Kerber, which can satisfy more
requirements of users. For example, TFD (Informal
Definition) in natural language can be used for knowledge
instruction or knowledge Q-A and knowledge translation
patterns can be used for auto-generation of multi-lingual
knowledge to satisfy different requirements of
users with different native language. In the frame
given by Kerber, 1t 1s difficult to construct the
knowledge inheritance Thierarchy of mathematical
concepts directly, so it is also difficult to realize
knowledge mheritance  between — mathematical
concepts. Within NKIMath, the knowledge nheritance
between concepts can be realized by knowledge
reasoning and the auto-construction algorithm for the
hierarchy is given.

OMDoc is used for knowledge representation in
many mathematical knowledge systems (Michael, 2001)
and it will be accepted as the international standard for
mathematical document marked language. The knowledge
representation of NKIMath follows lots of sumilarities with
OMDoc, for example, the FD and IFD attributes in
NKIMath are comresponding to the FMP and CMP
m OMDoc, the
knowledge inheritance between concepts 1s also not
defined by OMDoc. Although, OMDoc can provide
hyperlink relation between, it is different from the
knowledge inheritance relation between concepts and it

base

elements respectively. However,
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Definition: Group (Property)

Parameter: G: (t~0)
Parameter: +: (GxG-G)
Optional parameter: 0: G
Optional parameter: -: G
definational: TRUE
Superconcepts: (1) associative (G, +)

(2) ex_neutral_element(G,+,0)

(3) ex_inverse(G+,0,-)
equivalences:

Context: Basic algebra

/lcalled: carrier
/lcalled: operation
/lcalled: neutral element

/lcalled: inverse operation

(1) associative(G,+) ~ ex_left_neutral_eclement(G,+,0) ” ex_left_inverse(G,+,0,-)
(2) associative(G,+) " ex_right_neutral_element(G,+,0) " ex_rightinverse(G+,0-)

Fig. 5: Knowledge representation for group with kerber’s method

1s difficult to realize knowledge inheritance between
concepts based on hyperlink relation. The hyperlink
relation between concepts is based on the definitions of
concepts provide by OMDoc, which 1s useful to acquire
knowledge of concept according to the defimition
relations to ensure the knowledge complete. A
concept-oriented knowledge acquisition method is given
and adopted within NKIMath (Zeng et al., 2003).

A knowledge management environment for
mathematical concepts within NKIMath, NKIMathE,
has been developed to manage the acquired
knowledge frames acquired (Zeng et al., 2004a, b). To
auto-construct the knowledge inheritance hierarchy
between concepts within NKIMath based on the
algorithm presented in this study is one of the most
mnportant functions of NKIMathE. The knowledge
mheritance hierarchy between concepts 1s convenient for
knowledge browse, search and edit. According to the
knowledge inheritance hierarchy between concepts, it is
easy to discover the backbone about the concepts within
NKIMath.

CONCLUSION AND FUTURE WORK

To realize knowledge inheritance between concepts
is important to knowledge representation and acquisition
of mathematical concepts. In this study, we introduce
the knowledge mheritance mechanism between
concepts within NKIMath and a three-level knowledge
mheritance hierarchy and its auto-construction method
are given. There are three main contributions in this
study:

Relation analysis between concepts. Concept
category 1s obtained based on concept types and
five kinds of relations between concepts within a
concept category are defined

Three-level knowledge inheritance hierarchy to
realize structwral and logical knowledge inheritance
between concepts

Graph representation and auto-construction methods
for knowledge inheritance hierarchy between
concepts
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By now, we only consider the relations between
concepts based on their formal definitions. In fact, there
are many mathematical theorems (lemmas, propositions,
etc.) that also build the relations between mathematical
concepts. In the future, we will consider the knowledge
representation and acquisition for mathematical theorems
and have research on how to obtain relations between
concepts with the knowledge of theorems. At the same
time, a reasoning machine will be designed and developed
to realize knowledge reasoning to construct the
knowledge nheritance hierarchy automatically.
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Algorithin 1: Auto-construction of the knowledge inheritance hierarchy of
mathematical concepts

INPUT: Knowledge Frame Set of Concepls

OUTPUT: Concept Knowledge Inheritance Hierarchy

Step 1: Read the knowledge frame KF(C) of concept C;

Step 2: According the parameter definitions in KF(C), to obtain the
type of C, denoted as Type(C);

Step 3: Tf Type(C) is not in the known type set TypeSet, then add
Type(C) into TypeSet and add a new category node NewCat into the
concept category set Ve, For all category (denoted as OldCat) in V1, if
OldCat << NewCat, then add (OldCat, NewCat) into the category
inheritance relation set Eqyr.

Step 4: If Type(C) is in a known type set TypeSet, then add a new
concept nod for C into one concept category (CatV) according Ty pe(C). For
all concept (denoted as OIdC) in CatV, if Old<C, then add (OldC, C) into
the concept inheritance relation set CatE.

Step 5: Output (Vesr, Ecur) and (CarV, CatE)
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